JPH0192547A - Electronically controlled fuel injection device for multi-cylinder internal combustion engine - Google Patents

Electronically controlled fuel injection device for multi-cylinder internal combustion engine

Info

Publication number
JPH0192547A
JPH0192547A JP24994687A JP24994687A JPH0192547A JP H0192547 A JPH0192547 A JP H0192547A JP 24994687 A JP24994687 A JP 24994687A JP 24994687 A JP24994687 A JP 24994687A JP H0192547 A JPH0192547 A JP H0192547A
Authority
JP
Japan
Prior art keywords
fuel injection
acceleration
amount
fuel
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24994687A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP24994687A priority Critical patent/JPH0192547A/en
Priority to US07/252,977 priority patent/US4911132A/en
Publication of JPH0192547A publication Critical patent/JPH0192547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at enhancing the acceleration performance over the whole operating range by aiming at increasing the acceleration fuel amount by normal fuel injection under sequential control during moderate acceleration operation while aiming at increasing the acceleration fuel amount by normal fuel injection and interrupt injection during abrupt acceleration operation. CONSTITUTION:During normal operation of an engine, a sequential control means C controls fuel injection valves B1 through Bn in accordance with a fuel injection amount which is set by a fuel injection amount setting means A in accordance with an operating condition of the engine. When an acceleration operation condition detecting means D detects a moderate acceleration operation condition, a first acceleration fuel amount setting means E sets a fuel injection amount during normal fuel injection in accordance with the above-mentioned increased fuel amount and the above- mentioned fuel injection amount. Further, when an abrupt acceleration operating condition exceeding a predetermined value is detected, a second acceleration fuel amount setting means F sets a fuel injection amount similar to that by the setting means E, and after fuel injection, an interrupt acceleration fuel injection amount is set so as to control the injection valves B1 through Bn.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は各気筒の燃料噴射弁を個別に動作させる所謂シ
ーケンシャル・インジェクシゴン方式(以下シーケンシ
ャル制御と呼ぶ)の電子制御燃料噴射装置に関し、特に
その加速性能の改善に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device of the so-called sequential injection system (hereinafter referred to as sequential control) in which the fuel injection valves of each cylinder are operated individually. In particular, it relates to improving its acceleration performance.

〈従来の技術〉 特開昭57−8328号公報等に記載されるシーケンシ
ャル制御は、各気筒に燃料と空気とを十分に混合させた
混合気を供給させることができ、気筒間の燃焼のバラツ
キも無くなり、トルク変動が小となる等の利点を備えて
いる。
<Prior art> Sequential control described in Japanese Patent Application Laid-Open No. 57-8328 etc. can supply a mixture of fuel and air to each cylinder, and eliminates variations in combustion between cylinders. This has the advantage of eliminating torque fluctuations and reducing torque fluctuations.

ところで、近年のマイクロコンピュータを用いた電子制
御燃料噴射装置において、前記シーケンシャル制御を採
用したものにおいては、マイクロコンピュータにより機
関の運転状態(例えば、回転速度、吸入空気流量)に応
じた燃料噴射量(例えば4サイクル機関の場合、2回転
毎或いはクランク角センサからの基準信号の入力毎等に
各気筒の燃料噴射弁から噴射される燃料量)を演算し、
この演算された燃料噴射量に相当するパルス巾を持つ噴
射パルス信号を燃料噴射弁に出力し燃料噴射(以下、こ
れを通常燃料噴射と呼ぶ)を行っている。
Incidentally, in recent electronically controlled fuel injection systems using microcomputers, in those that employ the sequential control described above, the microcomputer controls the fuel injection amount (for example, the rotational speed, intake air flow rate) according to the operating state of the engine (rotational speed, intake air flow rate). For example, in the case of a four-stroke engine, the amount of fuel injected from the fuel injection valve of each cylinder is calculated every two revolutions or every time a reference signal is input from a crank angle sensor.
An injection pulse signal having a pulse width corresponding to the calculated fuel injection amount is output to the fuel injection valve to perform fuel injection (hereinafter referred to as normal fuel injection).

かかる噴射パルス信号の出力に際して、吸気行程とタイ
ミングを合わせてクランク角センサからの基準信号に基
づいて燃料の噴射開始時期成いは噴射終了時期を常に一
定のクランク角位置で行うように制御している。
When outputting such an injection pulse signal, the fuel injection start timing or injection end timing is controlled to always be at a constant crank angle position based on a reference signal from a crank angle sensor in synchronization with the intake stroke. There is.

