JP2673492B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP2673492B2
JP2673492B2 JP6071128A JP7112894A JP2673492B2 JP 2673492 B2 JP2673492 B2 JP 2673492B2 JP 6071128 A JP6071128 A JP 6071128A JP 7112894 A JP7112894 A JP 7112894A JP 2673492 B2 JP2673492 B2 JP 2673492B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel injection
target air
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6071128A
Other languages
Japanese (ja)
Other versions
JPH07279709A (en
Inventor
裕介 多々良
利夫 横山
亨 矢野
英輔 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6071128A priority Critical patent/JP2673492B2/en
Priority to US08/424,880 priority patent/US5803048A/en
Publication of JPH07279709A publication Critical patent/JPH07279709A/en
Priority to US08/912,441 priority patent/US5836287A/en
Priority to US08/912,575 priority patent/US6012428A/en
Application granted granted Critical
Publication of JP2673492B2 publication Critical patent/JP2673492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各気筒毎に設けられた
燃料噴射弁と、内燃機関の運転状態に基づいて目標空燃
比を設定する目標空燃比切換手段と、目標空燃比に基づ
いて燃料噴射弁の燃料噴射量を制御する燃料噴射量制御
手段とを備えてなり、目標空燃比設定手段が目標空燃比
を切り換えたときに、燃料噴射量制御手段が各燃料噴射
弁毎に所定の時間間隔をもって燃料噴射量を順次変更す
る内燃機関の空燃比制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection valve provided for each cylinder, a target air-fuel ratio switching means for setting a target air-fuel ratio based on the operating state of an internal combustion engine, and a target air-fuel ratio. A fuel injection amount control means for controlling the fuel injection amount of the fuel injection valve, and when the target air-fuel ratio setting means switches the target air-fuel ratio, the fuel injection amount control means sets a predetermined value for each fuel injection valve. The present invention relates to an air-fuel ratio control device for an internal combustion engine, which sequentially changes the fuel injection amount at time intervals .

【0002】[0002]

【従来の技術】かかる内燃機関の空燃比制御装置とし
て、特開平4−295151号公報に記載されたものが
公知である。
2. Description of the Related Art As such an air-fuel ratio control system for an internal combustion engine, the one described in Japanese Patent Application Laid-Open No. 4-295151 is known.

【0003】図7に示すように、目標空燃比をリッチ
(A点)からリーン(B点)に連続的に切り換えると、
実線で示すように中間の空燃比においてNOX の排出量
が急激に増加する問題がある。一方、目標空燃比をリッ
チ(A点)からリーン(B点)に瞬間的に切り換える
と、鎖線で示すようにNOX の排出量の急激な増加を回
避することができる。しかしながら、各気筒の目標空燃
比を瞬間的に切り換えるとエンジントルクが急変してシ
ョックが発生し、ドライバビリティを悪化させる問題が
発生する。
As shown in FIG . 7 , when the target air-fuel ratio is continuously switched from rich (point A) to lean (point B),
As shown by the solid line, there is a problem that the emission amount of NO X sharply increases at an intermediate air-fuel ratio. On the other hand, when the target air-fuel ratio is instantaneously switched from rich (point A) to lean (point B), it is possible to avoid a sharp increase in the NO X emission amount as shown by the chain line. However, when the target air-fuel ratio of each cylinder is instantaneously switched, the engine torque suddenly changes and a shock occurs, which causes a problem of deteriorating drivability.

【0004】そこで、上記従来の内燃機関の空燃比制御
装置は、目標空燃比をリッチからリーンに切り換える際
に、各気筒に設けられた燃料噴射弁の燃料噴射量をエミ
ションが悪化する中間の空燃比を飛び越えるように所定
のインターバル(時間間隔)で順次減少させている。こ
れにより、全ての気筒の燃料噴射量を一斉に減少させた
場合に生じるトルクショックを回避し、エミッションの
悪化を防止しながらドライバビリティの向上を図ってい
る。
Therefore, in the conventional air-fuel ratio control apparatus for an internal combustion engine, when the target air-fuel ratio is switched from rich to lean, the fuel injection amount of the fuel injection valve provided in each cylinder is an intermediate air-fuel ratio in which the emission becomes worse. The fuel ratio is successively decreased at predetermined intervals (time intervals) so as to jump over the fuel ratio. This avoids the torque shock that occurs when the fuel injection amounts of all the cylinders are reduced all at once, and improves the drivability while preventing the deterioration of emissions.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
内燃機関の空燃比制御装置がEGRガス還流装置を備え
ている場合、目標空燃比をリッチからリーンに切り換え
る際にEGRガスの還流を停止しても吸気系内のEGR
ガスは直ちにゼロにならず、所定時間が経過するまでE
GRガスが残留することになる。この状態で燃料噴射量
を減少させて空燃比をリーン側に移行させると、EGR
ガスの存在によって混合気の燃焼状態が悪化し、失火等
の燃焼不良が発生する問題がある。
When the conventional air-fuel ratio control system for an internal combustion engine is provided with an EGR gas recirculation device, the recirculation of EGR gas is stopped when the target air-fuel ratio is switched from rich to lean. Even the EGR in the intake system
The gas does not become zero immediately, and E
GR gas will remain. In this state, if the fuel injection amount is reduced and the air-fuel ratio is shifted to the lean side, EGR
There is a problem that the combustion state of the air-fuel mixture deteriorates due to the presence of gas, and combustion failure such as misfire occurs.

【0006】本発明は前述の事情に鑑みてなされたもの
で、空燃比の切換時にEGRガスに起因する混合気の燃
焼不良を効果的に回避することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to effectively avoid defective combustion of an air-fuel mixture due to EGR gas when the air-fuel ratio is switched.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載された発明は、各気筒毎に設けられ
た燃料噴射弁と、排気通路から吸気通路へのEGRガス
還流量を制御するEGRガス還流量制御手段と、内燃機
関の運転状態に基づいて目標空燃比を設定する目標空燃
比設定手段と、目標空燃比に基づいて燃料噴射弁の燃料
噴射量を制御する燃料噴射量制御手段とを備えてなり、
目標空燃比設定手段が目標空燃比を切り換えたときに、
燃料噴射量制御手段が各燃料噴射弁毎に所定の時間間隔
をもって燃料噴射量を順次減少させる内燃機関の空燃比
制御装置であって、目標空燃比設定手段が目標空燃比を
リッチ側からリーン側に切り換えたときに、EGRガス
還流量制御手段によるEGRガス還流量の減少及び燃料
噴射量制御手段による燃料噴射量の減少を開始し、残留
EGRガス量演算手段が演算した残留EGRガス量の減
少に応じて燃料噴射量制御手段による燃料噴射量を減少
させることを特徴とする。
In order to achieve the above object, the invention described in claim 1 is a fuel injection valve provided for each cylinder, and an EGR gas recirculation amount from an exhaust passage to an intake passage. For controlling the EGR gas recirculation amount, target air-fuel ratio setting means for setting a target air-fuel ratio based on the operating state of the internal combustion engine, and fuel injection for controlling the fuel injection amount of the fuel injection valve based on the target air-fuel ratio. And a quantity control means,
When the target air-fuel ratio setting means switches the target air-fuel ratio,
An air-fuel ratio control device for an internal combustion engine, wherein the fuel injection amount control means sequentially decreases the fuel injection amount for each fuel injection valve at a predetermined time interval , and the target air-fuel ratio setting means sets the target air-fuel ratio.
When switching from rich side to lean side, EGR gas
Reduction of EGR gas recirculation amount and fuel by recirculation amount control means
The injection amount control means starts decreasing the fuel injection amount and
Reduction of the residual EGR gas amount calculated by the EGR gas amount calculation means
Decrease fuel injection amount by fuel injection amount control means
It is characterized by making it.

【0008】また請求項2に記載された発明は、請求項
1の構成に加えて、目標空燃比がリーンリミット領域で
ある場合にEGRガス還流量制御手段がEGRガスの還
流を停止することを特徴とする。
According to a second aspect of the present invention, in addition to the structure of the first aspect, the target air-fuel ratio is in the lean limit region.
In some cases, the EGR gas recirculation amount control means returns the EGR gas
It is characterized by stopping the flow .

【0009】[0009]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1〜図6は本発明の一実施例を示すもの
で、図1は内燃機関の空燃比制御装置の全体構成図、図
2は電子制御ユニットの回路構成を示すブロック図、図
3は用を説明するフローチャート、図4はKEGRN
算出ルーチンのフローチャート、図5は正味EGR係数
から中間目標空燃比を検索するテーブル、図6は作用を
説明するタイミングチャートである。
1 to 6 show an embodiment of the present invention, FIG. 1 is an overall configuration diagram of an air-fuel ratio control device for an internal combustion engine, and FIG. 2 is a block diagram showing a circuit configuration of an electronic control unit. 3 is a flowchart showing an for work, 4 KEGRN
Flow chart of calculation routine , FIG. 5 shows net EGR coefficient
Table for searching the intermediate target air-fuel ratio from
It is a timing chart to demonstrate .

