JP3075060B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JP3075060B2
JP3075060B2 JP06001367A JP136794A JP3075060B2 JP 3075060 B2 JP3075060 B2 JP 3075060B2 JP 06001367 A JP06001367 A JP 06001367A JP 136794 A JP136794 A JP 136794A JP 3075060 B2 JP3075060 B2 JP 3075060B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
lean
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06001367A
Other languages
Japanese (ja)
Other versions
JPH07208233A (en
Inventor
浩之 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP06001367A priority Critical patent/JP3075060B2/en
Priority to KR1019940034597A priority patent/KR0169511B1/en
Publication of JPH07208233A publication Critical patent/JPH07208233A/en
Application granted granted Critical
Publication of JP3075060B2 publication Critical patent/JP3075060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の空燃比制御装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の燃費や排気特性の改善のため
に、機関に供給する混合気を理論空燃比よりも希薄に制
御するリーン燃焼機関がある。リーン空燃比で運転すれ
ば燃費がよくなる反面、運転性に問題を起こしやすく、
そこで機関が不安定になりがちな運転条件時、例えばア
イドル運転時には一時的に理論空燃比に戻し、エンスト
防止を図ったり、円滑な運転性を確保したりしている
(特開昭61−187552号公報参照)。
2. Description of the Related Art In order to improve fuel efficiency and exhaust characteristics of an internal combustion engine, there is a lean combustion engine which controls a mixture supplied to the engine to be leaner than a stoichiometric air-fuel ratio. Driving at a lean air-fuel ratio improves fuel efficiency, but tends to cause problems in driving performance,
Therefore, the engine is temporarily returned to the stoichiometric air-fuel ratio during an operating condition in which the engine tends to be unstable, for example, during idling operation, to prevent engine stall and to ensure smooth operability (Japanese Patent Application Laid-Open No. 61-187552). Reference).

【0003】[0003]

【発明が解決しようとする課題】この場合、目標とする
空燃比は、機関負荷と回転数によって分割したマップに
運転領域に応じて設定されるが、アイド運転に対応する
運転条件での目標空燃比を理論空燃比に設定しようとす
ると、その周辺の領域も理論空燃比となってしまい、そ
の分だけリーン空燃比の領域が狭くなり、燃費の改善代
が小さくなる。
In this case, the target air-fuel ratio is set according to the operating range on a map divided by the engine load and the number of revolutions, but the target air-fuel ratio under the operating conditions corresponding to the idling operation is set. If an attempt is made to set the fuel ratio to the stoichiometric air-fuel ratio, the area around the stoichiometric air-fuel ratio also becomes the stoichiometric air-fuel ratio, and accordingly, the lean air-fuel ratio area becomes narrower, and the fuel cost improvement margin is reduced.

【0004】これに対して、アイドル運転条件を含むす
べの運転領域で目標空燃比がリーン空燃比となるように
しておき、スロットルの全閉状態を検出するアイドルス
イッチがオンとなったときにのみ、理論空燃比にするこ
とも考えられるが、この場合、一時的にアクセルペダル
を戻すギヤチェンジ時にもスロットルの全閉を検出する
と、空燃比が理論空燃比に切換わってしまい、不必要な
空燃比の変動により燃費や排気特性が悪化する。
On the other hand, the target air-fuel ratio is set to a lean air-fuel ratio in all the operation regions including the idling operation conditions, and only when the idle switch for detecting the fully closed state of the throttle is turned on. It is also conceivable to set the stoichiometric air-fuel ratio, but in this case, if the throttle is fully closed even during a gear change in which the accelerator pedal is temporarily released, the air-fuel ratio is switched to the stoichiometric air-fuel ratio, and unnecessary air-fuel ratio is changed. Fluctuations in fuel ratio deteriorate fuel efficiency and exhaust characteristics.

【0005】また、上記した従来例のように、空燃比の
切換時に一定のディレイ時間を設定し、ギヤチェンジの
ときに、ディレイ時間中は運転条件が変化する前の空燃
比をそのまま維持することも一つの方法であるが、ギヤ
チェンジといってもさまざまな状態があり、ディレイ時
間の設定によっては、エンストや不必要な空燃比の変動
を防止しきれないことがある。
Further, as in the above-mentioned conventional example, a fixed delay time is set when the air-fuel ratio is switched, and during the gear change, the air-fuel ratio before the operating condition is changed is maintained during the delay time. Although there is one method, there are various states even in the case of a gear change, and depending on the setting of the delay time, it may not be possible to completely prevent engine stall or unnecessary fluctuation of the air-fuel ratio.

【0006】例えば、低回転でのギヤチェンジの場合、
機関回転数はアクセルを戻すとすぐにアイドル回転数ま
で低下するが、設定ディレイ時間が長すぎると、その間
はリーン空燃比が維持され、エンストや運転性の悪化が
生じる。これに対して、ディレイ時間が短すぎると、高
回転時のギヤチェンジのときのように、アクセルを戻し
てからアイドル回転数に低下するまでに時間がかかる場
合、ディレイ時間の終了により、アイドル回転数でない
にもかかわらず、空燃比が不必要に理論空燃比に切り換
わってしまう。このように、一定に設定されたディレイ
時間では、異なる条件下でのギヤチェンジに正しく対応
できない。
For example, in the case of a gear change at low rotation,
Although the engine speed immediately drops to the idle speed as soon as the accelerator is returned, if the set delay time is too long, the lean air-fuel ratio is maintained during that time, causing engine stall and deterioration in drivability. On the other hand, if the delay time is too short, as in the case of a gear change during high rotation, it takes a long time to return to the idle speed after returning the accelerator. Although it is not a number, the air-fuel ratio is unnecessarily switched to the stoichiometric air-fuel ratio. Thus, a fixed delay time cannot correctly cope with a gear change under different conditions.

【0007】本発明はこのような問題を解決、つまり、
運転性を損なうことなく、リーン空燃比の運転領域をで
きるだけ拡大することを目的とする。
The present invention solves such a problem, that is,
An object of the present invention is to extend the operating range of the lean air-fuel ratio as much as possible without impairing drivability.

【0008】[0008]

【課題を解決するための手段】第1の発明は、図8に示
すように、機関運転条件を検出する運転条件検出手段1
と、運転条件に応じて理論空燃比よりもリーン側の目標
空燃比を設定する目標空燃比設定手段2と、回転数が高
まるにつれて徐々にリーン側に変化する空燃比を限界値
として設定するリーン限界値設定手段3と、設定された
目標空燃比と限界値とを比較していずれかリッチ側の値
を目標空燃比として選択する空燃比選択手段4と、この
目標空燃比に応じて燃料供給量を算出する燃料供給量算
出手段5と、算出された燃料供給量となるように機関に
燃料を供給する燃料供給手段6とを備えた。
According to a first aspect of the present invention, as shown in FIG. 8, an operating condition detecting means 1 for detecting an engine operating condition is provided.
When a target air-fuel ratio setting means 2 for setting a target air-fuel ratio leaner than the stoichiometric air-fuel ratio according to the operating conditions, the high rotational speed
Limits the air-fuel ratio, which gradually changes to the lean side as it
The lean limit value setting means 3 for setting as a air-fuel ratio selecting means 4 for selecting the value of one rich side by comparing the set target air-fuel ratio and the limit value as the target air-fuel ratio, to the target air-fuel ratio A fuel supply amount calculating means 5 for calculating a fuel supply amount in response thereto, and a fuel supply means 6 for supplying fuel to the engine so as to attain the calculated fuel supply amount.

【0009】第2の発明は、第1の発明において、リー
ン限界設定手段3は、アイドル回転数付近の前記限界値
を理論空燃比近傍の空燃比に設定する
According to a second aspect of the present invention, in the first aspect, the lean limit setting means 3 comprises the limit value near an idle speed.
Is set to an air-fuel ratio near the stoichiometric air-fuel ratio .

【0010】第3の発明は、図9に示すように、機関運
転条件を検出する運転条件検出手段1と、運転条件に応
じて理論空燃比よりもリーン側の目標空燃比を設定する
目標空燃比設定手段2と、機関回転数に応じて空燃比の
リーン側の限界値を設定するリーン限界値設定手段3
と、機関のスロットルが全閉状態にあるかどうかを判定
する判定手段7と、判定結果が全閉状態にないときは、
設定された目標空燃比をそのまま選択し、また、全閉状
態であるときは目標空燃比と限界値とを比較していずれ
かリッチ側の値を目標空燃比として選択する空燃比選択
手段8と、この選択された目標空燃比に応じて燃料供給
量を算出する燃料供給量算出手段5と、算出された燃料
供給量となるように機関に燃料を供給する燃料供給手段
6とを備える。
As shown in FIG. 9, a third aspect of the present invention relates to an operating condition detecting means 1 for detecting an engine operating condition, and a target air-fuel ratio for setting a target air-fuel ratio leaner than a stoichiometric air-fuel ratio in accordance with the operating condition. Fuel ratio setting means 2 and lean limit value setting means 3 for setting a lean limit value of the air-fuel ratio in accordance with the engine speed
Determining means 7 for determining whether or not the throttle of the engine is in a fully-closed state;
Air-fuel ratio selecting means 8 for selecting the set target air-fuel ratio as it is, and comparing the target air-fuel ratio with a limit value in the fully closed state to select one of the richer values as the target air-fuel ratio; A fuel supply amount calculating means 5 for calculating a fuel supply amount in accordance with the selected target air-fuel ratio; and a fuel supply means 6 for supplying fuel to the engine so as to achieve the calculated fuel supply amount.

【0011】[0011]

【作用】第1の発明では、機関回転数が高まるにつれて
徐々にリーン側に変化する空燃比を限界値として設定
、目標空燃比が限界値よりもリーン側のときは、この
限界値を目標空燃比とすることにより、エンスト等が問
題となる運転(回転)領域では、限界値よりも空燃比が
リーンとならないようにして、運転性の悪化を防止し、
これ以外の領域では、運転条件に応じて設定された目標
空燃比を用いることにより、リーン空燃比の運転領域が
不必要に縮減されないようにする。さらにリーン側の限
界値が回転数に応じて変化するので、ギアチェンジ時の
アクセル全閉に伴う回転数の低下に対応して空燃比を徐
々に理論空燃比に向けてリッチ側に制御でき、空燃比の
急変を防いで運転の円滑性や安定性を確保できる。
According to the first invention, as the engine speed increases,
Set the air-fuel ratio that gradually changes to the lean side as the limit value
When the target air-fuel ratio is leaner than the limit value, the limit value is set as the target air-fuel ratio, so that the air-fuel ratio becomes leaner than the limit value in an operation (rotation) region where engine stall or the like becomes a problem. To prevent deterioration of driving performance,
In other regions, the target air-fuel ratio set according to the operating conditions is used so that the operating region of the lean air-fuel ratio is not unnecessarily reduced. Further lean limit
Since the threshold value changes according to the number of revolutions,
The air-fuel ratio is gradually reduced in response to the decrease in the rotation speed due to the full closure of the accelerator.
It can be controlled to the rich side in order to achieve the stoichiometric air-fuel ratio.
Sudden changes can be prevented to ensure smooth and stable operation.

【0012】第2の発明では、アイドル回転数付近の前
記限界値を理論空燃比近傍の空燃比に設定するので、限
界値よりも空燃比がリーンとならないようにして、エン
スト等の運転性の悪化を防止できる
[0012] In the second aspect of the present invention, before the idle rotation speed
The limit value is set to an air-fuel ratio near the stoichiometric air-fuel ratio.
Ensure that the air-fuel ratio is not leaner than the threshold
Deterioration of drivability such as a strike can be prevented .

【0013】第3の発明では、スロットルの全閉状態を
判定し、スロットル全閉のときは、回転数に応じたリー
ン側の限界値と目標空燃比のうち、いずれかリッチ側の
空燃比を選択して制御するが、スロットル全閉でないと
きは、限界値のいかんにかかわらず、目標空燃比となる
ように空燃比を制御する。このため、回転数がアイドル
回転数に近くても、スロットルが少しでも開いている低
速運転時など、リーン空燃比を維持し、それだけ燃費の
改善代を向上させられる。低速走行時など、多少なりと
もアクセルを踏んでいるときは、回転数が低くてもクラ
ッチを繋いでいることが多く、リーン空燃比を維持によ
り運転性は低下してもエンストには至らない。
In the third aspect of the present invention, the fully closed state of the throttle is determined, and when the throttle is fully closed, the air-fuel ratio on the rich side is selected from the limit value on the lean side and the target air-fuel ratio corresponding to the rotational speed. When the throttle is not fully closed, the air-fuel ratio is controlled so as to reach the target air-fuel ratio regardless of the limit value. For this reason, even when the rotation speed is close to the idle rotation speed, the lean air-fuel ratio can be maintained during low-speed operation in which the throttle is slightly opened, and the fuel consumption can be improved accordingly. When the accelerator pedal is depressed to some extent, such as when driving at low speed, the clutch is often engaged even when the rotational speed is low, and engine stall does not occur even if drivability is reduced by maintaining a lean air-fuel ratio.

【0014】[0014]

【実施例】図1は本発明の実施例を示すもので、11は
エンジン、12は吸気通路、13は排気通路で、吸気通
路12にはスロットル弁(以下単にスロットルともい
う)14の下流に位置して燃料噴射弁15が設置され
る。燃料噴射弁15はコントロールユニット16からの
信号に応じて燃料を噴射し、エンジン11に原則とし
て、理論空燃比よりも希薄なリーン空燃比の混合気を供
給する。
FIG. 1 shows an embodiment of the present invention, in which 11 is an engine, 12 is an intake passage, 13 is an exhaust passage, and an intake passage 12 is provided downstream of a throttle valve (hereinafter also simply referred to as a throttle) 14. The fuel injection valve 15 is installed at a position. The fuel injection valve 15 injects fuel in response to a signal from the control unit 16 and supplies the engine 11 with a lean air-fuel ratio leaner than the stoichiometric air-fuel ratio in principle.

【0015】このためコントロールユニット16には、
エンジン回転数を検出する回転数センサ17、吸入空気
量を検出するエアフローメータ18、またスロットル弁
14の全閉状態を検出するスロットルスイッチ19から
の信号が入力し、これらに基づいて運転条件に応じて設
定した目標とするリーン空燃比となるように燃料噴射量
を演算する。また、アイドル運転時など運転条件の悪化
する領域では、空燃比を理論空燃比に近づけ円滑な運転
性を維持する。なお、コントロールユニット16には、
図示しない排気空燃比を検出する手段からの信号に基づ
いて空燃比を目標値にフィードバック制御し、また学習
制御するようになっている。
For this reason, the control unit 16 includes:
Signals from an engine speed sensor 17 for detecting the engine speed, an air flow meter 18 for detecting the amount of intake air, and a throttle switch 19 for detecting the fully closed state of the throttle valve 14 are input, and based on these, according to operating conditions. The fuel injection amount is calculated so as to achieve the target lean air-fuel ratio set in the above. In an area where operating conditions deteriorate, such as during idling, the air-fuel ratio approaches the stoichiometric air-fuel ratio to maintain smooth drivability. The control unit 16 includes:
The air-fuel ratio is feedback-controlled to a target value based on a signal from a means for detecting an exhaust air-fuel ratio (not shown), and learning control is performed.

【0016】図2から図5のフローチャートにしたがっ
て、コントロールユニット16で実行されるこれらの制
御動作を説明する。なお、以下の説明では、制御される
空燃比について、説明の便宜上、空燃比の逆数でかつ理
論空燃比との対比値(理論空燃比/空燃比に相当)であ
る燃空比という言葉を用いる。
These control operations executed by the control unit 16 will be described with reference to the flowcharts of FIGS. In the following description, for the sake of convenience, the term air-fuel ratio, which is the reciprocal of the air-fuel ratio and the contrast value with the stoichiometric air-fuel ratio (corresponding to stoichiometric air-fuel ratio / air-fuel ratio), is used in the following description. .

【0017】図2は運転条件に応じて目標とする燃空比
を設定するためバックグラウンドジョブとして処理され
るルーチンで、まずステップ1ではリーン運転条件にあ
るかどうかを判定するが、これは、機関の燃費、排気、
運転性等の各要求から、希薄燃焼させたい運転領域を設
定しておき、現在の運転条件が、このリーン運転条件に
あるかどうかを判定する。そして、リーン運転条件にあ
れば、ステップ2でリーン燃空比マップ(MDMLL)
から、また、そうでなければ、非リーン燃空比マップ
(MDMLS)から、それぞれマップ燃空比Mdmlを
検索する。なお、各燃空比マップは、図6にも示すよう
に、エンジン負荷(燃料噴射パルス幅Tp)と回転数N
eによって割り付けられ、それぞれリーン燃空比と、非
リーン燃空比において、運転条件に応じた目標燃空比が
設定されている。
FIG. 2 shows a routine which is processed as a background job in order to set a target fuel-air ratio in accordance with the operating conditions. First, in step 1, it is determined whether or not the engine is in a lean operating condition. Engine mileage, exhaust,
An operation region in which lean combustion is to be performed is set based on each requirement such as drivability, and it is determined whether the current operation condition is in the lean operation condition. Then, if it is under the lean operation condition, the lean fuel-air ratio map (MDMLL) is obtained in step 2.
, And otherwise, the map fuel-air ratio Mdml is searched from the non-lean fuel-air ratio map (MDMLS). As shown in FIG. 6, each fuel-air ratio map includes an engine load (fuel injection pulse width Tp) and a rotation speed N.
The target fuel-air ratio according to the operating condition is set for each of the lean fuel-air ratio and the non-lean fuel-air ratio.

【0018】ステップ4では、これら検索したマップ燃
空比Mdmlを目標燃空比Tdmlと置き換え、図3あ
るいは図4の制御ルーチンに移る。
In step 4, the retrieved map fuel-air ratio Mdml is replaced with the target fuel-air ratio Tdml, and the routine proceeds to the control routine of FIG. 3 or FIG.

【0019】図3と図4は、それぞれ目標燃空比の補正
値を算出するため回転域または気筒毎の基準信号に同期
して行われるジョブで、互いに別の実施例を示し、ま
ず、図3から説明する。
FIGS. 3 and 4 show jobs executed in synchronization with a reference signal for each rotation range or cylinder for calculating a correction value of a target fuel-air ratio, respectively, showing another embodiment of the present invention. 3 will be described.

【0020】ステップ11で求めた目標燃空比Tdml
を、ステップ12で補正燃空比Dml(現在の燃空比に
相当)と比較する。もし、DmlがTdmlよりも大き
いときはステップ13に進み、目標燃空比が現在の燃空
比よりも大きく(リッチ)なったとして、空燃比変化速
度Ddmlrを前回の演算時のDmln-1に加え、さら
にステップ15でDmlの上限をTdmlまでに制限す
る。
The target fuel-air ratio Tdml obtained in step 11
Is compared with the corrected fuel-air ratio Dml (corresponding to the current fuel-air ratio) in step 12. If Dml is greater than Tdml, the process proceeds to step 13, and assuming that the target fuel-air ratio has become larger (rich) than the current fuel-air ratio, the air-fuel ratio change speed Ddmrl is calculated as Dml n-1 at the previous calculation. In addition, in step 15, the upper limit of Dml is limited to Tdml.

【0021】一方、ステップ12でDmlがTdmlよ
りも小さいときは、目標燃空比が現在の燃空比よりも小
さく(リーン)なったとして、ステップ14で前回演算
時のDmln-1から空燃比変化速度Ddmllを引き、
さらに、ステップ16でDmlの下限をTdmlに制限
する。
Meanwhile, when Dml is less than Tdml in step 12, as the target air-fuel ratio is smaller than the current fuel-air ratio (lean), air from Dml n-1 of the previous operation in step 14 Subtract the fuel ratio change speed Ddmll,
Further, in step 16, the lower limit of Dml is limited to Tdml.

【0022】このようにして、目標燃空比に応じて燃空
比を修正したら、ステップ17に進み、エンジン回転数
に応じて規定された燃空比の下限値(リーン限界値)D
mlilmを、図7のテーブルから検索する。このDm
lilmは、エンジン回転数がアイドル付近のときは、
理論空燃比に相当する1.0の値をとり、回転数が高く
なるのにしたがって徐々にリーン側に変化し、所定回転
以上では一定のリーン値をとるように設定され、その回
転数のときの安定限界リーン空燃比に相当する。
After the fuel-air ratio has been corrected in accordance with the target fuel-air ratio in this manner, the process proceeds to step 17, where the lower limit value (lean limit value) D of the fuel-air ratio defined according to the engine speed is set.
mllm is retrieved from the table of FIG. This Dm
When the engine speed is near idle,
It takes a value of 1.0 corresponding to the stoichiometric air-fuel ratio, gradually changes to the lean side as the rotation speed increases, and is set so as to take a constant lean value above a predetermined rotation speed. Is equivalent to the stability limit lean air-fuel ratio.

【0023】そして、ステップ18で補正燃空比Dml
と下限値Dmlilmを比較し、もし、Dmlの方が小
さいとき、つまり空燃比としては、Dmlが下限値より
もリーン側のときは、ステップ19でこの下限値Dml
ilmを補正空燃比Dmlとする。また、Dmlの方が
大きいときは、そのまま処理を終了する。
Then, at step 18, the corrected fuel-air ratio Dml
Is compared with the lower limit Dmlilm. If Dml is smaller, that is, if Dml is leaner than the lower limit, the lower limit Dml is determined in step 19.
ilm is set to the corrected air-fuel ratio Dml. If Dml is larger, the process is terminated.

【0024】このようにして、Dmlは、そのときの回
転数に応じて設定されるリーン限界値であるDmlil
mと比較され、もし、リーン限界値よりもリーン側にあ
るときは、運転性を安定させるため、制御目標とする燃
空比として、このリーン限界値を用いるのである。
As described above, Dml is a lean limit value Dmlil set according to the rotational speed at that time.
m, and if it is leaner than the lean limit value, this lean limit value is used as the fuel-air ratio to be controlled in order to stabilize drivability.

【0025】図4は別の実施例のフローチャートで、ス
テップ16までは図3と同じで、補正燃空比Dmlを求
めたら、ステップ21でアイドルスイッチの信号によ
り、スロットル全閉かどうかを判定し、スロットル全閉
のアイドル状態ならば、ステップ22以降に進み、そう
でなければ、補正燃空比としてDmlをそのまま用いる
ことにして処理を終了する。
FIG. 4 is a flow chart of another embodiment, which is the same as that of FIG. 3 up to step 16. When the corrected fuel-air ratio Dml is obtained, it is determined in step 21 whether or not the throttle is fully closed based on the signal of the idle switch. If the throttle is in the idling state with the throttle fully closed, the process proceeds to step 22 and thereafter, otherwise, the process is terminated by using Dml as it is as the corrected fuel-air ratio.

【0026】スロットル全閉のときは、ステップ22で
エンジン回転数に応じたリーン燃空比の下限値Dmli
lmを、前記と同様にテーブルから検索し、ステップ2
3でこのDmlilmとDmlを比較し、もしDmlが
下限値よりもリーン側のときは、ステップ24に進んで
Dml=Dmlilmとする。
When the throttle is fully closed, the lower limit value Dmli of the lean fuel-air ratio corresponding to the engine speed is determined in step 22.
lm is retrieved from the table as described above, and
In step 3, Dmlilm is compared with Dml. If Dml is leaner than the lower limit, the process proceeds to step 24, where Dml = Dmlilm.

【0027】なお、Dmlの方が大きい(リッチ側)と
きは、補正燃空比をそのままDmlとして処理を終了す
る。
When Dml is larger (rich side), the process is terminated with the corrected fuel-air ratio set to Dml as it is.

【0028】したがって、この実施例では、図3と比べ
て、安定運転のためのリーン限界値との比較をスロット
ル全閉条件のときにのみ行い、そうでなければそのまま
Dmlを補正燃空比として用いるようにしている。
Therefore, in this embodiment, as compared with FIG. 3, comparison with the lean limit value for stable operation is performed only when the throttle is fully closed, and otherwise Dml is directly used as the corrected fuel-air ratio. I use it.

【0029】このようにして、補正燃空比を算出した
ら、図5のフローチャートにしたがって、燃料の噴射量
を演算する。
After calculating the corrected fuel-air ratio in this manner, the fuel injection amount is calculated according to the flowchart of FIG.

【0030】これは10ms毎に繰り返されるジョブ
で、ステップ31では制御目標燃空比Tfbyaを、補
正燃空比Dmlを用いて、Tfbya=Dml+Ktw
+Kasとして算出する。Ktwは水温増量、Kasは
始動後増量を示すもので、Ktwは水温が低いときほど
大きく、Kasは始動後の経過時間に応じて減少する。
ステップ32でエアフローメータの出力である吸入空気
量QをA/D変換してリニアライズし、ステップ33で
この吸入空気量Qと回転数Nとから、基本噴射量Tp
を、Tp=K×Q/Nとして算出し、これからAvtp
を求める。なおKは定数。
This is a job repeated every 10 ms. In step 31, the control target fuel-air ratio Tfbya is calculated using the corrected fuel-air ratio Dml, and Tfbya = Dml + Ktw.
Calculated as + Kas. Ktw indicates an increase in the water temperature, and Kas indicates an increase after the start. Ktw increases as the water temperature decreases, and Kas decreases according to the elapsed time after the start.
In step 32, the intake air amount Q output from the air flow meter is A / D converted and linearized. In step 33, the basic injection amount Tp is calculated from the intake air amount Q and the rotation speed N.
Is calculated as Tp = K × Q / N.
Ask for. K is a constant.

【0031】そして、ステップ34で燃料噴射量Tiを
次のようにして算出する。
Then, at step 34, the fuel injection amount Ti is calculated as follows.

【0032】 Ti=Avtp×Tfbya×Ktr×(α+αm)+Ts・・・(1) なお、Ktrは過渡時の空燃比補正係数、αは空燃比フ
ィードバック補正係数、αmは空燃比学習補正係数であ
る。ただし、上記の式は既に本出願人により多くの出願
において提示されており、公知のものである。
Ti = Avtp × Tfbya × Ktr × (α + αm) + Ts (1) where Ktr is a transient air-fuel ratio correction coefficient, α is an air-fuel ratio feedback correction coefficient, and αm is an air-fuel ratio learning correction. It is a coefficient. However, the above equation have already been presented in a number of application by the applicant, it is a known.

【0033】次いでステップ35で燃料噴射をカットす
る運転条件にあるかどうかを判定し、燃料カット条件で
ないときは、演算した燃料噴射量Tiを出力レジスタに
ストアし、またカット条件のときは無効噴射パルス幅T
sを、出力レジスタにストアすることで、次の噴射タイ
ミングでの燃料噴射に備えるのである。
Next, at step 35, it is determined whether or not the operation condition is such that the fuel injection is cut off. If the condition is not the fuel cut condition, the calculated fuel injection amount Ti is stored in the output register. Pulse width T
s is stored in the output register to prepare for fuel injection at the next injection timing.

【0034】したがって、第1の実施例では、エンジン
に供給される混合気の空燃比は、基本的には、運転条件
によって設定された目標とするリーン空燃比に制御され
るが、目標空燃比は、そのエンジン回転数での安定限界
のリーン空燃比に相当するリーン限界値と比較され、も
しリーン限界値よりも希薄側にあるときは、目標空燃比
としてリーン限界値が設定され、これ以上には空燃比を
リーン化しない。このため、リーン空燃比での運転領域
は最大限に確保しつつ、運転性の悪化を確実に回避する
ことができるのであり、たとえば、アイドル運転時など
は、回転数に応じて安定燃焼に必要な空燃比に制御さ
れ、また、ギヤチェンジ時などにも、一時的にスロット
ルが閉じられても、回転数の低下に応じて適正な空燃比
に設定され、高回転域でのギヤチェンジ時に回転数の高
いうちから不必要に空燃比を濃くしたり、あるいは低回
転域でのギヤチェンジ時には空燃比の切換えが遅れるこ
とによるエンスト、などを確実に防止することができ
る。
Therefore, in the first embodiment, the air-fuel ratio of the air-fuel mixture supplied to the engine is basically controlled to the target lean air-fuel ratio set according to the operating conditions. Is compared with the lean limit corresponding to the lean air-fuel ratio at the stability limit at that engine speed.If the lean limit is leaner than the lean limit, the lean limit is set as the target air-fuel ratio. Does not make the air-fuel ratio lean. For this reason, it is possible to reliably avoid deterioration in drivability while ensuring the maximum operating range at a lean air-fuel ratio.For example, during idling operation, it is necessary to achieve stable combustion according to the rotational speed. Even when the throttle is temporarily closed, such as when changing gears, the air-fuel ratio is set to an appropriate value according to the decrease in the number of rotations. It is possible to reliably prevent the air-fuel ratio from being unnecessarily increased from a high number, or to stall due to a delay in switching the air-fuel ratio during a gear change in a low rotation range.

【0035】なお、リーン限界値は回転数に応じて設定
され、ギヤチェンジ時など回転数が徐々に低下する場
合、空燃比を徐々にリッチ側にしていくので、空燃比の
急変を防いで円滑な回転を維持できる。
The lean limit value is set in accordance with the rotational speed, and when the rotational speed gradually decreases, for example, during a gear change, the air-fuel ratio is gradually increased to the rich side, so that a sudden change in the air-fuel ratio is prevented and smooth. Rotation can be maintained.

【0036】また、第2の実施例では、スロットル全閉
時に限り、目標空燃比とリーン限界値との比較が行わ
れ、それ以外の運転域では、そのまま目標空燃比にもと
づいて制御される。したがって、スロットル全閉でない
ときは、その回転数での空燃比がリーン限界値よりもリ
ーンとなっても、そのままリーン空燃比を維持する。ス
ロットルが全閉でないときは、ドライバーが多少なりと
もアクセルを踏んでいて、車両のクラッチは接続されて
いることが多く、空燃比をリーン限界値よりもリーンに
しても、運転性は悪化するもののエンストに至ることは
なく、このようにより広い運転領域でリーン空燃比を維
持するので、それだけ燃費の改善代を向上させられる。
In the second embodiment, the comparison between the target air-fuel ratio and the lean limit value is performed only when the throttle is fully closed, and in other operating ranges, the control is directly performed based on the target air-fuel ratio. Therefore, when the throttle is not fully closed, the lean air-fuel ratio is maintained as it is even if the air-fuel ratio at that rotational speed becomes leaner than the lean limit value. When the throttle is not fully closed, the driver often depresses the accelerator and the vehicle's clutch is often connected, and even if the air-fuel ratio is leaner than the lean limit value, the drivability will deteriorate. Since the lean air-fuel ratio is maintained in such a wider operating region without causing engine stall, the cost of improving fuel economy can be improved accordingly.

【0037】[0037]

【発明の効果】以上したがって第1の発明によれば、
関回転数が高まるにつれて徐々にリーン側に変化する空
燃比をリーン側の限界値として設定し、目標空燃比が限
界値よりもリーン側にあるときは、この限界値を目標空
燃比とすることにより、エンスト等が問題となる運転
(回転)領域では、限界値よりも空燃比がリーンになら
ないようにして、運転性の悪化を防止し、これ以外の領
域では、機関回転数が高まるにつれて徐々にリーン側に
変化するように設定されたリーン空燃比を用いることに
より、リーン空燃比の運転領域が不必要に制限されるの
を防ぎ、運転性の悪化を回避しつつ燃費の改善効果を高
めることができる。さらにリーン側の限界値が回転数に
応じて変化するので、ギアチェンジ時のアクセル全閉に
伴う回転数の低下に対応して空燃比を徐々に理論空燃比
に向けてリッチ側に制御でき、空燃比の急変を防いで運
転の円滑性や安定性を確保できる。
According Effect of the Invention above therefore to the first invention, the machine
Sky gradually changes to lean side as Seki rotation speed increases
When the fuel ratio is set as a limit value on the lean side, and the target air-fuel ratio is on the lean side of the limit value, the limit value is set as the target air-fuel ratio. , To prevent the air-fuel ratio from becoming leaner than the limit value to prevent deterioration of drivability, and in other regions, gradually increase to the lean side as the engine speed increases.
By using the lean air-fuel ratio that is set to change, it is possible to prevent the operating range of the lean air-fuel ratio from being unnecessarily limited, and to improve the fuel efficiency while avoiding the deterioration of drivability. In addition, the limit value on the lean side
It changes depending on whether
The air-fuel ratio is gradually increased to the stoichiometric air-fuel ratio in response to the accompanying rotation speed decrease.
To prevent the air-fuel ratio from changing suddenly.
The smoothness and stability of rolling can be ensured.

【0038】また、第2の発明によれば、アイドル回転
数付近の前記限界値を理論空燃比近傍の空燃比に設定す
るので、限界値よりも空燃比がリーンとならないように
して、エンスト等の運転性の悪化を防止できる
According to the second aspect, the idle rotation
Set the limit value around the number to the air-fuel ratio near the stoichiometric air-fuel ratio.
Therefore, make sure that the air-fuel ratio is not leaner than the limit value.
As a result, it is possible to prevent the drivability such as engine stall from deteriorating .

【0039】第3の発明によれば、スロットルの全閉状
態を判定して、スロットル全閉のときは、回転数に応じ
たリーン側の限界値と目標空燃比のうち、いずれかリッ
チ側の空燃比を選択して制御するが、スロットル全閉で
ないときは、限界値のいかんにかかわらず、目標空燃比
となるように空燃比を制御するので、回転数がアイドル
回転数に近くても、スロットルが少しでも開いている低
速運転時など、多少運転性は悪化してもエンストには至
らないときには、リーン空燃比を維持することにより、
それだけ燃費の改善代を向上させられる。
According to the third aspect of the invention, the fully closed state of the throttle is determined, and when the throttle is fully closed, one of the lean limit value and the target air-fuel ratio corresponding to the rotation speed is selected. The air-fuel ratio is selected and controlled, but when the throttle is not fully closed, the air-fuel ratio is controlled so as to reach the target air-fuel ratio regardless of the limit value. By maintaining a lean air-fuel ratio, such as when driving at a low speed with the throttle slightly open, even when the drivability deteriorates a little and engine stall does not occur,
That can improve the fuel cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】同じくその制御動作を示すフローチャートであ
る。
FIG. 2 is a flowchart showing the control operation.

【図3】同じくフローチャートである。FIG. 3 is also a flowchart.

【図4】同じくフローチャートである。FIG. 4 is also a flowchart.

【図5】同じくフローチャートである。FIG. 5 is also a flowchart.

【図6】燃空比の割り付けマップを示す説明図である。FIG. 6 is an explanatory diagram showing a fuel-air ratio allocation map.

【図7】リーン下限値を設定したテーブルの説明図であ
る。
FIG. 7 is an explanatory diagram of a table in which a lean lower limit is set.

【図8】第1の発明の構成図である。FIG. 8 is a configuration diagram of the first invention.

【図9】第2の発明の構成図である。FIG. 9 is a configuration diagram of the second invention.

【符号の説明】[Explanation of symbols]

1 運転条件検出手段 2 目標空燃比設定手段 3 リーン限界値設定手段 4 空燃比選択手段 5 燃料供給量算出手段 6 燃料供給手段 7 スロットル全閉状態判定手段 DESCRIPTION OF SYMBOLS 1 Operating condition detection means 2 Target air-fuel ratio setting means 3 Lean limit value setting means 4 Air-fuel ratio selection means 5 Fuel supply amount calculation means 6 Fuel supply means 7 Throttle fully closed state judgment means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−27748(JP,A) 特開 昭60−125739(JP,A) 特開 平5−312081(JP,A) 特開 昭62−99644(JP,A) 特開 平5−231210(JP,A) 特開 平5−248281(JP,A) 特開 平6−74079(JP,A) 特開 平6−81699(JP,A) 特開 平6−117291(JP,A) 特開 平7−166938(JP,A) 特開 平6−42384(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 41/40 F02D 45/00 301 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-27748 (JP, A) JP-A-60-125739 (JP, A) JP-A-5-312081 (JP, A) JP-A-62 99644 (JP, A) JP-A-5-231210 (JP, A) JP-A-5-248281 (JP, A) JP-A-6-74079 (JP, A) JP-A-6-81699 (JP, A) JP-A-6-117291 (JP, A) JP-A-7-166938 (JP, A) JP-A-6-42384 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 41/00-41/40 F02D 45/00 301

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】機関運転条件を検出する運転条件検出手段
と、 運転条件に応じて理論空燃比よりもリーン側の目標空燃
比を設定する目標空燃比設定手段と、回転数が高まるにつれて徐々にリーン側に変化する空燃
比を限界値として設定する リーン限界値設定手段と、 設定された目標空燃比と限界値とを比較していずれかリ
ッチ側の値を目標空燃比として選択する空燃比選択手段
と、 この目標空燃比に応じて燃料供給量を算出する燃料供給
量算出手段と、 算出された燃料供給量となるように機関に燃料を供給す
る燃料供給手段とを備えたことを特徴とする内燃機関の
空燃比制御装置。
And operating condition detecting means for detecting as claimed in claim 1] engine operating conditions, and the target air-fuel ratio setting means for setting a target air-fuel ratio leaner than the stoichiometric air-fuel ratio according to the operating condition, gradually as the rotational speed increases Air fuel changing to lean side
Lean limit value setting means for setting the ratio as a limit value, air-fuel ratio selection means for comparing the set target air-fuel ratio with the limit value and selecting one of the richer values as the target air-fuel ratio, An air-fuel ratio of an internal combustion engine, comprising: a fuel supply amount calculation unit that calculates a fuel supply amount according to a fuel ratio; and a fuel supply unit that supplies fuel to the engine so as to achieve the calculated fuel supply amount. Control device.
【請求項2】前記リーン限界設定手段は、アイドル回転
数付近の前記限界値を理論空燃比近傍の空燃比に設定す
請求項1に記載の内燃機関の空燃比制御装置。
Wherein said lean limit setting means, idle speed
Set the limit value around the number to the air-fuel ratio near the stoichiometric air-fuel ratio.
Air-fuel ratio control system for an internal combustion engine according to claim 1 that.
【請求項3】機関運転条件を検出する運転条件検出手段
と、 運転条件に応じて理論空燃比よりもリーン側の目標空燃
比を設定する目標空燃比設定手段と、 機関回転数に応じて空燃比のリーン側の限界値を設定す
るリーン限界値設定手段と、 機関のスロットルが全閉状態にあるかどうかを判定する
判定手段と、 判定結果が全閉状態にないときは、設定された目標空燃
比をそのまま選択し、また、全閉状態にあるときは目標
空燃比と限界値とを比較していずれかリッチ側の値を目
標空燃比として選択する空燃比選択手段と、 この選択された目標空燃比に応じて燃料供給量を算出す
る燃料供給量算出手段と、 算出された燃料供給量となるように機関に燃料を供給す
る燃料供給手段とを備えることを特徴とする内燃機関の
空燃比制御装置。
3. An operating condition detecting means for detecting an engine operating condition; a target air-fuel ratio setting means for setting a target air-fuel ratio leaner than a stoichiometric air-fuel ratio in accordance with the operating condition; Lean limit value setting means for setting a limit value on the lean side of the fuel ratio; determining means for determining whether or not the engine throttle is in a fully closed state; Air-fuel ratio selecting means for directly selecting the air-fuel ratio and comparing the target air-fuel ratio with the limit value when the engine is in the fully closed state to select a value on one of the rich sides as the target air-fuel ratio; A fuel supply amount calculating means for calculating a fuel supply amount according to a target air-fuel ratio; and a fuel supply means for supplying fuel to the engine such that the calculated fuel supply amount is obtained. Fuel ratio control device.
JP06001367A 1994-01-11 1994-01-11 Air-fuel ratio control device for internal combustion engine Expired - Lifetime JP3075060B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06001367A JP3075060B2 (en) 1994-01-11 1994-01-11 Air-fuel ratio control device for internal combustion engine
KR1019940034597A KR0169511B1 (en) 1994-01-11 1994-12-16 Engine air-fuel ratio control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06001367A JP3075060B2 (en) 1994-01-11 1994-01-11 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07208233A JPH07208233A (en) 1995-08-08
JP3075060B2 true JP3075060B2 (en) 2000-08-07

Family

ID=11499532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06001367A Expired - Lifetime JP3075060B2 (en) 1994-01-11 1994-01-11 Air-fuel ratio control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP3075060B2 (en)
KR (1) KR0169511B1 (en)

Also Published As

Publication number Publication date
JPH07208233A (en) 1995-08-08
KR0169511B1 (en) 1999-01-15
KR950023840A (en) 1995-08-18

Similar Documents

Publication Publication Date Title
US4852538A (en) Fuel injection control system for internal combustion engine
JP3593896B2 (en) Engine control device
US20070017480A1 (en) Apparatus for controlling engine
JP3564520B2 (en) Engine idle speed control device
JP3075060B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09310627A (en) Torque reduction control device for automatic transmission
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JP3331718B2 (en) Ignition timing control device for internal combustion engine
JP3491019B2 (en) Idle rotation learning control system for electronically controlled throttle internal combustion engine
JP2924576B2 (en) Engine stability control device
JPH0419377B2 (en)
JP3089907B2 (en) Idle speed control device for internal combustion engine
JP3230387B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3425757B2 (en) Engine speed control device for internal combustion engine
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JP4367145B2 (en) Control device for internal combustion engine
JP3303616B2 (en) Idle speed control device for internal combustion engine
JPH0526939B2 (en)
JP3564923B2 (en) Engine air-fuel ratio control device
JP3397087B2 (en) Engine combustion fluctuation control device
JPH09242654A (en) Ignition timing controller for engine
JPH06610Y2 (en) Air-fuel ratio controller for internal combustion engine
CA1266903A (en) Control system for internal combustion engines
JP3303614B2 (en) Idle speed control device for internal combustion engine
JPH10122010A (en) Controller for in-cylinder injection spark ignition type internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 14

EXPY Cancellation because of completion of term