また、加速運転時には、前記検出された吸入空気流量を
加速運転状態に応じて補正することにより、通常燃料噴
射時の燃料噴射量に加速時増量燃料噴射量を加算して機
関に供給するようにしている(特願昭61−17578
2号及び特願昭61−199135号参照)。
Further, during acceleration operation, the detected intake air flow rate is corrected according to the acceleration operation state, so that the increased fuel injection amount during acceleration is added to the fuel injection amount during normal fuel injection, and the increased fuel injection amount is supplied to the engine. (Patent application 17578/1986)
2 and Japanese Patent Application No. 1981-199135).

さらに、加速運転時には、前記通常燃料噴射の終了直後
に、加速運転状態(例えばスロットル弁の開度変化率)
に応じた加速時増量燃料噴射量を割込噴射により機関に
供給するようにしている(特願昭61−151435号
、特願昭61−199135号、特願昭61−2079
74号及び特願昭62−148036号参照)。
Furthermore, during acceleration operation, immediately after the end of the normal fuel injection, the acceleration operation state (for example, the opening change rate of the throttle valve)
An increased fuel injection amount during acceleration is supplied to the engine by interrupt injection according to the acceleration (Japanese Patent Application No. 61-151435, Japanese Patent Application No. 61-199135, Japanese Patent Application No. 61-2079).
No. 74 and Japanese Patent Application No. 148036/1982).

〈発明が解決しようとする問題点〉 ところで、前者の如く通常燃料噴射時の燃料噴射量に加
速増量燃料噴射量を加算して加速増量を図るものにおい
ては、急速なスロットル弁操作による急加速運転時の吸
入空気流量の増加により、燃料噴射セット時より増量の
要求が増大化する特に加速運転初期の燃料噴射量が不足
し加速性能が低下するという不具合がある。
<Problems to be Solved by the Invention> By the way, in the former case where acceleration increase fuel injection amount is added to the fuel injection amount during normal fuel injection to increase acceleration amount, sudden acceleration operation due to rapid throttle valve operation is not possible. Due to the increase in the intake air flow rate during the engine operation, the demand for an increase in the amount of fuel increases compared to when the fuel injection is set.Particularly in the early stages of acceleration operation, the fuel injection amount becomes insufficient and acceleration performance deteriorates.

また、後者の如く通常燃料噴射の終了直後に割込噴射を
行うものだけの増量において常用度のたかい緩加速運転
時にセット時に増量を行うものと比較してCO及びHC
の排出量が増大するという不具合がある。すなわち、通
常燃料噴射の終了時期を吸気弁の開き始める時点(以下
、吸気上死点と称す)に設定したものにおいて、前記割
込噴射を行うと、割込噴射が吸気弁の開弁時中期まで継
続されて冷たい霧化しない燃料が吸入され機関燃焼が悪
化し、CO及びHCの排出量が大巾に増大すると共に加
速性能が悪化し、さらに燃費の悪化を招くという不具合
がある。
In addition, in the latter case, when the amount is increased only when the interrupt injection is performed immediately after the end of the normal fuel injection, the amount of CO and HC is increased compared to when the amount is increased at the time of setting during the commonly used slow acceleration operation.
The problem is that the amount of emissions increases. In other words, when the interrupt injection is performed when the end timing of normal fuel injection is set to the point at which the intake valve starts to open (hereinafter referred to as intake top dead center), the interrupt injection occurs at the middle of the intake valve opening period. If this continues until the end of the cycle, cold, un-atomized fuel is sucked in, which worsens engine combustion, greatly increases CO and HC emissions, and deteriorates acceleration performance, further leading to deterioration of fuel efficiency.

本発明は、このような実状に鑑みてなされたもので、全
ゆる加速運転状態で加速性能を最適に維持できると共に
CO及びHC排出量の低減化を図れる多気筒内燃機関の
電子制御燃料噴射装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an electronically controlled fuel injection device for a multi-cylinder internal combustion engine that can maintain optimal acceleration performance under all acceleration driving conditions and reduce CO and HC emissions. The purpose is to provide

〈問題点を解決するための手段〉 このため、本発明は、第1図に示すように、機関運転状
態に応じて燃料噴射量を設定する燃料噴射量設定手段A
と、各気筒毎に設けられた燃料噴射弁B1〜B7と、こ
れら燃料噴射弁B、〜B7を個別に動作させることによ
り各気筒の吸気行程とタイミングを合わせ前記燃料噴射
量に応じて通常燃料噴射を行うシーケンシャル制御手段
Cと、を備えるものにおいて、加速運転状態を検出する
加速運転状態検出手段りと、所定値以下の緩加速運転状
態が検出されたときに、加速時増量燃料噴射量と前記燃
料噴射量とに基づいて通常燃料噴射時の燃料噴射量を設
定する第1加速時燃料量設定手段Eと、所定値を超える
急加速運転状態が検出されたときに、加速時増量燃料噴
射量と前記燃料噴射量とに基づいて通常燃料噴射時の燃
料噴射量を設定すると共に噴射終了後に加速時割込噴射
量を設定する第2加速時燃料量設定手段Fと、設定され
た加速時割込噴射量に対応する信号を前記通常燃料噴射
に割込ませて前記燃料噴射弁B I”’ B −に出力
し燃料噴射弁B、〜B7を駆動する駆動手段Gと、を備
えるようにした。
<Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention provides a fuel injection amount setting means A that sets the fuel injection amount according to the engine operating state.
The fuel injection valves B1 to B7 are provided for each cylinder, and by individually operating these fuel injection valves B, to B7, the timing is adjusted to the intake stroke of each cylinder and normal fuel is injected according to the fuel injection amount. sequential control means C for injecting; and an acceleration operation state detection means for detecting an acceleration operation state; a first acceleration fuel amount setting means E that sets a fuel injection amount during normal fuel injection based on the fuel injection amount; a second acceleration fuel amount setting means F that sets a fuel injection amount during normal fuel injection based on the fuel injection amount and the fuel injection amount and also sets an acceleration interrupt injection amount after the injection ends; A driving means G that interrupts the normal fuel injection with a signal corresponding to the interrupt injection amount and outputs the signal to the fuel injection valve B I"' B- to drive the fuel injection valves B, to B7. did.

〈作用〉 このようにして、緩加速運転時にはシーケンシャル制御
による通常燃料噴射時に加速増量を図る一方、急加速運
転時には前記通常燃料噴射時に加速増量を図ると共に通
常燃料噴射に割込ませて加速増量を図るようにした。
<Function> In this way, during slow acceleration operation, the acceleration amount is increased during normal fuel injection by sequential control, while during rapid acceleration operation, the acceleration amount is increased during the normal fuel injection, and the acceleration amount is increased by interrupting the normal fuel injection. I tried to figure it out.

〈実施例〉 以下に、本発明の一実施例を第2図〜第4図に基づいて
説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 4.

第2図において、内燃機関1の各気筒の吸気ポートに電
磁駆動式の燃料噴射弁2が装着され、それより上流の吸
気通路には、スロットル弁3.エアフローメータ4.エ
アクリーナ5が装着されている。
In FIG. 2, an electromagnetically driven fuel injection valve 2 is installed in the intake port of each cylinder of an internal combustion engine 1, and a throttle valve 3. Air flow meter4. Air cleaner 5 is installed.

また、マイクロコンピュータ等からなる制御装置6には
、前記エアフローメータ4からの吸入空気流量Q信号の
他、クランク角センサ7によって検出される機関回転数
N信号、前記スロットル弁3に装着された加速運転状態
検出手段としてのスロットルセンサ8からのスロットル
弁開度α信号。
In addition to the intake air flow rate Q signal from the air flow meter 4, the control device 6, which includes a microcomputer, also receives an engine rotation speed N signal detected by the crank angle sensor 7, and an acceleration signal attached to the throttle valve 3. Throttle valve opening α signal from throttle sensor 8 as operating state detection means.

水温センサ9からの冷却水温度(水温)Tい信号等が入
力され、これら信号に基づいて機関回転に同期した燃料
噴射信号を燃料噴射弁2に出力して、周期的に燃料噴射
を行わせるようになっている。
Cooling water temperature (water temperature) signals etc. from the water temperature sensor 9 are input, and based on these signals, a fuel injection signal synchronized with engine rotation is output to the fuel injection valve 2 to periodically perform fuel injection. It looks like this.

尚、クランク角センサ7は前記機関回転数検出のための
単位角(例えば1’)毎の信号の他、特定気筒(例えば
#1気筒)の特定クランク角位置で気筒判別信号、各気
筒の所定クランク角位置で基準信号(#1気筒では気筒
判別信号と同時に)が出力される。
Incidentally, the crank angle sensor 7 receives a signal for each unit angle (for example, 1') for detecting the engine speed, a cylinder discrimination signal at a specific crank angle position of a specific cylinder (for example, #1 cylinder), and a predetermined signal for each cylinder. A reference signal (simultaneously with the cylinder discrimination signal for #1 cylinder) is output at the crank angle position.

ここでは、制御装置6がシーケンシャル制御手段と燃料
噴射量設定手段と第1及び第2加速時燃料量設定手段と
駆動手段とを構成する。
Here, the control device 6 constitutes sequential control means, fuel injection amount setting means, first and second acceleration fuel amount setting means, and driving means.

次に作用を第3図及び第4図のフローチャートに従って
説明する。
Next, the operation will be explained according to the flowcharts of FIGS. 3 and 4.

まず、シーケンシャル制御を説明すると、回転速度、吸
入空気流量等の機関運転状態に応じて燃料噴射量TIを
演算する。そして、各気筒の点火順序に従って機関2回
転に対し1回の割合で各気筒の燃料噴射弁を個別に動作
させることにより、各気筒の吸気上死点で燃料噴射が終
了するように前記燃料噴射量Tiを各気筒に供給する。
First, sequential control will be explained. The fuel injection amount TI is calculated according to engine operating conditions such as rotational speed and intake air flow rate. Then, by individually operating the fuel injection valves of each cylinder at a rate of once per two revolutions of the engine according to the ignition order of each cylinder, the fuel injection valves are arranged so that the fuel injection ends at the intake top dead center of each cylinder. A quantity Ti is supplied to each cylinder.

また、例えば減速運転時には検出された機関回転数が燃
料カット回転数以上のときに、燃料噴射弁2の噴射制御
を停止させ燃料カットを行う。また、機関回転数がリカ
バリー回転数まで低下したら燃料噴射弁2の噴射制御を
再開する燃料力・ントが行われる。
Further, for example, during deceleration operation, when the detected engine speed is equal to or higher than the fuel cut speed, injection control of the fuel injection valve 2 is stopped to perform a fuel cut. Further, when the engine speed decreases to the recovery speed, fuel power is applied to restart injection control of the fuel injection valve 2.

かかるシーケンシャル制御中において、第3図のルーチ
ンは10m5ec毎に実行される。
During such sequential control, the routine shown in FIG. 3 is executed every 10 m5ec.

Slでは、クランク角センサ7、スロットルセンサ8等
の各種検出信号を読込む。
At Sl, various detection signals from the crank angle sensor 7, throttle sensor 8, etc. are read.

S2では、前回と今回のルーチンで検出されたスロット
ル弁開度から開度変化率Δαを演算する。
In S2, the opening change rate Δα is calculated from the throttle valve openings detected in the previous and current routines.

S3では、負荷補正量KQ、を次式に基づいて演算する
In S3, the load correction amount KQ is calculated based on the following equation.

KQ、= (4/4負荷時T2−前回ルーチンのTP)
/ (4/4負荷時’r、 −1,5)S4では、加速
時増量吸気係数に、Accを次式に基づいて演算する。
KQ, = (T2 at 4/4 load - TP of previous routine)
/ (4/4 load time 'r, -1,5) In S4, Acc is calculated based on the following equation for the increased intake coefficient during acceleration.

K、5cc= (KΔIX + KN ) X K Q
zKΔαはスロットル弁の開度変化率Δαに基づいてマ
ツプから検索された補正係数、に、は機関回転速度Nに
基づいてマツプから検索された補正係数である。
K, 5cc= (KΔIX + KN) X K Q
zKΔα is a correction coefficient retrieved from the map based on the opening degree change rate Δα of the throttle valve, and zKΔα is a correction coefficient retrieved from the map based on the engine rotational speed N.

S5では、基本噴射量T、を次式により演算する。In S5, the basic injection amount T is calculated using the following equation.

TP = K (Q+ KoAcc) / NKは定数
、Qはエアフローメータ4により検出された吸入空気流
量、Nは機関回転速度である。
TP=K(Q+KoAcc)/NK is a constant, Q is the intake air flow rate detected by the air flow meter 4, and N is the engine rotation speed.

S6では、前記S2にて演算された開度変化率Δαに基
づいて、急加速運転(例えばΔα〉1.6゜/10m5
ec)が開始されたか否かを判定し、YESのときには
S7に進みNoのときにはS19に進む。
In S6, based on the opening degree change rate Δα calculated in S2, sudden acceleration operation (for example, Δα>1.6°/10m5
It is determined whether or not ec) has been started, and if YES, the process advances to S7, and if NO, the process advances to S19.

S7では、燃料カット時の割込噴射(以下カット時割込
噴射と称す)の初回か否かを判定し、YESのときには
S9に進みNOのときにはS14に進む。
In S7, it is determined whether or not it is the first time for an interrupt injection during fuel cut (hereinafter referred to as cut interrupt injection). If YES, the process advances to S9, and if NO, the process advances to S14.

S9では、加速時割込噴射量としてのカット時割込噴射
量TN!NJを次式により演算した後310に進む。
In S9, the cut-time interrupt injection amount TN is used as the acceleration-time interrupt injection amount! After calculating NJ using the following equation, the process proceeds to step 310.

TNINJ=T Δ αx’rTw ここで、TΔαは、前記開度変化率Δαに依存する開度
変化率依存増量係数であり、Δαの増大に伴って大きく
なるように設定されている。TT。
TNINJ=T Δ αx'rTw Here, TΔα is an opening change rate dependent increase coefficient that depends on the opening change rate Δα, and is set to increase as Δα increases. TT.

は、冷却水温度に依存する水温依存増量係数であり、冷
却水温の上昇に伴って小さくなるように設定されている
is a water temperature dependent increase coefficient that depends on the cooling water temperature, and is set to become smaller as the cooling water temperature rises.

310では、急加速運転検出直前の気筒での通常燃料噴
射が終了したかいなかを判定し、YESのときには31
1に進み、Noのときには320に進む。
At 310, it is determined whether the normal fuel injection in the cylinder immediately before the detection of sudden acceleration operation has ended, and when YES, 31
1, and if No, proceed to 320.

Sllでは、S9にて演算されたカット時割込噴射量T
NINJに対応する割込噴射信号を燃料噴射弁2に出力
し最後に実行された通常燃料噴射終了後に加速運転検出
後の第1回目のカット時割込噴射を行わせる。
In Sll, the cut interruption injection amount T calculated in S9
An interrupt injection signal corresponding to NINJ is output to the fuel injection valve 2 to perform the first cut interrupt injection after the acceleration operation is detected after the last normal fuel injection is completed.

312では、燃料カット直後の割込噴射であることをF
LAGア、=1としてRAMに記憶させた後、S13に
進む。
312, F indicates that it is an interrupt injection immediately after fuel cut.
After storing LAGA=1 in the RAM, the process advances to S13.

S13では、カット時割込噴射回数nTNに+1を加算
して新たなカット時割込噴射回数nTNを設定した後、
S20に進む。
In S13, after adding +1 to the number of interrupt injections during cut nTN to set a new number of interrupt injections during cut, nTN,
Proceed to S20.

一方、燃料カットが行われていないときからの急加速運
転時には、S14で燃料カットが行われていないときか
らの割込噴射(以下通常割込噴射と呼ぶ)の初回か否か
を判定し、YESのときにはS15に進みNoのときに
は320に進む。
On the other hand, during a sudden acceleration operation from a time when a fuel cut is not performed, it is determined in S14 whether or not this is the first interrupt injection (hereinafter referred to as normal interrupt injection) from a time when a fuel cut is not performed; When the answer is YES, the process advances to S15, and when the answer is No, the process advances to 320.

315では、加速時割込噴射量としての通常割込噴射量
TRINJを次式により演算した後、S16に進む。
In S315, the normal interrupt injection amount TRINJ as the acceleration interrupt injection amount is calculated using the following equation, and then the process proceeds to S16.

TRINJ=TΔαx TPIIX K Qzここで、
TΔα及び’rTwはカット時割込噴射量の式と同様で
ある。また、KQ、は(4/4負荷時TP−加速時Tp
 ) / (4/4負荷時TP−ロード・ロード走行時
のTP)で求められ、加速時に演算された加速時TPは
ロード・ロード走行時のTPより大きくなっている。こ
れにより、KQtは1より小さくなる。従って、通常割
込噴射量TRfNJはカット時割込噴射量TNfNJよ
り所定量小さくなり、この差が壁流燃料量に略対応する
ようになっている。
TRINJ=TΔαx TPIIX K QzHere,
TΔα and 'rTw are the same as the expression for the cutting injection amount. Also, KQ is (TP at 4/4 load - Tp at acceleration
) / (4/4 TP under load - TP during road running), and the TP during acceleration calculated during acceleration is larger than the TP during road running. This makes KQt smaller than 1. Therefore, the normal interrupt injection amount TRfNJ is smaller than the cut interrupt injection amount TNfNJ by a predetermined amount, and this difference approximately corresponds to the wall flow fuel amount.

S16では、急加速運転検出直前の気筒での通常燃料噴
射が終了したか否かを判定し、YESのときには317
に進み、Noのときには320に進む。
In S16, it is determined whether the normal fuel injection in the cylinder immediately before the detection of sudden acceleration operation has ended, and if YES, 317
If the answer is No, the process proceeds to 320.

S17では、S15にて演算された通常割込噴射量TR
INJに対応する割込噴射信号を燃料噴射弁2に出力し
最後に実行された通常燃料噴射終了後の気筒へ加速運転
検出後の第1回目の通常割込噴射を行わせる。
In S17, the normal interrupt injection amount TR calculated in S15 is
An interrupt injection signal corresponding to INJ is output to the fuel injection valve 2, and the first normal interrupt injection after the acceleration operation is detected is performed in the cylinder after the last normal fuel injection.

51Bでは、通常割込噴射回数n1lNに+1を加算し
て新たな通常割込噴射回数nRNを設定した後、S20
に進む。
51B, after adding +1 to the number of normal interrupt injections n1lN to set a new number of normal interrupt injections nRN, S20
Proceed to.

S19では、FLAGTNをOに設定する。したがって
、燃料カット時からの急加速運転時以外はFLAG?、
は0に設定される。
In S19, FLAGTN is set to O. Therefore, except during sudden acceleration operation after fuel cut, FLAG? ,
is set to 0.

S20では、水温等に基づいて各種補正係数C0EFを
演算する。
In S20, various correction coefficients C0EF are calculated based on water temperature and the like.

S21では、通常燃料噴射時の燃料噴射量T、を次式に
より演算する。
In S21, the fuel injection amount T during normal fuel injection is calculated using the following equation.

T(= 2 TP X COE F + TSそして、
演算された燃料噴射量Tiは、シーケンシャル制御によ
って各気筒の点火順序に従って機関2回転に対し1回の
割合で通常燃料噴射時に機関に供給するようになってい
る。
T(= 2 TP X COE F + TS and
The calculated fuel injection amount Ti is supplied to the engine during normal fuel injection at a rate of once for every two revolutions of the engine according to the ignition order of each cylinder by sequential control.

このようにすると、緩加速運転時には通常燃料噴射時に
加速増量燃料噴射量が加算され(S5にてQにに、Ac
cを加算している)、通常燃料噴射時に加速増量が図ら
れる一方、急加速運転時には通常燃料噴射時に加速増量
が図られると共に割込噴射によっても加速増量が図られ
る。
In this way, during slow acceleration operation, the acceleration increase fuel injection amount is added to normal fuel injection (at S5, Q is added to Ac
c), an acceleration increase is attempted during normal fuel injection, while an acceleration increase is attempted during normal fuel injection during sudden acceleration operation, and an acceleration increase is also attempted by interrupt injection.

次に、第4図のフローチャートを説明する。このルーチ
ンは通常燃料噴射の終了時期(TzEND)に実行され
るルーチンである。
Next, the flowchart of FIG. 4 will be explained. This routine is normally executed at the end of fuel injection (TzEND).

S31では、スロットル弁の開度変化率等から現在急加
速運転中か否かを判定し、YESのときにはS32に進
みNOのときにはS40に進む。
In S31, it is determined from the opening change rate of the throttle valve, etc. whether or not rapid acceleration is currently being performed. If YES, the process advances to S32, and if NO, the process advances to S40.

S32では、前記FLAGアNが1か否かを判定し、Y
ESのときすなわち燃料カット時からの加速運転時には
S33に進み、NOのときすなわち燃料カットが行われ
ないときからの加速運転時にはS36に進む。
In S32, it is determined whether the FLAG_N is 1 or not, and Y
When the answer is ES, that is, when the accelerating operation starts from the fuel cut, the process advances to S33, and when the answer is NO, that is, when the accelerating operation starts from when the fuel cut is not performed, the process goes to S36.

S33では、カット時割込噴射回数nTNが設定噴射回
数N(例えば3回)以下か否かを判定し、YESのとき
にはS34に進みNOのときにはS40に進む。
In S33, it is determined whether or not the number of interrupt injections during cut nTN is less than or equal to the set number of injections N (for example, three times). If YES, the process proceeds to S34; if NO, the process proceeds to S40.

工4 S34では、前記S9にて演算されたカット時割込噴射
量T、、NJに対応する割込噴射信号を燃料噴射弁2に
出力した後、335でカット時割込噴射回数nTNに+
1を加算して新たなカット時割込噴射回数nTNを設定
しルーチンを終了させる。
Step 4 In S34, after outputting the interrupt injection signal corresponding to the cut interrupt injection amount T, NJ calculated in S9 to the fuel injection valve 2, in step 335, the cut interrupt injection number nTN is increased.
1 is added to set a new number of cut interruption injections nTN, and the routine ends.

このようにすると、点火順序に従って各気筒の燃料噴射
弁2から通常燃料噴射終了直後にカット時割込噴射量T
 N I N Jが機関に供給される。
In this way, the cut-time interrupt injection amount T is immediately after the end of normal fuel injection from the fuel injection valve 2 of each cylinder according to the ignition order
N I N J is supplied to the engine.

一方、燃料カットが行われないときからの加速運転時に
は、S36で通常割込噴射回数nRNが前記設定噴射回
数N以下か否かを判定し、YESのときには337に進
みNOのときには340に進む。
On the other hand, during acceleration operation when fuel cut is not performed, it is determined in S36 whether the number of normal interrupt injections nRN is less than or equal to the set number of injections N, and if YES, the process advances to 337, and if NO, the process advances to 340.

S37では、通常割込噴射量TRINJを最新に得られ
た基本噴射量TPに基づいて前記S15における式によ
り演算する(ここで、基本噴射量TpはKQ2の演算に
使用される)。
In S37, the normal interrupt injection amount TRINJ is calculated based on the most recently obtained basic injection amount TP using the formula in S15 (here, the basic injection amount Tp is used to calculate KQ2).

33Bでは、S37にて演算された通常割込噴射量TR
INJに対応する割込噴射信号を燃料噴射弁2に出力し
た後、S39で通常割込噴射回数n−に+1を加算して
新たな通常割込噴射回数nRNを設定しルーチンを終了
させる。
33B, the normal interrupt injection amount TR calculated in S37
After outputting the interrupt injection signal corresponding to INJ to the fuel injection valve 2, +1 is added to the normal interrupt injection number n- to set a new normal interrupt injection number nRN in S39, and the routine is ended.

このようにすると、点火順序に従って各気筒の燃料噴射
弁2から通常燃料噴射終了直後に通常割込噴射量TRI
NJが機関に供給される。
In this way, the normal interrupt injection amount TRI is set immediately after the normal fuel injection from the fuel injection valve 2 of each cylinder is completed according to the ignition order.
NJ is supplied to the engine.

340では、FLAGTNをOに設定した後、S41で
は、カット時割込噴射回数nTNと通常割込噴射回数n
RNとを初期値(例えばO)にリセットする。
In step 340, after setting FLAGTN to O, in step S41, the number of interrupt injections nTN during cut and the number n of normal interrupt injections are set.
RN to its initial value (for example, O).

以上説明したように、燃料カット中若しくはその直後か
らの急加速運転時には、略壁流燃料量に対応する燃料が
加算されたカット時割込噴射量を、通常燃料噴射終了直
後に機関に供給するようにしたので、燃料カット直後の
加速運転時の空燃比のリーン化を抑制できる。このため
、NOX排出量を抑制できると共に再加速運転時の車両
振動を抑制できる。
As explained above, during fuel cut or during sudden acceleration operation immediately after, the cut interrupt injection amount to which fuel corresponding to approximately the wall flow fuel amount is added is supplied to the engine immediately after the end of normal fuel injection. This makes it possible to suppress lean air-fuel ratio during acceleration operation immediately after fuel cut. Therefore, it is possible to suppress NOX emissions and also to suppress vehicle vibration during re-acceleration operation.

また、緩加速運転時には、通常燃料噴射時に加速増量が
図られるので、吸気弁が開弁する直前に機関に燃料が供
給されるため、機関燃焼の悪化を防止できる。これによ
り、CO及びHCの排出量の低減化を図れると共に燃費
の悪化を防止でき、さらに加速性能を向上できる。また
、急加速運転時に通常燃料噴射と割込噴射とによって加
速増量が図られるので、吸入空気流量の急激な増大に応
答性良く追従して加速増量が図れるので、加速性能を向
上できる。
Furthermore, during slow acceleration operation, since the acceleration amount is increased during normal fuel injection, fuel is supplied to the engine immediately before the intake valve opens, so that deterioration of engine combustion can be prevented. This makes it possible to reduce CO and HC emissions, prevent deterioration of fuel efficiency, and further improve acceleration performance. Further, since the acceleration amount is increased by the normal fuel injection and the interrupt injection during sudden acceleration operation, the acceleration amount can be increased by responsively following a sudden increase in the intake air flow rate, so that acceleration performance can be improved.

〈発明の効果〉 本発明は、以上説明したように、緩加速運転時にはシー
ケンシャル制御による通常燃料噴射により加速増量を図
る一方、急加速運転時には通常燃料噴射と割込噴射によ
って加速増量を図るようにしたので、全ゆる運転領域で
の加速性能を向上できると共にCO及びHC排出量の低
減化を図れる。
<Effects of the Invention> As explained above, the present invention aims to increase the acceleration amount by normal fuel injection under sequential control during slow acceleration operation, while aiming to increase the acceleration amount by normal fuel injection and interrupt injection during sudden acceleration operation. Therefore, it is possible to improve acceleration performance in all driving ranges and to reduce CO and HC emissions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図及び第4図は同上のフロー
チャートである。
FIG. 1 is a diagram corresponding to claims of the present invention, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIGS. 3 and 4 are flowcharts of the same.

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に応じて燃料噴射量を設定する燃料噴射量
設定手段と、各気筒毎に設けられた燃料噴射弁と、これ
ら燃料噴射弁を個別に動作させることにより、各気筒の
吸気行程とタイミングを合わせ前記燃料噴射量に応じて
通常燃料噴射を行うシーケンシャル制御手段と、を備え
る多気筒内燃機関の電子制御燃料噴射装置において、加
速運転状態を検出する加速運転状態検出手段と、所定値
以下の緩加速運転状態が検出されたときに、加速時増量
燃料噴射量と前記燃料噴射量とに基づいて通常燃料噴射
時の燃料噴射量を設定する第1加速時燃料量設定手段と
、所定値を超える急加速運転状態が検出されたときに、
加速時増量燃料噴射量と前記燃料噴射量とに基づいて通
常燃料噴射時の燃料噴射量を設定すると共に噴射終了後
に加速時割込噴射量を設定する第2加速時燃料量設定手
段と、設定された加速時割込噴射量に対応する信号を前
記通常燃料噴射に割込ませて前記燃料噴射弁に出力し燃
料噴射弁を駆動する駆動手段と、を備えたことを特徴と
する多気筒内燃機関の電子制御燃料噴射装置。
A fuel injection amount setting means that sets the fuel injection amount according to the engine operating state, a fuel injection valve provided for each cylinder, and individual operation of these fuel injection valves control the intake stroke and timing of each cylinder. In an electronically controlled fuel injection device for a multi-cylinder internal combustion engine, the electronically controlled fuel injection device for a multi-cylinder internal combustion engine includes: sequential control means for performing normal fuel injection according to the fuel injection amount; a first acceleration fuel amount setting means for setting a fuel injection amount during normal fuel injection based on an acceleration increase fuel injection amount and the fuel injection amount when a slow acceleration driving state is detected; When a sudden acceleration driving condition exceeding
a second acceleration fuel amount setting means for setting a fuel injection amount during normal fuel injection based on the acceleration increase fuel injection amount and the fuel injection amount and setting an acceleration interrupt injection amount after the injection ends; a driving means for interrupting the normal fuel injection with a signal corresponding to the interruption injection amount during acceleration and outputting the signal to the fuel injection valve to drive the fuel injection valve. The engine's electronically controlled fuel injection system.
JP24994687A 1986-12-19 1987-10-05 Electronically controlled fuel injection device for multi-cylinder internal combustion engine Pending JPH0192547A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24994687A JPH0192547A (en) 1987-10-05 1987-10-05 Electronically controlled fuel injection device for multi-cylinder internal combustion engine
US07/252,977 US4911132A (en) 1986-12-19 1988-10-04 Fuel injection control system for multi-cylinder internal combustion engine with feature of improved response characteristics to acceleration enrichment demand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24994687A JPH0192547A (en) 1987-10-05 1987-10-05 Electronically controlled fuel injection device for multi-cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0192547A true JPH0192547A (en) 1989-04-11

Family

ID=17200531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24994687A Pending JPH0192547A (en) 1986-12-19 1987-10-05 Electronically controlled fuel injection device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0192547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984552A (en) * 1988-07-07 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Fuel injection device for an internal combustion engine
JPH03100345A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Fuel supply controller of internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546056A (en) * 1978-09-29 1980-03-31 Hitachi Ltd Electronic fuel injection device
JPS578328A (en) * 1980-06-20 1982-01-16 Hitachi Ltd Engine control unit
JPS58187538A (en) * 1982-04-28 1983-11-01 Hitachi Ltd Electronic fuel injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546056A (en) * 1978-09-29 1980-03-31 Hitachi Ltd Electronic fuel injection device
JPS578328A (en) * 1980-06-20 1982-01-16 Hitachi Ltd Engine control unit
JPS58187538A (en) * 1982-04-28 1983-11-01 Hitachi Ltd Electronic fuel injector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984552A (en) * 1988-07-07 1991-01-15 Mitsubishi Denki Kabushiki Kaisha Fuel injection device for an internal combustion engine
JPH03100345A (en) * 1989-09-11 1991-04-25 Honda Motor Co Ltd Fuel supply controller of internal combustion engine

Similar Documents

Publication Publication Date Title
US4442812A (en) Method and apparatus for controlling internal combustion engines
US4528960A (en) Fuel injection mode control for multi-cylinder internal combustion engine
EP0924420B1 (en) Torque controller for internal combustion engine
JPH0960543A (en) Engine control device
JP2923849B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6165038A (en) Air-fuel ratio control system
JP2577210B2 (en) Electronically controlled fuel injection device for internal combustion engine
US6173694B1 (en) Method and apparatus for controlling fuel injection in an in-cylinder type internal combustion engine
JP3791032B2 (en) Fuel injection control device for internal combustion engine
JP2907001B2 (en) Lean combustion control and failure determination device for internal combustion engine
US4915078A (en) Fuel injection control device of an internal combustion engine
JPH0192547A (en) Electronically controlled fuel injection device for multi-cylinder internal combustion engine
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JP2584299B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH1162658A (en) Control device for internal combustion engine
JP2580645B2 (en) Ignition timing control device
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPH0540289Y2 (en)
JP2678756B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP3533890B2 (en) Control device for internal combustion engine
JPS61283748A (en) Acceleration shock relieving device in internal-combustion engine
JPS63314335A (en) Electronic control fuel injector of multi-cylinder internal combustion engine
JP3680308B2 (en) Control device for internal combustion engine
JP2545221Y2 (en) Engine air-fuel ratio control device