【0011】図1に示すように、4気筒内燃機関E(以
下、単にエンジンEという)の吸気通路1は吸気マニホ
ールド2を介して#1〜#4の4個の気筒31 〜34
それぞれ接続される。吸気通路1には図示せぬアクセル
ペダルに接続されて開閉するスロットルバルブ4が設け
られており、このスロットルバルブ4に接続されてスロ
ットル開度θTHを検出するスロットル開度センサ5か
らの信号が電子制御ユニットUに入力される。
As shown in FIG. 1, an intake passage 1 of a four-cylinder internal combustion engine E (hereinafter simply referred to as engine E) is connected to four cylinders 3 1 to 3 4 of # 1 to # 4 via an intake manifold 2. Connected respectively. The intake passage 1 is provided with a throttle valve 4 that is connected to an accelerator pedal (not shown) to open and close. A signal from a throttle opening sensor 5 that is connected to the throttle valve 4 and detects the throttle opening θTH is electronically transmitted. It is input to the control unit U.

【0012】吸気マニホールド2には4個の気筒31
4 にそれぞれ対応して4個の燃料噴射弁81 〜84
設けられる。各燃料噴射弁81 〜84 は電子制御ユニッ
トUに接続されて制御される。
The intake manifold 2 has four cylinders 3 1 ...
Four fuel injection valves 8 1 to 8 4 are provided corresponding to 3 4 respectively. Each of the fuel injection valves 8 1 to 8 4 is connected to and controlled by the electronic control unit U.

【0013】スロットルバルブ4の上流の吸気通路1に
は吸入空気量Qを検出するエアフロメータよりなる吸入
空気量センサ9と、吸気管内絶対圧PB を検出する吸気
管内絶対圧センサ14とが設けられており、これら吸入
空気量センサ9及び吸気管内絶対圧センサ14からの信
号が電子制御ユニットUに入力される。また、エンジン
Eの内部には図示せぬクランクシャフトの回転に基づい
てエンジン回転数Neを検出するエンジン回転数センサ
10が設けられており、このエンジン回転数センサ10
からの信号が電子制御ユニットUに入力される。
In the intake passage 1 upstream of the throttle valve 4, an intake air amount sensor 9 composed of an air flow meter for detecting the intake air amount Q and an intake pipe absolute pressure sensor 14 for detecting the intake pipe absolute pressure P B are provided. The signals from the intake air amount sensor 9 and the intake pipe absolute pressure sensor 14 are input to the electronic control unit U. An engine speed sensor 10 for detecting the engine speed Ne based on the rotation of a crankshaft (not shown) is provided inside the engine E. The engine speed sensor 10 is provided.
Is input to the electronic control unit U.

【0014】エンジンEに排気マニホールド6を介して
接続された排気通路7には、排気ガスを浄化する三元触
媒11が設けられる。排気通路7と吸気通路1とはEG
Rガス通路12によって接続されており、EGRガス通
路12に設けられたEGR弁13はEGRガスの還流量
を制御すべく電子制御ユニットUに接続される。
A three-way catalyst 11 for purifying exhaust gas is provided in an exhaust passage 7 connected to the engine E via an exhaust manifold 6. The exhaust passage 7 and the intake passage 1 are EG
The EGR valve 13 is connected by the R gas passage 12, and the EGR valve 13 provided in the EGR gas passage 12 is connected to the electronic control unit U in order to control the recirculation amount of the EGR gas.

【0015】図2に示すように、電子制御ユニットU
は、エンジンEの運転状態に基づいて目標空燃比A/F
を切り換える目標空燃比設定手段M1と、目標空燃比に
基づいてEGR弁13の開度を制御するEGRガス還流
量制御手段M2と、エンジンEの運転状態に基づいて吸
気系内のEGRガス残留量を算出する残留EGRガス量
演算手段M3と、エンジンEの運転状態、並びに目標空
燃比設定手段M1及び残留EGRガス量演算手段M3の
出力に基づいて燃料噴射弁81 〜84 の燃料噴射時間を
制御する燃料噴射量制御手段M4とを備える。
As shown in FIG. 2, the electronic control unit U
Is the target air-fuel ratio A / F based on the operating state of the engine E.
Target air-fuel ratio setting means M1 for switching the EGR gas recirculation amount control means M2 for controlling the opening degree of the EGR valve 13 based on the target air-fuel ratio, and EGR gas residual amount in the intake system based on the operating state of the engine E. The fuel injection time of the fuel injection valves 8 1 to 8 4 is calculated based on the residual EGR gas amount calculation means M3 for calculating the operating condition of the engine E, and the outputs of the target air-fuel ratio setting means M1 and the residual EGR gas amount calculation means M3. And a fuel injection amount control means M4 for controlling

【0016】目標空燃比設定手段M1にはスロットル開
度センサ5で検出したスロットル開度θTH及びエンジ
ン回転数センサ10で検出したエンジン回転数Neが入
力され、それらスロットル開度θTH及びエンジン回転
数Neに基づいて目標空燃比A/Fがマップ検索され
る。エンジンEの通常の運転領域では目標空燃比はスト
イキ(リッチ)、即ち理論空燃比であるA/F=14.
7に設定される。一方、エンジンEの減速時等の特定の
運転領域では、燃費の向上を図るべく目標空燃比は例え
ばA/F=22にリーン化される。
The throttle opening θTH detected by the throttle opening sensor 5 and the engine speed Ne detected by the engine speed sensor 10 are input to the target air-fuel ratio setting means M1, and the throttle opening θTH and the engine speed Ne are input. The target air-fuel ratio A / F is map-searched based on In the normal operating region of the engine E, the target air-fuel ratio is stoichiometric (rich), that is, the theoretical air-fuel ratio A / F = 14.
Set to 7. On the other hand, in a specific operating region such as when the engine E is decelerating, the target air-fuel ratio is made lean to A / F = 22 in order to improve fuel efficiency.

【0017】EGRガス還流量制御手段M2は、目標空
燃比設定手段M1が目標空燃比をストイキからリーンに
切り換えたとき、EGR弁13を開度を絞ってEGRガ
スの還流量を規制し、或いはEGR弁13を閉弁してE
GRガスの還流を停止する。
When the target air-fuel ratio setting means M1 switches the target air-fuel ratio from stoichiometric to lean, the EGR gas recirculation amount control means M2 restricts the opening amount of the EGR valve 13 to regulate the EGR gas recirculation amount, or Close the EGR valve 13 and E
Stop the reflux of GR gas.

【0018】残留EGRガス量演算手段M3の作用は、
後から図4のフローチャートに基づいて詳述する。
The operation of the residual EGR gas amount calculation means M3 is as follows.
The details will be described later based on the flowchart of FIG.

【0019】燃料噴射量制御手段M4は、目標空燃比が
理論空燃比であるときには、その理論空燃比が得られる
ように吸入空気量センサ9で検出した空気吸入量Q及び
エンジン回転数センサ10で検出したエンジン回転数N
eに応じた燃料噴射時間Tiを設定する。一方、目標空
燃比が理論空燃比よりもリーン化された場合には、その
リーン化された目標空燃比が得られるように燃料噴射時
間Tiを設定し、且つ目標空燃比の切り換え時には、燃
料噴射時間Tiの変更タイミングを各気筒31〜34
に後述する所定の時間間隔をもって制御する。
When the target air-fuel ratio is the stoichiometric air-fuel ratio, the fuel injection quantity control means M4 uses the air intake quantity Q and the engine speed sensor 10 which are detected by the intake air quantity sensor 9 so as to obtain the stoichiometric air-fuel ratio. Detected engine speed N
The fuel injection time Ti is set according to e. On the other hand, when the target air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the fuel injection time Ti is set so that the lean target air-fuel ratio is obtained, and the fuel injection is performed when the target air-fuel ratio is switched. the change timing of the time Ti is controlled at a predetermined time interval to be described later to the cylinders 3 1 to 3 per 4.

【0020】次に、本発明の実施例の作用を図3のフロ
ーチャートに基づいて説明する。
Next, the operation of the embodiment of the present invention will be described with reference to the flowchart of FIG.

【0021】ず、ステップS11でエンジンEの運転
状態に基づいて目標空燃比の切り換え条件が新たに成立
したとき、ステップS12で電子制御ユニットUからの
指令でEGR弁13を閉弁し、EGRガス還流量を減少
させる。続くステップS13では、最初のループにおい
て切換フラグFLGkirikae が「1」(切換終了)にセ
ットされているため、ステップS14に移行して切換フ
ラグFLGkirikae を「0」(切換未終了)にセットす
る。
The destination not a, when the switching condition of the target air-fuel ratio based on the operating state of the engine E is established newly in step S11, and closes the EGR valve 13 by a command from the electronic control unit U in step S12, EGR Reduce the amount of gas recirculation. In the following step S13, since the switching flag FLGkirikae is set to "1" (switching completed) in the first loop, the process proceeds to step S14 and the switching flag FLGkirikae is set to "0" (switching not completed).

【0022】続くステップS15では今回の正味EGR
係数KEGRNが所定値以下か否かを判断する。前記正
味EGR係数KEGRNは、吸気系に残留する残留EG
Rガス量に対応するものであり、その算出の具体的内容
を図4のフローチャートに基づいて説明する。先ずステ
ップS31で、エンジン回転数センサ10で検出したエ
ンジン回転数Ne及び吸気管内絶対圧センサ14で検出
した吸気管内絶対圧PB とに基づいて、Ne−PB マッ
プからEGR直接率EA 及びEGR持去り率EB を検索
する。続いて、ステップS32でEGR弁13を通過し
たEGRガス量Gtを、 Gt=TiM(τ)*(1−KEGR(τ)) により算出する。ここで、TiM(τ)はτTDC前の
燃料噴射時間Tiであり、KEGR(τ)はτTDC前
のEGR係数である。
In the following step S15, the net EGR of this time is performed.
It is determined whether the coefficient KEGRN is less than or equal to a predetermined value. Said positive
The taste EGR coefficient KEGRN is the residual EG remaining in the intake system.
It corresponds to the amount of R gas, and the specific content of the calculation
Will be described with reference to the flowchart of FIG. First, in step S31, on the basis of the intake pipe absolute pressure P B detected by the engine speed Ne and the intake pipe absolute pressure sensor 14 detected by the engine speed sensor 10, Ne-P B map EGR direct supply ratio E A and from Search EGR take-away rate E B. Then, in step S32, the EGR gas amount Gt that has passed through the EGR valve 13 is calculated by Gt = TiM (τ) * (1-KEGR (τ)). Here, TiM (τ) is the fuel injection time Ti before τTDC, and KEGR (τ) is the EGR coefficient before τTDC.

【0023】次に、ステップS32でシリンダに吸入さ
れるEGRガス量Ginを、 Gin=EA *Gt+EB *Gc により算出する。ここで、Gcは後記ステップS35で
算出される吸気通路1内に滞留するEGRガス量であ
る。
Next, in step S32, the EGR gas amount Gin drawn into the cylinder is calculated by Gin = E A * Gt + E B * Gc. Here, Gc is the amount of EGR gas staying in the intake passage 1 calculated in step S35 described later.

【0024】次に、ステップS34で正味EGR係数K
EGRNを、 KEGRN=(1−Gin/TiM) により算出する。ここでTiMは今回燃料噴射時間Ti
である。
Next, at step S34, the net EGR coefficient K
EGRN is calculated by KEGRN = (1-Gin / TiM). Here, TiM is the current fuel injection time Ti
It is.

【0025】そして最後に、ステップS35で前記吸気
通路1内に滞留するEGRガス量であるGcを、 Gc=(1−EA )*Gt+(1−EB )*Gc により算出する。
[0025] Finally, the Gc is EGR gas amount staying in the intake passage 1 at step S35, is calculated by Gc = (1-E A) * Gt + (1-E B) * Gc.

【0026】而して、前記ステップS15において、
GRガス還流量の減少直後の最初のループでは正味EG
R係数KEGRNは所定値以下でないため、ステップS
16に移行して図5に示すKEGRN〜KBS1 テーブ
ルを検索する。即ち、正味EGR係数KEGRNに応じ
て目標空燃比KBS1 を検索し、続くステップS17で
前記目標空燃比KBS1 を中間目標空燃比とする。前記
中間目標空燃比は、正味EGR係数KEGRNが減少す
るにつれてリーン側に移行するようになっている。
Then , in step S15, E
In the first loop immediately after the reduction of the GR gas recirculation amount, the net EG
Since the R coefficient KEGRN is not less than the predetermined value, step S
The process proceeds to step 16 and searches the KEGRN to KBS 1 table shown in FIG . That is, the target air-fuel ratio KBS 1 is searched according to the net EGR coefficient KEGRN, and in the subsequent step S17, the target air-fuel ratio KBS 1 is set as the intermediate target air-fuel ratio. The intermediate target air-fuel ratio shifts to the lean side as the net EGR coefficient KEGRN decreases.

【0027】このようにして中間目標空燃比が設定され
ると、ステップS18で前記中間目標空燃比が得られる
ように各気筒の空燃比のリーン化を行う。この空燃比の
リーン化は、図6に示すように#1気筒31 、#3気筒
3 、#4気筒34 、#2気筒32 の順で所定の時間
をもって行われる。そしてステップS19で空燃比の
切換が最終的に終了するまで、中間目標空燃比の変化に
応じて各気筒31 〜34 の空燃比のリーン化が繰り返さ
れ、やがて前記ステップS15で今回の正味EGR係数
KEGRNが所定値以下になると、ステップS20で切
換条件成立時の目標空燃比KBSLLを最終目標空燃比と
し、ステップS18でその最終目標空燃比が得られるよ
うに各気筒31 〜34 の空燃比を切り換える。
When the intermediate target air-fuel ratio is set in this manner, the air-fuel ratio of each cylinder is made lean so that the intermediate target air-fuel ratio can be obtained in step S18. Leaning of the air-fuel ratio, # 1 cylinder 3 1 6, # 3 cylinder 3 3, between the # 4 cylinder 3 4, # 2 cylinder 3 2 order at predetermined time
It takes place at intervals . Then, until the air-fuel ratio switching is finally ended in step S19, the leaning of the air-fuel ratio of each of the cylinders 3 1 to 3 4 is repeated in accordance with the change of the intermediate target air-fuel ratio. When EGR coefficient KEGRN is below a predetermined value, the target air-fuel ratio KBS LL when satisfied changeover condition to the final target air-fuel ratio in step S20, the final target air-fuel ratio cylinders 3 1 to 3 4 as obtained in step S18 The air-fuel ratio of.

【0028】而して、前記ステップS19で空燃比の切
換が最終的に終了すると、ステップS21に移行して切
換フラグFLGkirikae が「1」(切換終了)にセット
される。
When the switching of the air-fuel ratio is finally completed in step S19, the process proceeds to step S21 and the switching flag FLGkirikae is set to "1" (completion of switching).

【0029】尚、切換条件成立時の目標空燃比KBSLL
がリーンリミットに近い場合には、図3のフローチャー
トのステップS12でEGRガス還流量を0にカット
し、ステップS15で正味EGR係数KEGRNが0に
なったときにステップS20で目標空燃比KBSLLを最
終目標空燃比とすることができる。このようにすれば、
目標空燃比KBSLL リーンリミットに近い場合であっ
ても、燃焼不良や失火の発生を確実に防止することがで
きる。
The target air-fuel ratio KBS LL when the switching condition is satisfied
Is close to the lean limit, the EGR gas recirculation amount is cut to 0 in step S12 of the flowchart of FIG. 3 , and the target air-fuel ratio KBS LL is set in step S20 when the net EGR coefficient KEGRN becomes 0 in step S15. It can be the final target air-fuel ratio. If you do this,
Even when the target air-fuel ratio KBS LL is close to the lean limit, it is possible to reliably prevent the occurrence of combustion failure and misfire.

【0030】上述したように、正味EGR係数に応じて
空燃比をリーン側に切り換えているので、中間空燃比の
状態が発生してもそれに見合った残留EGRガスの存在
によってエミッションの悪化が防止される。しかも、空
燃比をストイキからリーンに切り換える際に、空燃比の
切換条件成立と同時に正味EGR係数の減少に応じて空
燃比を段階的にリーン側に切り換えているので、空燃比
のリーン化のタイミングが遅れて燃料消費率が悪化する
ことがなく、且つ空燃比がストイキのままEGRガス還
流量が減少してエミッションが悪化することがない。
As described above, since the air-fuel ratio is switched to the lean side in accordance with the net EGR coefficient, even if the state of the intermediate air-fuel ratio occurs, the deterioration of the emission is prevented by the presence of the residual EGR gas corresponding to it. It Moreover, when the air-fuel ratio is switched from stoichiometric to lean, the air-fuel ratio is gradually switched to the lean side according to the decrease of the net EGR coefficient at the same time when the air-fuel ratio switching condition is satisfied, so the timing of leaning the air-fuel ratio Does not deteriorate the fuel consumption rate, and the EGR gas recirculation amount does not decrease and the emission does not deteriorate while the air-fuel ratio remains stoichiometric.

【0031】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものではなく、種々の設計
変更を行うことができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made.

【0032】[0032]

【発明の効果】以上のように、請求項1に記載された発
明によれば、気系内の残留EGRガス量を算出する残
留EGRガス量演算手段を設け、目標空燃比設定手段が
目標空燃比をリッチ側からリーン側に切り換えたとき
に、EGRガス還流量制御手段によるEGRガス還流量
の減少及び燃料噴射量制御手段による燃料噴射量の減少
を開始し、残留EGRガス量演算手段が演算した残留E
GRガス量の減少に応じて燃料噴射量制御手段による燃
料噴射量を減少させるので、中間空燃比の状態が発生し
てもそれに見合った残留EGRガス量によってエミッシ
ョンの悪化が防止される。また、空燃比の切換条件成立
と同時に空燃比が段階的にリーン側に切り換えられるの
で、空燃比のリーン化のタイミングが遅れて燃料消費率
が悪化することがなく、しかも空燃比がストイキのまま
EGRガス還流量が減少してエミッションが悪化するこ
とがない。
As it is evident from the foregoing description, according to the invention described in claim 1, provided with a residual EGR gas quantity calculating means for calculating a residual EGR gas quantity in the air intake system, the target is the target air-fuel ratio setting means When the air-fuel ratio is switched from the rich side to the lean side, the reduction of the EGR gas recirculation amount by the EGR gas recirculation amount control means and the reduction of the fuel injection amount by the fuel injection amount control means are started, and the residual EGR gas amount calculation means is started. Calculated residual E
Since the fuel injection amount by the fuel injection amount control means is decreased in accordance with the decrease in the GR gas amount, even if the state of the intermediate air-fuel ratio occurs, the amount of residual EGR gas commensurate with it reduces deterioration of emission. Further, since the air-fuel ratio is gradually switched to the lean side at the same time when the air-fuel ratio switching condition is satisfied, there is no delay in the timing of making the air-fuel ratio lean and the fuel consumption rate does not deteriorate, and the air-fuel ratio remains stoichiometric. The EGR gas recirculation amount does not decrease and the emission does not deteriorate.

【0033】請求項2に記載された発明によれば、
目標空燃比がリーンリミット領域である場合にEGRガ
ス還流量制御手段がEGRガスの還流を停止するの
目標空燃比がリーンリミット領域にあっても燃焼不良や
失火が発生を確実に防止することができる。
According to the invention described in or claim 2,
Than the EGR gas reflux quantity control means when the target air-fuel ratio is lean limit area stops reflux the EGR gas,
Even if the target air-fuel ratio is in the lean limit region, it is possible to reliably prevent the occurrence of combustion failure or misfire.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内燃機関の空燃比制御装置の全体構成図FIG. 1 is an overall configuration diagram of an air-fuel ratio control device for an internal combustion engine.

【図2】電子制御ユニットの回路構成を示すブロック図FIG. 2 is a block diagram showing a circuit configuration of an electronic control unit.

【図3】用を説明するフローチャートFIG. 3 is a flowchart for explaining the operation for

【図4】KEGRN算出ルーチンのフローチャートFIG. 4 is a flowchart of a KEGRN calculation routine .

【図5】正味EGR係数から中間目標空燃比を検索する
テーブル
FIG. 5: Retrieving an intermediate target air-fuel ratio from a net EGR coefficient
table

【図6】作用を説明するタイミングチャート FIG. 6 is a timing chart illustrating the operation .

【図7】空燃比とNO X 排出量との関係を示すグラフ FIG. 7 is a graph showing the relationship between air-fuel ratio and NO X emission amount.

【符号の説明】[Explanation of symbols]

1 吸気通路 31 〜34 気筒 7 排気通路 81 〜84 燃料噴射弁 E 内燃機関 M1 目標空燃比設定手段 M2 EGRガス還流量制御手段 M3 残留EGRガス量演算手段 M4 燃料噴射量制御手段1 intake passage 3 1 to 3 4 cylinder 7 exhaust passage 8 1 to 8 4 fuel injection valve E internal combustion engine M1 target air-fuel ratio setting means M2 EGR gas recirculation amount control means M3 residual EGR gas amount calculation means M4 fuel injection amount control means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 301 F02D 45/00 301G F02M 25/07 550 F02M 25/07 550R (72)発明者 木村 英輔 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (56)参考文献 特開 平6−66183(JP,A) 特開 平4−295151(JP,A) 特開 平6−264786(JP,A) 特開 昭53−88414(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F02D 45/00 301 F02D 45/00 301G F02M 25/07 550 F02M 25/07 550R (72) Inventor Eisuke Kimura 1-4-1, Chuo, Wako-shi, Saitama Inside Honda R & D Co., Ltd. (56) References JP-A-6-66183 (JP, A) JP-A-4-295151 (JP, A) JP-A-6 -264786 (JP, A) JP-A-53-88414 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 各気筒(31 〜34 )毎に設けられた燃
料噴射弁(81 〜84 )と、排気通路(7)から吸気通
路(1)へのEGRガス還流量を制御するEGRガス還
流量制御手段(M2)と、内燃機関(E)の運転状態に
基づいて目標空燃比を設定する目標空燃比設定手段(M
1)と、目標空燃比に基づいて燃料噴射弁(81
4 )の燃料噴射量を制御する燃料噴射量制御手段(M
4)とを備えてなり、目標空燃比設定手段(M1)が目
標空燃比を切り換えたときに、燃料噴射量制御手段(M
4)が各燃料噴射弁(81 〜84 )毎に所定の時間間隔
をもって燃料噴射量を順次減少させる内燃機関の空燃比
制御装置であって、吸気系内の残留EGRガス量を算出する残留EGRガス
量演算手段(M3)を設け、目標空燃比設定手段(M
1)が目標空燃比をリッチ側からリーン側に切り換えた
ときに、EGRガス還流量制御手段(M2)によるEG
Rガス還流量の減少及び燃料噴射量制御手段(M4)に
よる燃料噴射量の減少を開始し、残留EGRガス量演算
手段(M3)が演算した残留EGRガス量の減少に応じ
て燃料噴射量制御手段(M4)による燃料噴射量を減少
させる ことを特徴とする、内燃機関の空燃比制御装置。
1. A fuel injection valve (8 1 to 8 4 ) provided for each cylinder (3 1 to 3 4 ) and an EGR gas recirculation amount from an exhaust passage (7) to an intake passage (1) are controlled. EGR gas recirculation amount control means (M2) and target air-fuel ratio setting means (M) that sets a target air-fuel ratio based on the operating state of the internal combustion engine (E).
1), the fuel injection valve based on the target air-fuel ratio (8 1 -
8 4) fuel injection quantity control means for controlling the fuel injection amount (M
4), and when the target air-fuel ratio setting means (M1) switches the target air-fuel ratio, the fuel injection amount control means (M
4) is a air-fuel ratio control apparatus for each fuel injection valve (8 1-8 4) internal combustion engine for sequentially reducing the fuel injection quantity at a predetermined time interval <br/> every residual EGR gas in the intake system Residual EGR gas for calculating amount
An amount calculation means (M3) is provided, and a target air-fuel ratio setting means (M
1) switched the target air-fuel ratio from rich side to lean side
Sometimes, the EG by the EGR gas recirculation amount control means (M2)
Reduction of R gas recirculation amount and fuel injection amount control means (M4)
Start decreasing the fuel injection amount by calculating the residual EGR gas amount
According to the decrease of the residual EGR gas amount calculated by the means (M3)
Decrease the fuel injection amount by the fuel injection amount control means (M4)
Characterized in that makes the air-fuel ratio control apparatus for an internal combustion engine.
【請求項2】 目標空燃比がリーンリミット領域である
場合にEGRガス還流量制御手段(M2)がEGRガス
の還流を停止することを特徴とする、請求項1記載の内
燃機関の空燃比制御装置。
2. The target air-fuel ratio is in the lean limit region.
In this case, the EGR gas recirculation amount control means (M2)
The air-fuel ratio control device for an internal combustion engine according to claim 1, wherein the recirculation of the air is stopped .
JP6071128A 1994-04-08 1994-04-08 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP2673492B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6071128A JP2673492B2 (en) 1994-04-08 1994-04-08 Air-fuel ratio control device for internal combustion engine
US08/424,880 US5803048A (en) 1994-04-08 1995-04-10 System and method for controlling air-fuel ratio in internal combustion engine
US08/912,441 US5836287A (en) 1994-04-08 1997-08-18 System and method for controlling air-fuel ratio in internal combustion engine
US08/912,575 US6012428A (en) 1994-04-08 1997-08-18 Method for controlling air-fuel ratio in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6071128A JP2673492B2 (en) 1994-04-08 1994-04-08 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07279709A JPH07279709A (en) 1995-10-27
JP2673492B2 true JP2673492B2 (en) 1997-11-05

Family

ID=13451633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6071128A Expired - Lifetime JP2673492B2 (en) 1994-04-08 1994-04-08 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2673492B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508481B2 (en) * 1997-07-08 2004-03-22 日産自動車株式会社 Control device for internal combustion engine
JP3971004B2 (en) * 1997-12-19 2007-09-05 株式会社日立製作所 Combustion switching control device for internal combustion engine
JP3533927B2 (en) * 1998-02-20 2004-06-07 マツダ株式会社 Engine control device
DE19819937C1 (en) 1998-05-05 2000-02-17 Daimler Chrysler Ag Operation controller for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295151A (en) * 1991-03-25 1992-10-20 Japan Electron Control Syst Co Ltd Air-fuel ratio control device for internal combustion engine
JPH0666183A (en) * 1992-08-19 1994-03-08 Mazda Motor Corp Air-fuel ratio controller for engine

Also Published As

Publication number Publication date
JPH07279709A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
JP3683681B2 (en) Control device for direct-injection spark-ignition internal combustion engine
US5857445A (en) Engine control device
JP2923849B2 (en) Air-fuel ratio control device for internal combustion engine
JP3149813B2 (en) Fuel injection control device for in-cylinder injection type internal combustion engine
JPH0512543B2 (en)
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JP3648864B2 (en) Lean combustion internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JPS61118538A (en) Air-fuel ratio control of internal-combustion engine
JPH0518294A (en) Electronic control fuel injection device for two-cycle internal combustion engine
JP3131895B2 (en) Control device for multi-cylinder internal combustion engine
JP3348690B2 (en) Cylinder discriminator for multi-cylinder internal combustion engine
JP2913282B2 (en) Air-fuel ratio control method for internal combustion engine
JP3233031B2 (en) In-cylinder injection spark ignition internal combustion engine
JP3189731B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP3189733B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP2580645B2 (en) Ignition timing control device
JP2646667B2 (en) Multi-cylinder two-cycle internal combustion engine
JP2545221Y2 (en) Engine air-fuel ratio control device
JP3075060B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0192547A (en) Electronically controlled fuel injection device for multi-cylinder internal combustion engine
JP3533890B2 (en) Control device for internal combustion engine
JPH0893536A (en) Method for controlling fuel injection
JPS62191628A (en) Intake path device for multicylinder internal combustion engine
JPH11247698A (en) Limp home control device of electronically controlled fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 13