JPH0842375A - Controller of multi-cylinder internal combustion engine - Google Patents

Controller of multi-cylinder internal combustion engine

Info

Publication number
JPH0842375A
JPH0842375A JP17794394A JP17794394A JPH0842375A JP H0842375 A JPH0842375 A JP H0842375A JP 17794394 A JP17794394 A JP 17794394A JP 17794394 A JP17794394 A JP 17794394A JP H0842375 A JPH0842375 A JP H0842375A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
cylinder
fuel
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17794394A
Other languages
Japanese (ja)
Other versions
JP3131895B2 (en
Inventor
Tomoya Abe
智也 阿部
Masakatsu Miyao
正勝 宮尾
Yusuke Tatara
裕介 多々良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP06177943A priority Critical patent/JP3131895B2/en
Publication of JPH0842375A publication Critical patent/JPH0842375A/en
Application granted granted Critical
Publication of JP3131895B2 publication Critical patent/JP3131895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To improve emission, so as to improve fuel consumption by switching the fuel injection timing and the ignition timing by means of a cylinder having the rich air-fuel ratio and a cylinder having the lean air-fuel ratio when the air fuel ratios of respective cylinders are sequentially switched in switching of the target air-fuel ratio. CONSTITUTION:While an engine E is operated, in an electronic control unit U, the target air-fuel ratio is map-retrieved on the basis of the detected signals of a throttle opening sensor 5 and an engine speed sensor 7. The target air-fuel ratio is set to stoichiometric, namely, the theoretical air-fuel ratio in the normal operating range of the engine E, and the target air-fuel ratio is set to the lean side in the specific operating range like in decelerating of the engine E to improve fuel consumption. In switching of the air-fuel ratio, the fuel injection timing is set during the exhaust stroke of the cylinder having the rich air-fuel ratio and during the intake stroke of the cylinder having the lean air-fuel ratio, while, the ignition timing is delay-controlled for the rich cylinder and advance- controlled for the lean cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、目標空燃比の切換時に
各気筒毎に設けられた燃料噴射弁からの燃料噴射量を所
定の時間差をもって増加又は減少することにより、各気
筒の空燃比を順次切り換える多気筒内燃機関の制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention increases the air-fuel ratio of each cylinder by increasing or decreasing the fuel injection amount from a fuel injection valve provided for each cylinder at the time of switching the target air-fuel ratio. The present invention relates to a control device for a multi-cylinder internal combustion engine that sequentially switches.

【0002】[0002]

【従来の技術】かかる多気筒内燃機関として、特開平4
−295151号公報に記載されたものが公知である。
2. Description of the Related Art As such a multi-cylinder internal combustion engine, Japanese Patent Laid-Open No.
The one described in Japanese Patent Publication No. 295151/1990 is known.

【0003】図3に破線で示すように、目標空燃比をリ
ッチ(A/F=14.7)からリーン(A/F=22.
0)に連続的に切り換えると、エンジンの出力トルクは
滑らかに変化するものの、中間空燃比において排気ガス
浄化触媒からのNOX の排出量が急激に増加する問題が
ある。これを回避するために、目標空燃比をリッチから
リーンに瞬間的に切り換えるとNOX の排出量の急激な
増加を回避することができるが、エンジントルクが急変
してショックが発生し、ドライバビリティを悪化させる
問題が発生する。
As shown by the broken line in FIG. 3, the target air-fuel ratio is changed from rich (A / F = 14.7) to lean (A / F = 22.
When continuously switched to 0), the output torque of the engine changes smoothly, but there is a problem that the emission amount of NO X from the exhaust gas purification catalyst sharply increases at the intermediate air-fuel ratio. To avoid this, the target air-fuel ratio can be instantaneously switched from rich to lean to avoid a sudden increase in NO X emissions, but a sudden change in engine torque causes shock and drivability. A problem that aggravates.

【0004】そこで、上記従来の多気筒内燃機関は、目
標空燃比をリッチからリーンに切り換える際に、各気筒
に設けられた燃料噴射弁の燃料噴射量をエミションが悪
化する中間の空燃比を飛び越えるように所定のインター
バルで順次減少させている。これにより、全ての気筒の
燃料噴射量を一斉に減少させた場合に生じるトルクショ
ックを回避し、エミッションの悪化を防止しながらドラ
イバビリティの向上を図っている。
Therefore, in the conventional multi-cylinder internal combustion engine, when the target air-fuel ratio is switched from rich to lean, the fuel injection amount of the fuel injection valve provided in each cylinder exceeds the intermediate air-fuel ratio at which the emmission deteriorates. As described above, it is sequentially decreased at a predetermined interval. This avoids the torque shock that occurs when the fuel injection amounts of all the cylinders are reduced all at once, and improves the drivability while preventing the deterioration of emissions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の多気筒内燃機関は、空燃比がリッチの気筒とリーン
の気筒とが同じ燃料噴射時期及び点火時期を持つため、
燃費及びエミッションを更に改善する余地を残してい
た。
However, in the conventional multi-cylinder internal combustion engine, the cylinder having a rich air-fuel ratio and the cylinder having a lean air-fuel ratio have the same fuel injection timing and ignition timing.
There was room for further improvement in fuel efficiency and emissions.

【0006】本発明は前述の事情に鑑みてなされたもの
で、上記多気筒内燃機関において燃費及びエミッション
を更に改善することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to further improve fuel consumption and emission in the above-described multi-cylinder internal combustion engine.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載された発明は、目標空燃比の切換時
に各気筒毎に設けられた燃料噴射弁からの燃料噴射量を
所定の時間差をもって増加又は減少することにより、各
気筒の空燃比を順次切り換える多気筒内燃機関の制御装
置において、空燃比がリッチである気筒と空燃比がリー
ンである気筒とで、燃料噴射時期及び点火時期を持ち換
える制御手段を備えたことを特徴とする。
In order to achieve the above object, the invention described in claim 1 sets a predetermined amount of fuel injection from a fuel injection valve provided for each cylinder at the time of switching the target air-fuel ratio. In a control device for a multi-cylinder internal combustion engine that sequentially switches the air-fuel ratio of each cylinder by increasing or decreasing with a time difference of, the fuel injection timing and the ignition are different between the cylinder with a rich air-fuel ratio and the cylinder with a lean air-fuel ratio. It is characterized by having a control means for changing the time.

【0008】また請求項2に記載された発明は、請求項
1の構成に加えて、空燃比がリッチである気筒の燃料噴
射時期を排気行程中に設定するとともに、空燃比がリー
ンである気筒の燃料噴射時期を吸気行程中に設定するこ
とを特徴とする。
In addition to the structure of claim 1, the invention described in claim 2 sets the fuel injection timing of a cylinder having a rich air-fuel ratio during the exhaust stroke and also has a lean air-fuel ratio. The fuel injection timing of is set during the intake stroke.

【0009】また請求項3に記載された発明は、請求項
1の構成に加えて、空燃比がリッチである気筒の点火時
期を遅角するとともに、空燃比がリーンである気筒の点
火時期を進角することを特徴とする。
In addition to the structure of claim 1, the invention described in claim 3 retards the ignition timing of a cylinder having a rich air-fuel ratio and sets the ignition timing of a cylinder having a lean air-fuel ratio. It is characterized by advancing.

【0010】[0010]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1〜図6は本発明の一実施例を示すもの
で、図1は多気筒内燃機関の制御装置の全体構成図、図
2は各気筒の空燃比の切換順序を説明する図、図3は目
標空燃比の切換に伴うNOX 排出量及び出力トルクの変
化を示すグラフ、図4はリーン時における燃料噴射時期
に対するPmi変動率の関係を示すグラフ、図5はリッ
チ時における燃料噴射時期に対するHC排出量の関係を
示すグラフ、図6は、空燃比に対するMBTの関係を示
すグラフである。
1 to 6 show an embodiment of the present invention, FIG. 1 is an overall configuration diagram of a control system for a multi-cylinder internal combustion engine, and FIG. 2 is a diagram for explaining an air-fuel ratio switching sequence of each cylinder. 3, FIG. 3 is a graph showing changes in the NO X emission amount and output torque due to switching of the target air-fuel ratio, FIG. 4 is a graph showing the relationship of the Pmi fluctuation rate with respect to the fuel injection timing during lean, and FIG. 5 is the fuel during rich. FIG. 6 is a graph showing the relationship between the HC emission amount and the injection timing, and FIG. 6 is a graph showing the relationship between the MBT and the air-fuel ratio.

【0012】図1に示すように、4気筒内燃機関E(以
下、単にエンジンEという)の吸気通路1は吸気マニホ
ールド2を介して#1〜#4の4個の気筒31 〜34
それぞれ接続される。吸気通路1には図示せぬアクセル
ペダルに接続されて開閉するスロットルバルブ4が設け
られており、このスロットルバルブ4に接続されてスロ
ットル開度を検出するスロットル開度センサ5からの信
号が電子制御ユニットUに入力される。スロットルバル
ブ4の上流の吸気通路1には吸入空気量を検出するエア
フロメータよりなる吸入空気量センサ6が設けられてお
り、この吸入空気量センサ6からの信号が電子制御ユニ
ットUに入力される。エンジンEの内部には図示せぬク
ランクシャフトの回転に基づいてエンジン回転数を検出
するエンジン回転数センサ7が設けられており、このエ
ンジン回転数センサ7からの信号が電子制御ユニットU
に入力される。
As shown in FIG. 1, an intake passage 1 of a four-cylinder internal combustion engine E (hereinafter simply referred to as engine E) is connected via an intake manifold 2 to four cylinders 3 1 to 3 4 of # 1 to # 4. Connected respectively. The intake passage 1 is provided with a throttle valve 4 which is connected to an accelerator pedal (not shown) to open and close. A signal from a throttle opening sensor 5 which is connected to the throttle valve 4 and detects a throttle opening is electronically controlled. Input to the unit U. An intake air amount sensor 6 including an air flow meter for detecting the intake air amount is provided in the intake passage 1 upstream of the throttle valve 4, and a signal from the intake air amount sensor 6 is input to the electronic control unit U. . An engine speed sensor 7 for detecting the engine speed based on the rotation of a crankshaft (not shown) is provided inside the engine E, and a signal from the engine speed sensor 7 is supplied to the electronic control unit U.
Is input to

【0013】吸気マニホールド2には4個の気筒31
4 にそれぞれ対応して4個の燃料噴射弁81 〜84
設けられる。各燃料噴射弁81 〜84 は電子制御ユニッ
トUに接続され、その燃料噴射量及び燃料噴射時期が制
御される。4個の気筒31 〜34 にそれぞれ対応して4
個の点火プラグ91 〜94 が設けられる。各点火プラグ
1 〜94 は電子制御ユニットUに接続され、その点火
時期が制御される。
The intake manifold 2 has four cylinders 3 1 ...
Four fuel injection valves 8 1 to 8 4 are provided corresponding to 3 4 respectively. Each of the fuel injection valves 8 1 to 8 4 is connected to the electronic control unit U, and the fuel injection amount and fuel injection timing are controlled. 4 corresponding to each of the four cylinders 3 1 to 3 4
Spark plugs 9 1 to 9 4 are provided. Each of the spark plugs 9 1 to 9 4 is connected to the electronic control unit U, and its ignition timing is controlled.

【0014】次に、本発明の実施例の作用について説明
する。
Next, the operation of the embodiment of the present invention will be described.

【0015】電子制御ユニットUはエンジンEの運転状
態に基づいて目標空燃比の切り換えを判断する。即ち、
電子制御ユニットUはスロットル開度センサ5で検出し
たスロットル開度及びエンジン回転数センサ7で検出し
たエンジン回転数に基づいて目標空燃比をマップ検索す
る。この目標空燃比は2種類であり、エンジンEの通常
の運転領域では目標空燃比はストイキ、即ち理論空燃比
(A/F=14.7)に設定され、またエンジンEの減
速時等の特定の運転領域では燃費の向上を図るべく目標
空燃比はリーン(例えば、A/F=22.0)に設定さ
れる。
The electronic control unit U determines the switching of the target air-fuel ratio based on the operating state of the engine E. That is,
The electronic control unit U searches the map for the target air-fuel ratio based on the throttle opening detected by the throttle opening sensor 5 and the engine speed detected by the engine speed sensor 7. There are two types of target air-fuel ratios, and the target air-fuel ratio is set to stoichiometry, that is, the stoichiometric air-fuel ratio (A / F = 14.7) in the normal operating region of the engine E, and the specification when the engine E is decelerating, etc. In the operating region of, the target air-fuel ratio is set to lean (for example, A / F = 22.0) in order to improve fuel efficiency.

【0016】目標空燃比の切り換えは、燃料噴射弁81
〜84 からの燃料噴射量を制御することにより行われ
る。目標空燃比が理論空燃比であるときには、その理論
空燃比が得られるように吸入空気量センサ6で検出した
空気吸入量及びエンジン回転数センサ7で検出したエン
ジン回転数に応じた燃料噴射時間が設定される。一方、
目標空燃比が理論空燃比よりもリーン化された場合に
は、そのリーン化された目標空燃比が得られるように燃
料噴射時間が設定される。
The fuel injection valve 8 1 is used to switch the target air-fuel ratio.
It is performed by controlling the fuel injection quantity from 8 4. When the target air-fuel ratio is the stoichiometric air-fuel ratio, the fuel injection time corresponding to the air intake amount detected by the intake air amount sensor 6 and the engine speed detected by the engine speed sensor 7 so that the stoichiometric air-fuel ratio is obtained. Is set. on the other hand,
When the target air-fuel ratio is made leaner than the stoichiometric air-fuel ratio, the fuel injection time is set so that the leaned target air-fuel ratio is obtained.

【0017】図2に示すように、角気筒31 〜34 の空
燃比は同時に切り換えられるのではなく、ストイキ→リ
ーンの切り換え時及びリーン→ストイキの切り換え時の
両方について、所定の時間差をもって一定の順序(例え
ば、#1気筒31 →#3気筒33 →#4気筒34 →#2
気筒32 の順序)で行われる。
As shown in FIG. 2, the air-fuel ratios of the square cylinders 3 1 to 3 4 are not switched at the same time, but are constant with a predetermined time difference at both the stoichiometric → lean switching and the lean → stoichi switching. Order (for example, # 1 cylinder 3 1 → # 3 cylinder 3 3 → # 4 cylinder 3 4 → # 2
Cylinder 3 2 order).

【0018】上述したように、目標空燃比が切り換えら
れたとき、4個の気筒31 〜34 の空燃比を所定の時間
差をもって順次切り換えることにより、図3に実線で示
すように、NOX の排出量の急増を避けながら、エンジ
ンEのトルクショックを最小限に抑えることができる。
As described above, when the target air-fuel ratio is switched, the air-fuel ratios of the four cylinders 3 1 to 3 4 are sequentially switched with a predetermined time difference, so that NO x as shown by the solid line in FIG. The torque shock of the engine E can be minimized while avoiding a sharp increase in the emission amount of the engine.

【0019】さて、本実施例では各気筒31 〜34 の空
燃比を変化させると同時に、その燃料噴射時期及び点火
時期を同時に制御している。以下、燃料噴射時期及び点
火時期の制御について具体的に説明する。 燃料噴射時期 図4に示すように、空燃比がリーン状態での燃料噴射の
終了時期(以下、燃料噴射時期という)に対するエンジ
ンの図示平均有効圧力Pmiの変動率は、吸気行程中
(TDC後のクランク角100°付近)に最小になり、
その前後で増加する特性を有している。従って、空燃比
がリーン状態にあるとき、燃料噴射時期をTDC後のク
ランク角100°付近に設定することにより、燃費を改
善することができる。
In this embodiment, the air-fuel ratio of each cylinder 3 1 to 3 4 is changed, and at the same time, the fuel injection timing and ignition timing are controlled at the same time. Hereinafter, the control of the fuel injection timing and the ignition timing will be specifically described. Fuel injection timing As shown in FIG. 4, the variation rate of the indicated mean effective pressure Pmi of the engine with respect to the end timing of fuel injection (hereinafter referred to as fuel injection timing) when the air-fuel ratio is lean is shown as follows. The crank angle is around 100 °)
It has the property of increasing before and after that. Therefore, when the air-fuel ratio is in the lean state, the fuel consumption can be improved by setting the fuel injection timing near the crank angle of 100 ° after TDC.

【0020】一方、図5に示すように、空燃比がストイ
キ状態での燃料噴射時期に対するHC排出量は、吸気行
程中に最大になり、排気行程中(TDC前のクランク角
120°付近)に最小になる特性を有している。従っ
て、空燃比がストイキ状態にあるとき、燃料噴射時期を
TDC前のクランク角120°付近に設定することによ
り、エミッションを改善することができる。
On the other hand, as shown in FIG. 5, the HC emission amount with respect to the fuel injection timing when the air-fuel ratio is in the stoichiometric state becomes maximum during the intake stroke and during the exhaust stroke (around 120 ° crank angle before TDC). It has the characteristic of being the minimum. Therefore, when the air-fuel ratio is in the stoichiometric state, the emission can be improved by setting the fuel injection timing near the crank angle of 120 ° before TDC.

【0021】而して、空燃比がリーン状態にあるときに
燃料噴射時期を吸気行程中に設定し、空燃比がストイキ
状態にあるときに燃料噴射時期を排気行程中に設定する
ことにより、燃費の向上とエミッションの改善とを両立
させることができる。 点火時期 図6に示すように、空燃比に対するMBT(エンジンの
最大出力トルクを得るための最小点火進角)は、空燃比
がリーン状態にあるときにはTDC前のクランク角50
°付近にあり、また空燃比がストイキ状態にあるときに
はTDC前のクランク角28°付近にある。従って、各
気筒31 〜34 の点火時期を空燃比の切り換えに応じて
前述のMBTに設定することにより、即ちリーン時に点
火時期を相対的に進角するとともにリッチ時に点火時期
を相対的に遅角することにより、燃費を向上を図ること
ができる。
Thus, the fuel injection timing is set during the intake stroke when the air-fuel ratio is in the lean state, and the fuel injection timing is set during the exhaust stroke when the air-fuel ratio is in the stoichiometric state. It is possible to achieve both the improvement of the emission and the improvement of the emission. Ignition Timing As shown in FIG. 6, the MBT (minimum ignition advance angle for obtaining the maximum output torque of the engine) with respect to the air-fuel ratio is the crank angle 50 before TDC when the air-fuel ratio is lean.
When the air-fuel ratio is in the stoichiometric state, the crank angle is around 28 ° before TDC. Therefore, by setting the switching aforementioned MBT according to the ignition timing of each cylinder 3 1 to 3 4 air-fuel ratio, i.e., relatively ignition timing rich time along with the relatively advancing the ignition timing during lean By retarding, the fuel efficiency can be improved.

【0022】上述したように、目標空燃比を切り換える
際に各気筒の空燃比を所定のインターバルで順次切り換
えてエミッションの悪化を防止しながらトルクショック
の発生を防止するだけでなく、各気筒の空燃比の切り換
えに応じて燃料噴射時期及び点火時期を併せて制御して
いるので、エミッションの更なる改善と燃費の向上とを
達成することができる。
As described above, when the target air-fuel ratio is switched, the air-fuel ratio of each cylinder is sequentially switched at a predetermined interval to prevent the deterioration of emission while preventing the occurrence of torque shock. Since the fuel injection timing and the ignition timing are also controlled in accordance with the switching of the fuel ratio, it is possible to achieve further improvements in emission and fuel efficiency.

【0023】以上、本発明の実施例を詳述したが、本発
明は前記実施例に限定されるものではなく、種々の設計
変更を行うことができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various design changes can be made.

【0024】例えば、実施例において示した具体的な燃
料噴射時期及び点火時期は一例にすぎず、エンジンの特
性に応じて適宜変更されるものである。
For example, the specific fuel injection timings and ignition timings shown in the embodiments are merely examples, and may be appropriately changed according to the characteristics of the engine.

【0025】[0025]

【発明の効果】以上のように、請求項1に記載された発
明によれば、目標空燃比の切換時に各気筒毎に設けられ
た燃料噴射弁からの燃料噴射量を所定の時間差をもって
増加又は減少することにより、各気筒の空燃比を順次切
り換える多気筒内燃機関の制御装置において、空燃比が
リッチである気筒と空燃比がリーンである気筒とで、燃
料噴射時期及び点火時期を持ち換える制御手段を備えて
いるので、各気筒の空燃比に応じて最適の燃料噴射時期
及び点火時期を設定し、エミッションの改善及び燃費の
向上を図ることができる。
As described above, according to the invention described in claim 1, when the target air-fuel ratio is switched, the fuel injection amount from the fuel injection valve provided for each cylinder is increased with a predetermined time difference. In a control device for a multi-cylinder internal combustion engine that sequentially switches the air-fuel ratio of each cylinder by decreasing the control, the fuel injection timing and the ignition timing are switched between a cylinder with a rich air-fuel ratio and a cylinder with a lean air-fuel ratio. Since the means is provided, it is possible to set the optimum fuel injection timing and ignition timing according to the air-fuel ratio of each cylinder to improve emissions and fuel efficiency.

【0026】また請求項2に記載された発明によれば、
空燃比がリッチである気筒の燃料噴射時期を排気行程中
に設定するとともに、空燃比がリーンである気筒の燃料
噴射時期を吸気行程中に設定することにより、空燃比の
リッチ時におけるエミッションの改善と空燃比のリーン
時における燃費の向上とを両立させることが可能とな
る。
According to the invention described in claim 2,
By setting the fuel injection timing of the cylinder with a rich air-fuel ratio during the exhaust stroke and setting the fuel injection timing of the cylinder with a lean air-fuel ratio during the intake stroke, the emission is improved when the air-fuel ratio is rich It is possible to achieve both the improvement of fuel efficiency when the air-fuel ratio is lean.

【0027】また請求項3に記載された発明によれば、
空燃比がリッチである気筒の点火時期を遅角するととも
に、空燃比がリーンである気筒の点火時期を進角するこ
とにより、空燃比のリッチ時及びリーン時の何れの場合
にも最適の点火時期を得て燃費の向上を図ることがるこ
とができる。
According to the invention described in claim 3,
By retarding the ignition timing of the cylinder with a rich air-fuel ratio and advancing the ignition timing of the cylinder with a lean air-fuel ratio, optimum ignition is achieved both when the air-fuel ratio is rich and when it is lean. It is possible to improve fuel efficiency at the right time.

【図面の簡単な説明】[Brief description of drawings]

【図1】多気筒内燃機関の制御装置の全体構成図FIG. 1 is an overall configuration diagram of a control device for a multi-cylinder internal combustion engine.

【図2】各気筒の空燃比の切換順序を説明する図FIG. 2 is a diagram for explaining the order of switching the air-fuel ratio of each cylinder.

【図3】目標空燃比の切換に伴うNOX 排出量及び出力
トルクの変化を示すグラフ
FIG. 3 is a graph showing changes in NO X emission amount and output torque due to switching of target air-fuel ratio.

【図4】リーン時における燃料噴射時期に対するPmi
変動率の関係を示すグラフ
[Fig. 4] Pmi with respect to fuel injection timing at lean time
Graph showing the relationship of volatility

【図5】リッチ時における燃料噴射時期に対するHC排
出量の関係を示すグラフ
FIG. 5 is a graph showing the relationship between the HC emission amount and the fuel injection timing at the rich time.

【図6】空燃比に対するMBTの関係を示すグラフFIG. 6 is a graph showing the relationship between MBT and air-fuel ratio.

【符号の説明】[Explanation of symbols]

1 〜36 気筒 81 〜84 燃料噴射弁 U 電子制御ユニット(制御手段)3 1 to 3 6 cylinders 8 1 to 8 4 fuel injection valve U electronic control unit (control means)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 43/00 301 E B J F02P 5/15 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F02D 43/00 301 EB J F02P 5/15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 目標空燃比の切換時に各気筒(31 〜3
4 )毎に設けられた燃料噴射弁(61 〜64 )からの燃
料噴射量を所定の時間差をもって増加又は減少すること
により、各気筒(31 〜34 )の空燃比を順次切り換え
る多気筒内燃機関の制御装置において、 空燃比がリッチである気筒(31 〜34 )と空燃比がリ
ーンである気筒(31〜34 )とで、燃料噴射時期及び
点火時期を持ち換える制御手段(U)を備えたことを特
徴とする、多気筒内燃機関の制御装置。
1. When switching the target air-fuel ratio, each cylinder (3 1 to 3)
4 ) The air-fuel ratio of each cylinder (3 1 to 3 4 ) is sequentially switched by increasing or decreasing the fuel injection amount from the fuel injection valve (6 1 to 6 4 ) provided for each cylinder with a predetermined time difference. the control apparatus for internal combustion engine, air-fuel ratio exiting the cylinder is rich (3 1 to 3 4) air-fuel ratio is lean cylinder and (3 1 to 3 4), changing has fuel injection timing and ignition timing control A control device for a multi-cylinder internal combustion engine, comprising a means (U).
【請求項2】 空燃比がリッチである気筒(31
4 )の燃料噴射時期を排気行程中に設定するととも
に、空燃比がリーンである気筒(31 〜34 )の燃料噴
射時期を吸気行程中に設定することを特徴とする、請求
項1記載の多気筒内燃機関の制御装置。
2. A cylinder (3 1- ) having a rich air-fuel ratio
3. The fuel injection timing of 3 4 ) is set during the exhaust stroke, and the fuel injection timing of the cylinders (3 1 to 3 4 ) having a lean air-fuel ratio is set during the intake stroke. A control device for a multi-cylinder internal combustion engine as described.
【請求項3】 空燃比がリッチである気筒(31
4 )の点火時期を遅角するとともに、空燃比がリーン
である気筒(31 〜34 )の点火時期を進角することを
特徴とする、請求項1記載の多気筒内燃機関の制御装
置。
3. An air-fuel ratio is rich cylinder (3 1 -
3 4 with retarding the ignition timing), characterized in that the air-fuel ratio advances the ignition timing of the cylinder (3 1 to 3 4) is lean, the control of a multi-cylinder internal combustion engine according to claim 1, wherein apparatus.
JP06177943A 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine Expired - Fee Related JP3131895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06177943A JP3131895B2 (en) 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06177943A JP3131895B2 (en) 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0842375A true JPH0842375A (en) 1996-02-13
JP3131895B2 JP3131895B2 (en) 2001-02-05

Family

ID=16039792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06177943A Expired - Fee Related JP3131895B2 (en) 1994-07-29 1994-07-29 Control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP3131895B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228875A (en) * 1996-02-21 1997-09-02 Honda Motor Co Ltd Air fuel ratio controller of internal combustion engine
CN103032246A (en) * 2011-09-29 2013-04-10 本田技研工业株式会社 Ignition timing controlling apparatus for engine
CN103089469A (en) * 2011-10-28 2013-05-08 日立汽车系统株式会社 Fuel injection apparatus for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295151A (en) * 1991-03-25 1992-10-20 Japan Electron Control Syst Co Ltd Air-fuel ratio control device for internal combustion engine
JPH0681694A (en) * 1992-09-03 1994-03-22 Unisia Jecs Corp Electronic control fuel injection device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04295151A (en) * 1991-03-25 1992-10-20 Japan Electron Control Syst Co Ltd Air-fuel ratio control device for internal combustion engine
JPH0681694A (en) * 1992-09-03 1994-03-22 Unisia Jecs Corp Electronic control fuel injection device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228875A (en) * 1996-02-21 1997-09-02 Honda Motor Co Ltd Air fuel ratio controller of internal combustion engine
CN103032246A (en) * 2011-09-29 2013-04-10 本田技研工业株式会社 Ignition timing controlling apparatus for engine
JP2013072406A (en) * 2011-09-29 2013-04-22 Honda Motor Co Ltd Ignition timing control device of engine
US9151264B2 (en) 2011-09-29 2015-10-06 Honda Motor Co., Ltd. Ignition timing controlling apparatus for engine, and vehicle incorporating the same
CN103089469A (en) * 2011-10-28 2013-05-08 日立汽车系统株式会社 Fuel injection apparatus for internal combustion engine
JP2013096233A (en) * 2011-10-28 2013-05-20 Hitachi Automotive Systems Ltd Fuel injection device for internal combustion engine

Also Published As

Publication number Publication date
JP3131895B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US6360713B1 (en) Mode transition control scheme for internal combustion engines using unequal fueling
US5626117A (en) Electronic ignition system with modulated cylinder-to-cylinder timing
JP3535233B2 (en) Operation control device for two-stroke engine for outboard motor
JPH03271535A (en) Control of otto engine
JPH0680304B2 (en) Ignition timing control method for internal combustion engine
JP3085181B2 (en) Ignition timing control device for internal combustion engine
JPS60237142A (en) Controller for internal-combustion engine
JP3324039B2 (en) Method for reducing harmful exhaust emissions of gasoline engines operated with lean fuel-air mixtures
JPH08114166A (en) Engine control device
JPH0416622B2 (en)
JP2810410B2 (en) Engine ignition timing control device
JPH09250435A (en) Engine control method and control device therefor
JPH0842375A (en) Controller of multi-cylinder internal combustion engine
JP3648864B2 (en) Lean combustion internal combustion engine
JP3485838B2 (en) Ignition control device for internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
US20200277903A1 (en) Cylinder deactivation system and cylinder deactivation method
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JP2000170560A (en) Intake and exhaust controller for cylinder stop engine
JP3661407B2 (en) Control device for internal combustion engine
JP3265999B2 (en) Knock control device for in-cylinder injection internal combustion engine
JP3525796B2 (en) Ignition control device for internal combustion engine
JPH062639A (en) Engine controller
JPH07279712A (en) Control device for internal combustion engine having variable valve timing device
JPH05321706A (en) Control device of two cycle engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees