JP3131895B2 - Control device for multi-cylinder internal combustion engine - Google Patents

Control device for multi-cylinder internal combustion engine

Info

Publication number
JP3131895B2
JP3131895B2 JP06177943A JP17794394A JP3131895B2 JP 3131895 B2 JP3131895 B2 JP 3131895B2 JP 06177943 A JP06177943 A JP 06177943A JP 17794394 A JP17794394 A JP 17794394A JP 3131895 B2 JP3131895 B2 JP 3131895B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
fuel
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06177943A
Other languages
Japanese (ja)
Other versions
JPH0842375A (en
Inventor
智也 阿部
正勝 宮尾
裕介 多々良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP06177943A priority Critical patent/JP3131895B2/en
Publication of JPH0842375A publication Critical patent/JPH0842375A/en
Application granted granted Critical
Publication of JP3131895B2 publication Critical patent/JP3131895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,目標空燃比のリッチか
らリーンへの切換時に各気筒毎に設けられた燃料噴射
弁からの燃料噴射量を所定の時間差をもって少するこ
とにより,各気筒の空燃比を順次切り換える多気筒内燃
機関の制御装置に関する。
The present invention relates to a method for determining whether a target air-fuel ratio is rich.
When switching to Luo lean, by decline of the amount of fuel injected from the fuel injection valve provided for each cylinder with a predetermined time difference, a control device for sequentially switching a multi-cylinder internal combustion engine air-fuel ratio of each cylinder.

【0002】[0002]

【従来の技術】かかる多気筒内燃機関として,特開平4
−295151号公報に記載されたものが公知である。
2. Description of the Related Art Such a multi-cylinder internal combustion engine is disclosed in
What is described in -295151 is publicly known.

【0003】図3に破線で示すように,目標空燃比をリ
ッチ(A/F=14.7)からリーン(A/F=22.
0)に連続的に切り換えると,エンジンの出力トルクは
滑らかに変化するものの,中間空燃比において排気ガス
浄化触媒からのNOX の排出量が急激に増加する問題が
ある。これを回避するために,目標空燃比をリッチから
リーンに瞬間的に切り換えるとNOX の排出量の急激な
増加を回避することができるが,エンジントルクが急変
してショックが発生し,ドライバビリティを悪化させる
問題が発生する。
As shown by the broken line in FIG. 3, the target air-fuel ratio is changed from rich (A / F = 14.7) to lean (A / F = 22.
0) in the continuously switched, although the output torque of the engine changes smoothly, there is a problem of emission of the NO X from the exhaust gas purification catalyst in the intermediate air-fuel ratio abruptly increases. To avoid this, although the target air-fuel ratio can be avoided a sharp increase in the emission of instantaneously switching the NO X from rich to lean, the shock is generated engine torque is suddenly changed, drivability The problem that worsens occurs.

【0004】そこで,上記従来の多気筒内燃機関は,目
標空燃比をリッチからリーンに切り換える際に,各気筒
に設けられた燃料噴射弁の燃料噴射量をエミションが悪
化する中間の空燃比を飛び越えるように所定のインター
バルで順次減少させている。これにより,全ての気筒の
燃料噴射量を一斉に減少させた場合に生じるトルクショ
ックを回避し,エミッションの悪化を防止しながらドラ
イバビリティの向上を図っている。
Therefore, in the conventional multi-cylinder internal combustion engine, when the target air-fuel ratio is switched from rich to lean, the fuel injection amount of the fuel injection valve provided in each cylinder jumps over the intermediate air-fuel ratio where the emission deteriorates. As described above, it is sequentially reduced at predetermined intervals. As a result, a torque shock that occurs when the fuel injection amounts of all cylinders are reduced at the same time is avoided, and drivability is improved while preventing deterioration of the emission.

【0005】[0005]

【発明が解決しようとする課題】しかしながら,上記従
来の多気筒内燃機関は,空燃比がリッチの気筒とリーン
の気筒とが同じ燃料噴射時期及び点火時期を持つため,
燃費及びエミッションを更に改善する余地を残してい
た。
However, in the above-mentioned conventional multi-cylinder internal combustion engine, a cylinder having a rich air-fuel ratio and a cylinder having a lean air-fuel ratio have the same fuel injection timing and ignition timing.
This leaves room for further improvements in fuel economy and emissions.

【0006】本発明は前述の事情に鑑みてなされたもの
で,上記多気筒内燃機関において燃費及びエミッション
を更に改善することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to further improve fuel efficiency and emission in the above-described multi-cylinder internal combustion engine.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に,請求項1に記載された発明は,目標空燃比のリッチ
からリーンへの切換時に,各気筒の空燃比を1気筒ずつ
順次切り換えるようにし,その順次切り換えは,気筒毎
に設けられた燃料噴射弁からの燃料噴射量を,切換開始
からの時間経過に応じて順次長くなる所定の時間差をも
って少することにより行われる,多気筒内燃機関の制
御装置であって,各気筒の空燃比が順次切り換えられる
とき,各気筒の空燃比を変化させると同時にその燃料噴
射時期及び点火時期を制御し,空燃比がリッチである気
筒の燃料噴射時期を排気行程中に設定するとともに,空
燃比がリーンである気筒の燃料噴射時期を吸気行程中に
設定し,また空燃比がリッチである気筒の点火時期を遅
角するとともに,空燃比がリーンである気筒の点火時期
を進角することを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 is directed to a method for producing a rich target air-fuel ratio.
When switching from lean to lean, the air-fuel ratio of each cylinder is
The switching is performed sequentially, and the switching is started by switching the fuel injection amount from the fuel injection valve provided for each cylinder.
With a predetermined time difference made sequentially longer in accordance with the lapse of time from performed by decline, there is provided a control apparatus for a multi-cylinder internal combustion engine, when the air-fuel ratio of each cylinder is sequentially switched, the air-fuel ratio of each cylinder At the same time, the fuel injection timing and ignition timing are controlled, and the air-fuel ratio is rich.
Set the fuel injection timing of the cylinder during the exhaust stroke and
During the intake stroke, adjust the fuel injection timing of the lean fuel ratio cylinder.
Set the ignition timing of the cylinder with rich air-fuel ratio.
The ignition timing of a cylinder with a lean and air-fuel ratio
It characterized in that the advance.

【0008】[0008]

【実施例】以下,図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1〜図6は本発明の一実施例を示すもの
で,図1は多気筒内燃機関の制御装置の全体構成図,図
2は各気筒の空燃比の切換順序を説明する図,図3は目
標空燃比の切換に伴うNOX 排出量及び出力トルクの変
化を示すグラフ,図4はリーン時における燃料噴射時期
に対するPmi変動率の関係を示すグラフ,図5はリッ
チ時における燃料噴射時期に対するHC排出量の関係を
示すグラフ,図6は,空燃比に対するMBTの関係を示
すグラフである。
FIGS. 1 to 6 show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of a control device for a multi-cylinder internal combustion engine, and FIG. 2 is a diagram for explaining a switching order of an air-fuel ratio of each cylinder. , FIG. 3 is a graph showing a change in the NO X emission amount and the output torque accompanying the switching of the target air-fuel ratio, FIG. 4 is a graph showing the relationship between the Pmi fluctuation rate and the fuel injection timing at the time of lean operation, and FIG. FIG. 6 is a graph showing the relationship between the injection timing and the HC discharge amount, and FIG. 6 is a graph showing the relationship between the MBT and the air-fuel ratio.

【0010】図1に示すように,4気筒内燃機関E(以
下,単にエンジンEという)の吸気通路1は吸気マニホ
ールド2を介して#1〜#4の4個の気筒31 〜34
それぞれ接続される。吸気通路1には図示せぬアクセル
ペダルに接続されて開閉するスロットルバルブ4が設け
られており,このスロットルバルブ4に接続されてスロ
ットル開度を検出するスロットル開度センサ5からの信
号が電子制御ユニットUに入力される。スロットルバル
ブ4の上流の吸気通路1には吸入空気量を検出するエア
フロメータよりなる吸入空気量センサ6が設けられてお
り,この吸入空気量センサ6からの信号が電子制御ユニ
ットUに入力される。エンジンEの内部には図示せぬク
ランクシャフトの回転に基づいてエンジン回転数を検出
するエンジン回転数センサ7が設けられており,このエ
ンジン回転数センサ7からの信号が電子制御ユニットU
に入力される。
[0010] As shown in FIG. 1, four cylinder internal combustion engine E (hereinafter, simply referred to as engine E) an intake passage 1 of the four-cylinder 3 1 to 3 4 # 1 to # 4 through an intake manifold 2 Connected respectively. The intake passage 1 is provided with a throttle valve 4 that is connected to an accelerator pedal (not shown) and opens and closes. A signal from a throttle opening sensor 5 that is connected to the throttle valve 4 and detects a throttle opening is electronically controlled. Input to unit U. The intake passage 1 upstream of the throttle valve 4 is provided with an intake air amount sensor 6 comprising an air flow meter for detecting an intake air amount, and a signal from the intake air amount sensor 6 is input to the electronic control unit U. . An engine speed sensor 7 for detecting an engine speed based on the rotation of a crankshaft (not shown) is provided inside the engine E, and a signal from the engine speed sensor 7 is transmitted to an electronic control unit U.
Is input to

【0011】吸気マニホールド2には4個の気筒31
4 にそれぞれ対応して4個の燃料噴射弁81 〜84
設けられる。各燃料噴射弁81 〜84 は電子制御ユニッ
トUに接続され,その燃料噴射量及び燃料噴射時期が制
御される。4個の気筒31 〜34 にそれぞれ対応して4
個の点火プラグ91 〜94 が設けられる。各点火プラグ
1 〜94 は電子制御ユニットUに接続され,その点火
時期が制御される。
The intake manifold 2 has four cylinders 3 1 to 3.
3 4 respectively correspond to four fuel injection valves 8 1-8 4 is provided. Each fuel injection valve 8 1-8 4 is connected to the electronic control unit U, the fuel injection amount and fuel injection timing is controlled. Four cylinders 3 respectively corresponding to 1-3 4 4
Number of spark plug 9 1 to 9 4 is provided. Each ignition plug 9 to 93 4 are connected to the electronic control unit U, the ignition timing is controlled.

【0012】次に,本発明の実施例の作用について説明
する。
Next, the operation of the embodiment of the present invention will be described.

【0013】電子制御ユニットUはエンジンEの運転状
態に基づいて目標空燃比の切り換えを判断する。即ち,
電子制御ユニットUはスロットル開度センサ5で検出し
たスロットル開度及びエンジン回転数センサ7で検出し
たエンジン回転数に基づいて目標空燃比をマップ検索す
る。この目標空燃比は2種類であり,エンジンEの通常
の運転領域では目標空燃比はストイキ,即ち理論空燃比
(A/F=14.7)に設定され,またエンジンEの減
速時等の特定の運転領域では燃費の向上を図るべく目標
空燃比はリーン(例えば,A/F=22.0)に設定さ
れる。
The electronic control unit U determines switching of the target air-fuel ratio based on the operating state of the engine E. That is,
The electronic control unit U searches the map for the target air-fuel ratio based on the throttle opening detected by the throttle opening sensor 5 and the engine speed detected by the engine speed sensor 7. The target air-fuel ratio is of two types. In the normal operation range of the engine E, the target air-fuel ratio is set to stoichiometric, that is, the stoichiometric air-fuel ratio (A / F = 14.7). The target air-fuel ratio is set to lean (for example, A / F = 22.0) in order to improve the fuel efficiency in the operating region of (1).

【0014】目標空燃比の切り換えは,燃料噴射弁81
〜84 からの燃料噴射量を制御することにより行われ
る。目標空燃比が理論空燃比であるときには,その理論
空燃比が得られるように吸入空気量センサ6で検出した
空気吸入量及びエンジン回転数センサ7で検出したエン
ジン回転数に応じた燃料噴射時間が設定される。一方,
目標空燃比が理論空燃比よりもリーン化された場合に
は,そのリーン化された目標空燃比が得られるように燃
料噴射時間が設定される。
The switching of the target air-fuel ratio is performed by the fuel injection valve 8 1
It is performed by controlling the fuel injection quantity from 8 4. When the target air-fuel ratio is the stoichiometric air-fuel ratio, the fuel injection time corresponding to the air intake amount detected by the intake air amount sensor 6 and the engine speed detected by the engine speed sensor 7 so that the stoichiometric air-fuel ratio is obtained. Is set. on the other hand,
When the target air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the fuel injection time is set so that the lean target air-fuel ratio is obtained.

【0015】図2に示すように,各気筒31 〜34 の空
燃比は同時に切り換えられるのではなく,ストイキ→リ
ーンの切り換え時及びリーン→ストイキの切り換え時の
両方について,所定の時間差をもって一定の順序(例え
ば,#1気筒31 →#3気筒33 →#4気筒34 →#2
気筒32 の順序)で行われる。
As shown in FIG. 2, the air-fuel ratio of each of the cylinders 3 1 to 3 4 is not switched at the same time, but is constant with a predetermined time difference both when switching from stoichiometric to lean and when switching from lean to stoichiometric. (For example, # 1 cylinder 3 1 → # 3 cylinder 3 3 → # 4 cylinder 3 4 → # 2
It takes place in the cylinder 3 2 order).

【0016】上述したように,目標空燃比が切り換えら
れたとき,4個の気筒31 〜34 の空燃比を所定の時間
差をもって順次切り換えることにより,図3に実線で示
すように,NOX の排出量の急増を避けながら,エンジ
ンEのトルクショックを最小限に抑えることができる。
尚,この図3の実線からも明らかなように4個の気筒3
1 〜3 4 の空燃比は,切換開始からの時間経過に応じて
順次長くなる所定の時間差をもって順次切り換えられ
る。
[0016] As described above, when the target air-fuel ratio has been switched, by switching the air-fuel ratio of the four cylinders 3 1 to 3 4 are sequentially with a predetermined time difference, as shown by the solid line in FIG. 3, NO X The torque shock of the engine E can be minimized while avoiding a sudden increase in the amount of exhaust gas.
As is apparent from the solid line in FIG.
Air-fuel ratio of 1-3 4, depending on the time elapsed from the start of the change over
Can be switched sequentially with a predetermined time difference
You.

【0017】さて,本実施例では各気筒31 〜34 の空
燃比を変化させると同時に,その燃料噴射時期及び点火
時期を同時に制御している。以下,燃料噴射時期及び点
火時期の制御について具体的に説明する。 燃料噴射時期 図4に示すように,空燃比がリーン状態での燃料噴射の
終了時期(以下,燃料噴射時期という)に対するエンジ
ンの図示平均有効圧力Pmiの変動率は,吸気行程中
(TDC後のクランク角100°付近)に最小になり,
その前後で増加する特性を有している。従って,空燃比
がリーン状態にあるとき,燃料噴射時期をTDC後のク
ランク角100°付近に設定することにより,燃費を改
善することができる。
[0017] Now, at the same time in the present embodiment changes the air-fuel ratio of each cylinder 3 1 to 3 4, and controls the fuel injection timing and ignition timing at the same time. Hereinafter, the control of the fuel injection timing and the ignition timing will be specifically described. Fuel Injection Timing As shown in FIG. 4, the fluctuation rate of the indicated mean effective pressure Pmi of the engine with respect to the end timing of fuel injection with the air-fuel ratio being lean (hereinafter referred to as fuel injection timing) is determined during the intake stroke (after TDC). Around 100 ° crank angle)
It has a characteristic that increases before and after that. Therefore, when the air-fuel ratio is in a lean state, the fuel efficiency can be improved by setting the fuel injection timing near the crank angle of 100 ° after TDC.

【0018】一方,図5に示すように,空燃比がストイ
キ状態での燃料噴射時期に対するHC排出量は,吸気行
程中に最大になり,排気行程中(TDC前のクランク角
120°付近)に最小になる特性を有している。従っ
て,空燃比がストイキ状態にあるとき,燃料噴射時期を
TDC前のクランク角120°付近に設定することによ
り,エミッションを改善することができる。
On the other hand, as shown in FIG. 5, the amount of HC emission with respect to the fuel injection timing when the air-fuel ratio is in the stoichiometric state becomes maximum during the intake stroke, and during the exhaust stroke (around a crank angle of 120 ° before TDC). It has the characteristics to be minimized. Therefore, when the air-fuel ratio is in the stoichiometric state, the emission can be improved by setting the fuel injection timing to around the crank angle of 120 ° before TDC.

【0019】而して,空燃比がリーン状態にあるときに
燃料噴射時期を吸気行程中に設定し,空燃比がストイキ
状態にあるときに燃料噴射時期を排気行程中に設定する
ことにより,燃費の向上とエミッションの改善とを両立
させることができる。点火時期図6に示すように,空
燃比に対するMBT(エンジンの最大出力トルクを得る
ための最小点火進角)は,空燃比がリーン状態にあると
きにはTDC前のクランク角50°付近にあり,また空
燃比がストイキ状態にあるときにはTDC前のクランク
角28°付近にある。従って,各気筒31 〜34 の点火
時期を空燃比の切り換えに応じて前述のMBTに設定す
ることにより,即ちリーン時に点火時期を相対的に進角
するとともにリッチ時に点火時期を相対的に遅角するこ
とにより,燃費を向上を図ることができる。
By setting the fuel injection timing during the intake stroke when the air-fuel ratio is lean, and setting the fuel injection timing during the exhaust stroke when the air-fuel ratio is stoichiometric, the fuel efficiency is improved. And emission can both be improved. As shown in FIG. 6, the MBT (minimum ignition advance for obtaining the maximum output torque of the engine) with respect to the air-fuel ratio is near the crank angle of 50 ° before TDC when the air-fuel ratio is lean, and When the air-fuel ratio is in the stoichiometric state, it is near the crank angle of 28 ° before TDC. Therefore, by setting the switching aforementioned MBT according to the ignition timing of each cylinder 3 1 to 3 4 air-fuel ratio, i.e., relatively ignition timing rich time along with the relatively advancing the ignition timing during lean By retarding, fuel efficiency can be improved.

【0020】上述したように,目標空燃比を切り換える
際に各気筒の空燃比を所定のインターバルで順次切り換
えてエミッションの悪化を防止しながらトルクショック
の発生を防止するだけでなく,各気筒の空燃比の切り換
えに応じて燃料噴射時期及び点火時期を併せて制御して
いるので,エミッションの更なる改善と燃費の向上とを
達成することができる。
As described above, when the target air-fuel ratio is switched, the air-fuel ratio of each cylinder is sequentially switched at predetermined intervals to prevent the occurrence of torque shock while preventing the deterioration of emissions, and also to prevent the occurrence of torque shock in each cylinder. Since the fuel injection timing and the ignition timing are also controlled in accordance with the switching of the fuel ratio, it is possible to achieve further improvement in emission and improvement in fuel efficiency.

【0021】以上,本発明の実施例を詳述したが,本発
明は前記実施例に限定されるものではなく,種々の設計
変更を行うことができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made.

【0022】例えば,実施例において示した具体的な燃
料噴射時期及び点火時期は一例にすぎず,エンジンの特
性に応じて適宜変更されるものである。
For example, the specific fuel injection timing and ignition timing shown in the embodiment are merely examples, and may be appropriately changed according to the characteristics of the engine.

【0023】[0023]

【発明の効果】以上のように,請求項1に記載された発
明によれば,目標空燃比のリッチからリーンへの切換時
,各気筒の空燃比を1気筒ずつ順次切り換えるように
し,その順次切り換えは,気筒毎に設けられた燃料噴射
弁からの燃料噴射量を,切換開始からの時間経過に応じ
て順次長くなる所定の時間差をもって少することによ
行われるので,目標空燃比をリッチからリーンへ切り
換える際に各気筒の空燃比を,切換開始からの時間経過
に応じて順次長くなる所定のインターバルで順次切り換
えてエミッションの悪化(NO X 排出量の急増)を防止
しながらトルクショックの発生を防止することができ
る。
As described above, according to the first aspect of the invention, when the target air-fuel ratio is switched from rich to lean, the air-fuel ratio of each cylinder is sequentially switched one by one.
The sequential switching is performed by changing the fuel injection amount from the fuel injection valve provided for each cylinder in accordance with the lapse of time from the start of switching.
Since performed by decline with a predetermined time difference becomes sequentially longer Te, the air-fuel ratio of each cylinder when changing cutting <br/> the target air-fuel ratio from rich to lean, the time elapsed from the start of the change over
It is possible to prevent the occurrence of torque shock while sequentially switched prevent deterioration of emission (surge of the NO X emissions) sequentially become longer predetermined intervals in accordance with the
You.

【0024】また各気筒の空燃比が順次切り換えられる
とき,各気筒の空燃比を変化させると同時にその燃料噴
射時期及び点火時期を制御して,その順次切り換えられ
る各気筒の空燃比に応じて最適の燃料噴射時期及び点火
時期を設定したので,エミッションの更なる改善及び燃
費の向上を図ることができる。特に空燃比がリッチであ
る気筒の燃料噴射時期を排気行程中に設定するととも
に,空燃比がリーンである気筒の燃料噴射時期を吸気行
程中に設定することにより,空燃比のリッチ時における
エミッション(HC排出量)の改善と空燃比のリーン時
における燃費の向上とを両立させることが可能となり,
さらに空燃比がリッチである気筒の点火時期を遅角する
とともに,空燃比がリーンである気筒の点火時期を進角
することにより,空燃比のリッチ時及びリーン時の何れ
の場合にも最適の点火時期を得て燃費の向上を図ること
ができる。
[0024] When the air-fuel ratio of each cylinder is sequentially switched, by controlling the fuel injection timing and ignition timing at the same time changing the air-fuel ratio in each cylinder, according to the air-fuel ratio of each cylinder for the sequentially switched optimum Having set the timing of fuel injection and ignition timing, Ru can be improved further improved and the fuel consumption emissions. Especially when the air-fuel ratio is rich
The fuel injection timing of the cylinder is set during the exhaust stroke.
The fuel injection timing of the cylinder with a lean air-fuel ratio
By setting during the process, when the air-fuel ratio is rich,
Improved emissions (HC emissions) and lean air-fuel ratio
And improved fuel economy at the same time.
Further retard the ignition timing of cylinders with rich air-fuel ratio
At the same time, the ignition timing of the cylinder with the lean air-fuel ratio is advanced.
By doing so, the air-fuel ratio can be either rich or lean.
To improve fuel efficiency by obtaining the optimal ignition timing
Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】多気筒内燃機関の制御装置の全体構成図FIG. 1 is an overall configuration diagram of a control device for a multi-cylinder internal combustion engine.

【図2】各気筒の空燃比の切換順序を説明する図FIG. 2 is a diagram illustrating an air-fuel ratio switching order of each cylinder.

【図3】目標空燃比の切換に伴うNOX 排出量及び出力
トルクの変化を示すグラフ
FIG. 3 is a graph showing changes in NO X emissions and output torque associated with switching of a target air-fuel ratio.

【図4】リーン時における燃料噴射時期に対するPmi
変動率の関係を示すグラフ
FIG. 4 shows Pmi with respect to fuel injection timing during lean operation.
Graph showing the relationship between fluctuation rates

【図5】リッチ時における燃料噴射時期に対するHC排
出量の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the fuel injection timing and the amount of HC emission during rich operation.

【図6】空燃比に対するMBTの関係を示すグラフFIG. 6 is a graph showing the relationship between MBT and air-fuel ratio.

【符号の説明】[Explanation of symbols]

1 〜36 気筒 81 〜84 燃料噴射弁 U 電子制御ユニット(制御手段)3 1 to 3 6-cylinder 8 1-8 4 fuel injectors U electronic control unit (control means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02D 43/00 301 F02D 43/00 301J F02P 5/15 F02P 5/15 B (56)参考文献 特開 平4−295151(JP,A) 特開 平6−81694(JP,A) 特開 平5−71381(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 45/00 F02P 5/15 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI F02D 43/00 301 F02D 43/00 301J F02P 5/15 F02P 5 / 15B (56) References JP-A-4-295151 (JP) JP-A-6-81694 (JP, A) JP-A-5-71381 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F02D 41/00-45/00 F02P 5/15

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 目標空燃比のリッチからリーンへの切換
時に,各気筒(3 1 〜3 4 )の空燃比を1気筒ずつ順次
切り換えるようにし,その順次切り換えは,気筒(31
〜34 )毎に設けられた燃料噴射弁(61 〜64 )から
の燃料噴射量を,切換開始からの時間経過に応じて順次
長くなる所定の時間差をもって少することにより行わ
れる,多気筒内燃機関の制御装置であって, 各気筒(31 〜34 )の空燃比が順次切り換えられると
き,各気筒(31 〜34 )の空燃比を変化させると同時
にその燃料噴射時期及び点火時期を制御し,空燃比がリ
ッチである気筒(3 1 〜3 4 )の燃料噴射時期を排気行
程中に設定するとともに,空燃比がリーンである気筒
(3 1 〜3 4 )の燃料噴射時期を吸気行程中に設定し,
また空燃比がリッチである気筒(3 1 〜3 4 )の点火時
期を遅角するとともに,空燃比がリーンである気筒(3
1 〜3 4 )の点火時期を進角することを特徴とする,多
気筒内燃機関の制御装置。
To 1. A switching from the target air-fuel ratio rich to lean, sequentially one by one cylinder air-fuel ratio of each cylinder (3 1 to 3 4)
The cylinders (3 1
To 3 4) the amount of fuel injected from the fuel injection valve provided for each (6 1 to 6 4) sequentially according to the time elapsed from the start of the change over
Performed by decline with a predetermined time difference becomes longer
Is, there is provided a control apparatus for a multi-cylinder internal combustion engine, when the air-fuel ratio is sequentially switched for each cylinder (3 1 to 3 4), the fuel at the same time changing the air-fuel ratio of each cylinder (3 1 to 3 4) The injection timing and ignition timing are controlled to reduce the air-fuel ratio.
A pitch cylinder (3 1 to 3 4) the fuel injection timing of the exhaust line of
Cylinder that has a lean air-fuel ratio
The fuel injection timing of the (3 1 to 3 4) is set in the intake stroke,
The ignition of the air-fuel ratio is rich cylinder (3 1 to 3 4)
Cylinder with a lean air-fuel ratio (3
Characterized by advancing the ignition timing of the 1-3 4), the control equipment for a multi-cylinder internal combustion engine.
JP06177943A 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine Expired - Fee Related JP3131895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06177943A JP3131895B2 (en) 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06177943A JP3131895B2 (en) 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0842375A JPH0842375A (en) 1996-02-13
JP3131895B2 true JP3131895B2 (en) 2001-02-05

Family

ID=16039792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06177943A Expired - Fee Related JP3131895B2 (en) 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3131895B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923849B2 (en) * 1996-02-21 1999-07-26 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
JP5726697B2 (en) 2011-09-29 2015-06-03 本田技研工業株式会社 Engine ignition timing control device
JP2013096233A (en) * 2011-10-28 2013-05-20 Hitachi Automotive Systems Ltd Fuel injection device for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295151A (en) * 1991-03-25 1992-10-20 Japan Electron Control Syst Co Ltd Air-fuel ratio control device for internal combustion engine
JPH0681694A (en) * 1992-09-03 1994-03-22 Unisia Jecs Corp Electronic control fuel injection device for internal combustion engine

Also Published As

Publication number Publication date
JPH0842375A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
US5365908A (en) Burning control system for engine
US5732680A (en) Fuel injection control system for engine
US6152105A (en) Idle speed control device for engine
JP4469528B2 (en) Method for operation of an internal combustion engine
JPH11210536A (en) Fuel control device for multiple cylinder engine
JPH0680304B2 (en) Ignition timing control method for internal combustion engine
JP3085181B2 (en) Ignition timing control device for internal combustion engine
US5927252A (en) Ignition timing control apparatus for internal combustion engine
JPH0512543B2 (en)
JP3131895B2 (en) Control device for multi-cylinder internal combustion engine
JPH09250435A (en) Engine control method and control device therefor
JP3648864B2 (en) Lean combustion internal combustion engine
JP3596325B2 (en) Idle operation control device for internal combustion engine
JP3485838B2 (en) Ignition control device for internal combustion engine
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JPH0783148A (en) Control device for internal combustion engine
JP3525796B2 (en) Ignition control device for internal combustion engine
JPH07279712A (en) Control device for internal combustion engine having variable valve timing device
JP2000337235A (en) Ignition control device of internal combustion engine
JP2007009835A (en) Control device for internal combustion engine
JP2884836B2 (en) Engine ignition timing control device
JPH0732940Y2 (en) Ignition timing control device for internal combustion engine
JP2682143B2 (en) Engine ignition timing control device
JPS631749A (en) Method of operating engine without causing knocking

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees