JPH0319370B2 - - Google Patents
Info
- Publication number
- JPH0319370B2 JPH0319370B2 JP14519482A JP14519482A JPH0319370B2 JP H0319370 B2 JPH0319370 B2 JP H0319370B2 JP 14519482 A JP14519482 A JP 14519482A JP 14519482 A JP14519482 A JP 14519482A JP H0319370 B2 JPH0319370 B2 JP H0319370B2
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- engine
- fuel
- injection
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 64
- 238000001514 detection method Methods 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 72
- 239000007924 injection Substances 0.000 description 72
- 230000009467 reduction Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0087—Selective cylinder activation, i.e. partial cylinder operation
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【発明の詳細な説明】
この発明はエンジンの気筒数制御装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine cylinder number control device.
一般にエンジンの気筒数制御装置は、アイドリ
ング時や低速走行時等の低負荷運転領域において
はそれほど大きなエンジン出力を必要としないこ
とから、該低負荷運転時において燃費の向上を図
るため、複数のうちの一部気筒の作動を停止して
エンジンに減筒運転を行なわせるものである。そ
して従来の気筒数制御装置では、例えば、燃料噴
射弁を備えたエンジンにおいては低負荷運転時に
休止すべき気筒の燃料噴射弁に加える噴射パルス
の発生を停止し、又気化器を備えたエンジンにお
いては、特開昭53−118623号公報に示されるよう
に、休止すべき気筒の吸気ポートに予めシヤツタ
ーバルブを設けておき、低負荷運転時に該シヤツ
ターバルブを閉じ、これによつて燃料の供給を停
止して気筒の作動を停止させるようにしている。 In general, an engine cylinder number control device does not require a large engine output in low-load operating ranges such as idling or low-speed driving, so one of the several The system stops the operation of some of the cylinders in the engine and causes the engine to operate with fewer cylinders. Conventional cylinder number control devices, for example, stop the generation of injection pulses applied to the fuel injection valves of cylinders that should be deactivated during low-load operation in engines equipped with fuel injection valves, and As shown in Japanese Unexamined Patent Publication No. 118623/1983, a shutter valve is provided in advance at the intake port of the cylinder to be deactivated, and the shutter valve is closed during low-load operation, thereby reducing the amount of fuel. The supply is stopped to stop cylinder operation.
しかしながら従来の気筒数制御装置では、全気
筒運転から減筒運転への切換時、例えば4気筒エ
ンジンにおいては4気筒運転から2気筒運転への
切換時、単に休止すべき気筒への燃料の供給を停
止させるようにしているので、2つの気筒が急激
にその作動を停止し、エンジンのトルクが急激に
変動してトルクシヨツクが発生し、運転性が悪化
する等の問題があつた。 However, with conventional cylinder number control devices, when switching from all-cylinder operation to reduced-cylinder operation, for example, when switching from 4-cylinder operation to 2-cylinder operation in a 4-cylinder engine, the conventional cylinder number control device simply controls the supply of fuel to the cylinders that should be stopped. Since the engine is stopped, two cylinders suddenly stop operating, resulting in sudden fluctuations in engine torque, resulting in torque shock and deteriorating drivability.
この発明は以上のような従来のものの問題点に
鑑みてなされたもので、低負荷運転時に減筒運転
を行なうようにしたエンジンにおいて、全気筒運
転から減筒運転への切換時には休止すべき休止気
筒への燃料供給量を所定量、例えば失火寸前の供
給量まで徐々に減少させ、その後該休止気筒への
燃料供給を停止することにより、上記切換時に、
休止すべき休止気筒のトルクを滑らかに減少させ
て、トルクシヨツクの発生を大きく低減するよう
にし、さらに失火発生直前には上記休止気筒の吸
気通路を遮断することにより失火の発生を回避す
るようにしたエンジンの気筒数制御装置を提供す
ることを目的としている。 This invention was made in view of the problems of the conventional ones as described above.In an engine that performs reduced-cylinder operation during low-load operation, there is a pause that should be stopped when switching from all-cylinder operation to reduced-cylinder operation. By gradually reducing the amount of fuel supplied to the cylinder to a predetermined amount, for example, to the amount just before a misfire, and then stopping the fuel supply to the idle cylinder, at the time of the switching,
The torque of the deactivated cylinder that should be deactivated is smoothly reduced to greatly reduce the occurrence of torque shock, and the intake passage of the deactivated cylinder is blocked immediately before a misfire occurs to avoid the occurrence of a misfire. The purpose of this invention is to provide a cylinder number control device for an engine.
以下本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例によるエンジンの気
筒数制御装置を示す。図において、1はエンジン
であり、該エンジン1は第1図の右側から左側に
向けて第1〜第4の4つの気筒を有し、該各気筒
には吸気マニホールド2a〜2d及び排気マニホ
ールド3a〜3dがそれぞれ接続されており、上
記吸気マニホールド2a〜2dの上端は吸気通路
2に、排気マニホールド3a〜3dの下端は排気
通路3にそれぞれ接続されている。上記各吸気マ
ニホールド2a〜2dには第1〜第4の燃料噴射
弁4a〜4dが設けられるとともに、第2、第3
気筒の吸気マニホールド2b,2cにはそれらを
開閉するシヤツターバルブ5a,5dが配設され
ており、本実施例ではこれらが吸気通路遮断機構
を構成している。また上記吸気通路2にはスロツ
トル弁6が設けられ、吸気通路2の上流にはエア
フローメータ7が配設されている。 FIG. 1 shows an engine cylinder number control device according to an embodiment of the present invention. In the figure, 1 is an engine, and the engine 1 has four cylinders numbered 1 to 4 from the right side to the left side in FIG. The upper ends of the intake manifolds 2a to 2d are connected to the intake passage 2, and the lower ends of the exhaust manifolds 3a to 3d are connected to the exhaust passage 3. First to fourth fuel injection valves 4a to 4d are provided in each of the intake manifolds 2a to 2d, and second and third fuel injection valves 4a to 4d are provided in each of the intake manifolds 2a to 2d.
Shutter valves 5a and 5d for opening and closing the intake manifolds 2b and 2c of the cylinders are arranged, and in this embodiment, these constitute an intake passage blocking mechanism. Further, the intake passage 2 is provided with a throttle valve 6, and an air flow meter 7 is provided upstream of the intake passage 2.
また図中、8はエンジン回転数を検出する回転
センサ、9はスロツトル弁6の開度を検出するス
ロツトルセンサであり、これらが本実施例の場
合、エンジンの低負荷運転状態を検出するための
運転センサとなつている。10はエアフローメー
タ7、回転センサ8及びスロツトルセンサ9の各
出力を受け、エンジンの負荷が設定値以上のとき
は吸入空気量に応じたパルス幅の噴射パルス信号
を各燃料噴射弁4a〜4dに加え、設定値以下の
とき、即ち低負荷運転時は第2、第3の燃料噴射
弁4b,4cに加える噴射パルス信号の発生を停
止する制御回路であり、該制御回路10は4気筒
運転から2気筒運転への切換時には第2、第3の
燃料噴射弁4b,4cに加える噴射パルス信号の
パルス幅を失火寸前のパルス幅まで徐々に小さく
していつた後、該噴射パルス信号の発生を停止す
るとともに、シヤツターバルブ制御信号を発生
し、又2気筒運転から4気筒運転への切換時には
上記噴射パルス信号のパルス幅を徐々に大きくし
ていつた後、シヤツターバルブ制御信号の発生を
停止するようになつている。11は上記シヤツタ
ーバルブ制御信号を受けてシヤツターバルブ5
a,5bを閉じるシヤツターバルブ駆動回路であ
る。 In the figure, 8 is a rotation sensor that detects the engine speed, and 9 is a throttle sensor that detects the opening degree of the throttle valve 6. In this embodiment, these are used to detect the low-load operating state of the engine. It has become a driving sensor. Reference numeral 10 receives the outputs of the air flow meter 7, rotation sensor 8, and throttle sensor 9, and when the engine load exceeds a set value, sends an injection pulse signal with a pulse width corresponding to the intake air amount to each fuel injector 4a to 4d. In addition, the control circuit 10 stops generating the injection pulse signal applied to the second and third fuel injection valves 4b and 4c when the load is below a set value, that is, during low-load operation. When switching from to two-cylinder operation, the pulse width of the injection pulse signal applied to the second and third fuel injectors 4b and 4c is gradually reduced to a pulse width on the verge of misfire, and then the generation of the injection pulse signal is stopped. When the engine stops, a shutter valve control signal is generated, and when switching from two-cylinder operation to four-cylinder operation, the pulse width of the injection pulse signal is gradually increased, and then the generation of the shutter valve control signal is stopped. I'm starting to do that. 11 receives the shutter valve control signal and operates the shutter valve 5.
This is a shutter valve drive circuit that closes valves a and 5b.
第2図は上記制御回路10の詳細な回路構成を
示し、図において、7,8,9,11は上述のエ
アフローメータ、回転センサ、スロツトルセンサ
及びシヤツターバルブ駆動回路である。また制御
回路10において、12はエアフローメータ7の
出力を受け、吸入空気量に応じた燃料噴射量を演
算する噴射量演算回路、13は通常は噴射量演算
回路12の信号aをそのまま通過させ、減筒運転
信号bを受けている間は上記演算回路12の信号
aを所定の時定数でもつて小さくしていき、減筒
運転信号bを受けているときで後述するシヤツタ
ーバルブ制御信号dを受けたときは出力を停止す
る噴射量補正回路、14,15は噴射量演算回路
12の出力又は噴射量補正回路13の出力を受
け、該出力の大きさに応じたパルス幅の噴射パル
ス信号を第1、第4又は第2、第3の燃料噴射弁
4a,4d又は4b,4cに加える第1、第2の
噴射弁駆動回路である。 FIG. 2 shows a detailed circuit configuration of the control circuit 10, in which numerals 7, 8, 9, and 11 are the above-mentioned air flow meter, rotation sensor, throttle sensor, and shutter valve drive circuit. In the control circuit 10, 12 receives the output of the air flow meter 7 and calculates the fuel injection amount according to the intake air amount. 13 normally passes the signal a of the injection amount calculation circuit 12 as is. While the cylinder reduction operation signal b is being received, the signal a of the arithmetic circuit 12 is decreased with a predetermined time constant, and when the cylinder reduction operation signal b is being received, the shutter valve control signal d, which will be described later, is reduced. 14 and 15 receive the output of the injection amount calculation circuit 12 or the output of the injection amount correction circuit 13, and generate an injection pulse signal with a pulse width corresponding to the magnitude of the output. These are first and second injection valve drive circuits that are applied to the first, fourth, second, and third fuel injection valves 4a, 4d, or 4b, 4c.
また16は回転センサ8及びスロツトルセンサ
9の両出力を受け、エンジンの負荷状態により4
気筒運転にすべきか2気筒運転にすべきかを判断
し、低負荷運転時には2気筒運転にすべきである
と判断して減筒運転信号bを発生する気筒数判断
回路、17は上記噴射量補正回路13の出力cを
設定値と比較して失火発生のおそれを検知する失
火可能性検知回路で、ここでは該回路17が失火
発生の可能性を検知する失火可能性検知手段を構
成している。18は気筒数判断回路16及び失火
可能性検知回路17の両出力を受けたときシヤツ
ターバルブ制御信号dを発生し、気筒数判断回路
16の出力bを受けなくなつてから所定時間Tの
経過後にシヤツターバルブ制御信号dの発生を停
止するシヤツターバルブ制御回路である。 16 receives both the outputs of the rotation sensor 8 and the throttle sensor 9, and depending on the engine load condition,
A cylinder number determination circuit that determines whether cylinder operation or two-cylinder operation should be performed, determines that two-cylinder operation should be performed during low-load operation, and generates a cylinder reduction operation signal b; 17 is the injection amount correction described above; This is a misfire possibility detection circuit that compares the output c of the circuit 13 with a set value to detect the possibility of misfire occurrence, and here, the circuit 17 constitutes a misfire possibility detection means that detects the possibility of misfire occurrence. . Reference numeral 18 generates a shutter valve control signal d when it receives both the outputs from the cylinder number determining circuit 16 and the misfire possibility detecting circuit 17, and after a predetermined time T has elapsed since it no longer receives the output b from the cylinder number determining circuit 16. This is a shutter valve control circuit that later stops generating the shutter valve control signal d.
次に第3図を用いて動作について説明する。こ
こで第3図は本装置の動作説明図であり、第3図
a,b,c,dはそれぞれ気筒数判断回路16の
判断の状態、噴射量補正回路13の出力の時間的
変化、失火可能性検知回路17の出力の時間的変
化、及びシヤツターバルブ5a,5bの開閉状態
を示す。 Next, the operation will be explained using FIG. Here, FIG. 3 is an explanatory diagram of the operation of this device, and FIG. 3 a, b, c, and d are respectively the judgment state of the cylinder number judgment circuit 16, the temporal change in the output of the injection amount correction circuit 13, and the misfire. It shows temporal changes in the output of the possibility detection circuit 17 and the open/close states of the shutter valves 5a and 5b.
エンジンの作動中、アクセルペダル(図示せ
ず)の踏込量に応じてスロツトル弁6が回動する
と、吸気通路2にはスロツトル弁6の開度に応じ
た量の空気が吸入され、該空気は吸通路2を経て
各気筒の吸気マニホールド2a〜2dに分配案内
され、又その際エアフローメータ7は吸入空気量
を検出する。そしてエンジンの負荷が設定負荷以
上の場合、制御回路10においては、噴射量演算
回路12はエアフローメータ7の出力を受けて燃
料噴射量を演算し、該演算回路12の出力aは第
1の噴射弁駆動回路14に加えられるとともに、
噴射量補正回路13を経て第2の噴射弁駆動回路
15に加えられ、両駆動回路14,15は吸入空
気量に応じたパルス幅の噴射パルス信号を第1、
第4気筒及び第2、第3気筒の燃料噴射弁4a、
4d及び4b,4cに加えて各燃料噴射弁4a〜
4dに燃料を噴射させる。この噴射燃料は吸気マ
ニホールド2a〜2d内の空気と混合されて所定
空燃比の混合気となり、該混合気はそれぞれの気
筒に吸入され、点火プラグ(図示せず)によつて
点火され燃焼する。このようにエンジンの負荷が
大きい場合は、エンジンは4つの気筒とも作動し
て全気筒運転を行なうものである。 During engine operation, when the throttle valve 6 rotates in accordance with the amount of depression of the accelerator pedal (not shown), air is drawn into the intake passage 2 in an amount corresponding to the opening degree of the throttle valve 6. The air is distributed and guided through the intake passage 2 to the intake manifolds 2a to 2d of each cylinder, and at this time, the air flow meter 7 detects the amount of intake air. When the engine load is higher than the set load, in the control circuit 10, the injection amount calculation circuit 12 receives the output of the air flow meter 7 and calculates the fuel injection amount, and the output a of the calculation circuit 12 is the first injection amount. In addition to being added to the valve drive circuit 14,
The injection pulse signal is applied to the second injection valve drive circuit 15 via the injection amount correction circuit 13, and both drive circuits 14 and 15 output an injection pulse signal with a pulse width corresponding to the intake air amount to the first, first and second injection valve drive circuits.
Fuel injection valves 4a for the fourth cylinder and the second and third cylinders;
In addition to 4d, 4b, and 4c, each fuel injection valve 4a~
4d injects fuel. This injected fuel is mixed with the air in the intake manifolds 2a to 2d to form an air-fuel mixture with a predetermined air-fuel ratio, which is taken into each cylinder, ignited by a spark plug (not shown), and combusted. When the load on the engine is large as described above, all four cylinders of the engine are operated to perform all-cylinder operation.
またエンジンの作動中に負荷が設定負荷以下に
なる、即ちエンジンが低負荷運転状態になつた場
合、制御回路10においては、気筒数判断回路1
6は回転センサ8及びスロツトルセンサ9の両出
力を受け、2気筒運転をすべきであると判断し
(第3図aのA参照)、噴射量補正回路13及びシ
ヤツターバルブ制御回路18に減筒運転信号bを
加える。すると噴射量補正回路13は噴射量演算
回路12の信号aをある時定数でもつて徐々に小
さくなるように補正し(第3図b参照)、第2の
噴射弁駆動回路15からの噴射パルス信号のパル
ス幅は徐々に小さくなり、それに伴つて燃料噴射
弁4b,4cの燃料噴射量は減少し、第2、第3
気筒に吸入される混合気の空燃比は徐々にリーン
となつて該第2、第3気筒のトルクは小さくな
る。そして混合気の空燃比が失火発生の限界付近
までリーンになると、失火可能性検知回路17は
噴射量補正回路13の出力c大きさより失火発生
のおそれがあると判断してシヤツターバルブ制御
回路18に信号“1”を加え、該制御回路18は
噴射量補正回路13にシヤツターバルブ制御信号
dを加えて該回路13の出力cを零とし、第2の
噴射弁駆動回路15は燃料噴射弁4b,4cに対
する噴射パルス信号の発生を停止する。また同時
にシヤツターバルブ制御回路18はシヤツターバ
ルブ制御信号dをシヤツターバルブ駆動回路11
に加え、シヤツターバルブ5a,5bは第2、第
3気筒の吸気マニホールド2b,2cを閉じる
(第3図d参照)。これによつて第2、第3気筒は
その作動を停止し、エンジンは第1、第4気筒の
みの減筒運転を行なうこととなる。 Further, when the load becomes less than the set load while the engine is operating, that is, when the engine enters a low-load operating state, the control circuit 10 controls the number of cylinders determining circuit 1.
6 receives the outputs from both the rotation sensor 8 and the throttle sensor 9, determines that two-cylinder operation should be performed (see A in FIG. Add cylinder reduction operation signal b. Then, the injection amount correction circuit 13 corrects the signal a of the injection amount calculation circuit 12 so that it gradually decreases with a certain time constant (see FIG. 3b), and adjusts the injection pulse signal from the second injection valve drive circuit 15. The pulse width of
The air-fuel ratio of the air-fuel mixture taken into the cylinder gradually becomes leaner, and the torque of the second and third cylinders becomes smaller. When the air-fuel ratio of the air-fuel mixture becomes lean near the limit for misfire occurrence, the misfire possibility detection circuit 17 determines that there is a risk of misfire occurrence based on the magnitude of the output c of the injection amount correction circuit 13, and the shutter valve control circuit 18 The control circuit 18 applies a shutter valve control signal d to the injection amount correction circuit 13 to make the output c of the circuit 13 zero, and the second injection valve drive circuit 15 Generation of injection pulse signals for 4b and 4c is stopped. At the same time, the shutter valve control circuit 18 sends the shutter valve control signal d to the shutter valve drive circuit 11.
In addition, the shutter valves 5a and 5b close the intake manifolds 2b and 2c of the second and third cylinders (see FIG. 3d). As a result, the second and third cylinders stop operating, and the engine performs reduced-cylinder operation with only the first and fourth cylinders.
またこのようにしてエンジンが減筒運転を行な
つている際にエンジンの負荷が増大して設定負荷
以上になつた場合、気筒数判断回路16は減筒運
転信号bの発生を停止し(第3図aのB参照)、
噴射量補正回路13は噴射量演算回路12からの
信号aを出力し始め、その信号の大きさを徐々に
増大させる。すると第2の噴射弁駆動回路15は
燃料噴射弁4b,4cに加える噴射パルス信号を
再び発生し、そのパルス幅を徐々に増大させ、上
記噴射弁4b,4cは燃料の噴射を開始し、その
噴射量を増大させる。そして減筒運転信号bがな
くなつてから時間Tが経過すると、上記噴射弁4
b,4cに加えられる噴射パルス信号は吸入空気
量に応じたパルス幅に戻つており、又シヤツター
バルブ制御回路18シヤツターバルブ制御信号d
の発生を停止し、シヤツターバルブ駆動回路11
はシヤツターバルブ5a,5bを開き(第3図d
参照)、これによつて第2、第3気筒は作動を開
始してエンジンは減筒運転から全気筒運転に戻る
こととなる。 Further, when the engine load increases and exceeds the set load while the engine is performing the cylinder reduction operation in this manner, the cylinder number determination circuit 16 stops generating the cylinder reduction operation signal b (the cylinder number determination circuit 16 stops generating the cylinder reduction operation signal b). (See B in Figure 3a),
The injection amount correction circuit 13 starts outputting the signal a from the injection amount calculation circuit 12, and gradually increases the magnitude of the signal. Then, the second injection valve drive circuit 15 again generates an injection pulse signal to be applied to the fuel injection valves 4b, 4c, and gradually increases the pulse width, and the injection valves 4b, 4c start injecting fuel. Increase injection amount. Then, when time T has passed since the cylinder reduction operation signal b disappears, the injection valve 4
The injection pulse signals applied to ports b and 4c have returned to a pulse width corresponding to the amount of intake air, and the shutter valve control circuit 18 has a shutter valve control signal d.
The shutter valve drive circuit 11
Open the shutter valves 5a and 5b (Fig. 3d)
), the second and third cylinders start operating, and the engine returns from reduced-cylinder operation to full-cylinder operation.
以上のような本実施例の装置では、4気筒運転
から2気筒運転への切換時に休止すべき気筒への
燃料供給量を徐々に減少させるようにしたので、
エンジンのトルクは滑らかに減少してトルクシヨ
ツクの発生は大幅に軽減され、運転性が悪化する
等の不具合は発生しない。 In the device of this embodiment as described above, the amount of fuel supplied to the cylinders that should be stopped when switching from four-cylinder operation to two-cylinder operation is gradually reduced.
The engine torque decreases smoothly, the occurrence of torque shock is greatly reduced, and problems such as deterioration of drivability do not occur.
また全気筒運転から減筒運転への切換時に、失
火発生のおそれを検出し、失火発生直前には、休
止気筒の吸気マニホールドをシヤツタバルブによ
り閉じるようにしたので、失火の発生を回避する
ことができる。 Additionally, when switching from all-cylinder operation to reduced-cylinder operation, the risk of misfire is detected, and immediately before a misfire occurs, the intake manifold of the idle cylinder is closed by a shutter valve, making it possible to avoid misfire. .
さらにエンジンの減筒運転中に休止気筒に空気
が吸入されたような場合、休止気筒のピストンは
その圧縮行程において吸入空気を圧縮することと
なり、これによつてエンジン出力が低下すること
となるが、本装置では、減筒運転中にはシヤツタ
ーバルブによつて休止気筒に空気が吸入されない
ようにしているので、エンジンの出力低下を防止
できる。 Furthermore, if air is sucked into a deactivated cylinder during cylinder reduction operation of the engine, the piston of the deactivated cylinder will compress the intake air during its compression stroke, which will reduce engine output. In this device, the shutter valve prevents air from being sucked into the idle cylinder during cylinder reduction operation, thereby preventing a drop in engine output.
また減筒運転から全気筒運転への切換時に燃料
の噴射とシヤツターバルブの開動作とを同時に開
始したような場合、減筒運転中には休止気筒の吸
気マニホールドの内壁に付着した燃料が減少して
おり、燃料の噴射開始当初に噴射燃料の多くが吸
気マニホールドの内壁に付着して気筒内に吸入さ
れないため、混合気の空燃比がリーンとなつてエ
ンジンの出力特性が悪化することとなる。しかる
に本装置では、減筒運転から全気筒運転への切換
時にシヤツターバルブの開動作を燃料の噴射開始
の時期よりも遅れて開始させるようにしているの
で、気筒への混合気の吸入が開始される際には吸
気マニホールドの内壁に既に十分な量の燃料が付
着しており、従つて混合気の空燃比がリーン化す
ることはなく、エンジンの出力特性の悪化を防止
できる。特に加速時にはすぐれた加速応答性が得
られるものである。 Additionally, if fuel injection and shutter valve opening are started at the same time when switching from reduced-cylinder operation to all-cylinder operation, the amount of fuel adhering to the inner wall of the intake manifold of the idle cylinder will be reduced during reduced-cylinder operation. At the beginning of fuel injection, much of the injected fuel adheres to the inner wall of the intake manifold and is not inhaled into the cylinder, resulting in a lean air-fuel ratio and deterioration of the engine's output characteristics. . However, with this device, when switching from reduced-cylinder operation to full-cylinder operation, the shutter valve opening operation is delayed from the start of fuel injection, so the intake of the air-fuel mixture into the cylinders is delayed. When this happens, a sufficient amount of fuel has already adhered to the inner wall of the intake manifold, so the air-fuel ratio of the air-fuel mixture will not become lean, and deterioration of the engine's output characteristics can be prevented. Especially when accelerating, excellent acceleration response can be obtained.
第1,2図は気筒数制御装置をハード回路によ
つて構成した場合を示したが、第4図はこれをマ
イクロコンピユータを用いて構成した他の実施例
のCPUの演算処理のフローチヤートのうち減筒
運転を行なうための演算処理のサブフローを示
す。なお処理フローの他の部分、例えば噴射パル
ス信号を作成するフロー、第1、第4気筒の制御
を行なうためのフロー等は公知のものであり、そ
の説明は省略する。 Figures 1 and 2 show the case where the cylinder number control device is configured by a hardware circuit, and Figure 4 is a flowchart of the calculation processing of the CPU in another embodiment in which the device is configured using a microcomputer. The subflow of calculation processing for performing cylinder reduction operation is shown below. Note that other parts of the processing flow, such as the flow for creating an injection pulse signal, the flow for controlling the first and fourth cylinders, etc., are well known, and their explanation will be omitted.
第4図において、20は回転センサ8及びスロツ
トルセンサ9の出力を読み込むステツプ、21は読
み込んだ両センサ8,9の出力から気筒数を変更
すべきか否かを判定するステツプ、22は気筒数の
変更が4気筒から2気筒への変更か否かを判定す
る判定ステツプ、23はエアフローメータ7の出力
に応じて読み出された噴射パルス信号のうち第
2、第3の燃料噴射弁4b,4cに加える噴射パ
ルス信号のパルス幅T2、T3を所定量αだけ小さ
いパルス幅T2=T2−α、T3=T3−αに補正する
ステツプ、24は補正した噴射パルス信号によつて
燃料噴射弁4b,4cに燃料の噴射を行なわせる
ステツプ、25は補正したパルス幅T23T3が設定値
β、例えば混合気の空燃比が失火発生限界の空燃
比となるようなパルス幅以下か否かを判定する判
定ステツプ、26はシヤツターバルブ5a,5bを
閉じるとともに、第2、第3気筒の燃料噴射弁4
b,4cの作動を停止するステツプである。また
27はエアフローメータ7の出力に応じて読み出さ
れた噴射パルス信号によつて第2、第3の燃料噴
射弁4b,4cに燃料の噴射を行なわせるステツ
プ、28は燃料の噴射を開始してから所定時間Tが
経過したか否かを判定する判定ステツプ、29はシ
ヤツターバルブ5a,5bに開動作を行なわせる
ステツプである。 In Fig. 4, 20 is a step for reading the outputs of the rotation sensor 8 and the throttle sensor 9, 21 is a step for determining whether or not the number of cylinders should be changed based on the read outputs of both sensors 8 and 9, and 22 is the number of cylinders. A determination step 23 determines whether or not the change is from 4 cylinders to 2 cylinders. Step 4c corrects the pulse widths T 2 and T 3 of the injection pulse signal added to the injection pulse signal to be smaller by a predetermined amount α. Therefore, the step 25 is to make the fuel injection valves 4b and 4c inject fuel, and 25 is a pulse such that the corrected pulse width T 2 3T 3 becomes the set value β, for example, the air-fuel ratio of the air-fuel mixture becomes the air-fuel ratio at the misfire occurrence limit. In the determination step 26, the shutter valves 5a and 5b are closed, and the fuel injection valves 4 of the second and third cylinders are closed.
This step is to stop the operations of b and 4c. Also
27 is a step for causing the second and third fuel injection valves 4b and 4c to inject fuel according to the injection pulse signal read out according to the output of the air flow meter 7, and 28 is a step for starting fuel injection. A determination step 29 is a step for determining whether or not a predetermined time T has elapsed since then, and a step 29 is a step for causing the shutter valves 5a and 5b to perform an opening operation.
次に動作について説明する。 Next, the operation will be explained.
エンジンの作動中、CPUがサブフローのステ
ツプ20にくると、該CPUはステツプ20において
回転センサ8及びスロツトルセンサ9の両出力を
読み込み、ステツプ21に進んで読み込んだ両セン
サ8,9の出力よりエンジンの負荷状態を判断し
て作動すべき気筒数を変更すべきか否かを判定
し、変更すべきでないと判断した場合はそのまま
このサブフローを出る。 While the engine is running, when the CPU reaches step 20 of the subflow, the CPU reads the outputs of both the rotation sensor 8 and the throttle sensor 9 in step 20, and proceeds to step 21, where it reads the outputs of both sensors 8 and 9. The load condition of the engine is judged and it is judged whether the number of cylinders to be operated should be changed or not. If it is judged that the number of cylinders to be operated should not be changed, this subflow is exited as is.
また作動すべき気筒数を変更すべきであると判
断した場合は、CPUは、ステツプ22に進んでエ
ンジンが低負荷運転状態になつたか否かにより4
気筒運転から2気筒運転に変更するのか否かを判
定し、4気筒運転から2気筒運転に変更する場合
はステツプ23、24、25の経路を進む。そしてステ
ツプ23で第2、第3気筒の燃料噴射弁4b,4c
に加える噴射パルス信号のパルス幅T2、T3を所
定量αだけ小さいパルス幅T2=T2−α、T3=T3
−αに補正し、ステツプ24で補正した噴射パルス
信号を用いて第2、第3の燃料噴射弁4b,4c
に燃料の噴射を行なわせ、ステツプ25で補正した
パルス幅T2、T3が所定値β以下か否かを判定し、
パルス幅T2、T3が所定値βより大きい場合はス
テツプ23に戻つてこの噴射パルス信号のパルス
幅T2、T3の補正を繰り返し、第2、第3気筒に
対する燃料供給量を徐々に減少させていく。そし
て噴射パルス信号のパルス幅T2、T3が所定値β
以下になつたときは、ステツプ26に進んで、シヤ
ツターバルブ5a,5bを閉じ、同時に第2、第
3気筒の燃料噴射弁4b,4cの作動を停止し
て、このサブフローを出る。 If it is determined that the number of cylinders to be operated should be changed, the CPU proceeds to step 22 and changes the number of cylinders to 4 depending on whether the engine is in a low load operating state.
It is determined whether or not to change from cylinder operation to two-cylinder operation. If changing from four-cylinder operation to two-cylinder operation, steps 23, 24, and 25 are followed. Then, in step 23, the fuel injection valves 4b and 4c of the second and third cylinders are
Pulse width T 2 , T 3 of the injection pulse signal added to is reduced by a predetermined amount α, T 2 = T 2 − α, T 3 = T 3
-α and using the injection pulse signal corrected in step 24, the second and third fuel injection valves 4b, 4c are
inject fuel, and determine whether the pulse widths T 2 and T 3 corrected in step 25 are equal to or less than a predetermined value β,
If the pulse widths T 2 and T 3 are larger than the predetermined value β, the process returns to step 23 and the correction of the pulse widths T 2 and T 3 of the injection pulse signal is repeated to gradually increase the amount of fuel supplied to the second and third cylinders. We will reduce it. Then, the pulse widths T 2 and T 3 of the injection pulse signal are set to a predetermined value β
If the conditions are as follows, proceed to step 26, close the shutter valves 5a and 5b, and at the same time stop the operation of the fuel injection valves 4b and 4c of the second and third cylinders to exit this subflow.
また逆に2気筒運転から4気筒運転に変更する
場合は、CPUはステツプ22からステツプ27、28、
29の経路を進み、ステツプ27でエアフローメータ
7の出力に応じて読み出されたパルス幅T2、T3
の噴射パルス信号を用いて燃料噴射弁4b,4c
に燃料の噴射を行なわせ、ステツプ28で燃料の噴
射を開始してから所定時間Tが経過したか否かを
判定する。所定時間Tの経過前には、ステツプ27
に戻つて燃料の噴射を繰り返し、所定時間Tが経
過したときはステツプ29に進んでシヤツターバル
ブ5a,5bを開き、このサブフローを出る。 Conversely, when changing from 2-cylinder operation to 4-cylinder operation, the CPU goes from step 22 to steps 27, 28,
29, and the pulse widths T 2 and T 3 read out according to the output of the air flow meter 7 in step 27.
Fuel injection valves 4b, 4c using the injection pulse signal of
Then, in step 28, it is determined whether a predetermined time T has elapsed since the start of fuel injection. Before the predetermined time T elapses, step 27
The process returns to step 2 and repeats fuel injection, and when the predetermined time T has elapsed, the process proceeds to step 29, where the shutter valves 5a and 5b are opened and this subflow is exited.
なお上記実施例では4気筒エンジンの気筒数制
御装置について説明したが、エンジンの気筒数は
4より多くても、少なくてもよい。また減筒運転
から全気筒運転への切換時において燃料噴射とシ
ヤツチーバルブの開動作を同時に開始してもよい
ものである。 In the above embodiment, the cylinder number control device for a four-cylinder engine has been described, but the number of cylinders in the engine may be greater or less than four. Furthermore, when switching from reduced-cylinder operation to full-cylinder operation, fuel injection and opening of the shutter valve may be started simultaneously.
また上記実施例では燃料噴射弁を備えたエンジ
ンの気筒数制御装置について説明したが、本発明
は気化器を備えたエンジンについても同様に適用
でき、この場合は休止気筒の吸気ポートにシヤツ
ターバルブを設けておき、全気筒運転から減筒運
転への切換時にシヤツターバルブを徐々に閉じる
ようにすればよい。また制御回路内のCPUの処
理手順のフローチヤートとしては同様の機能を達
成するものであれば、第4図のフローと異なるフ
ローを用いてもよいものである。 Further, in the above embodiment, a cylinder number control device for an engine equipped with a fuel injection valve was explained, but the present invention can be similarly applied to an engine equipped with a carburetor. The shutter valve may be closed gradually when switching from full-cylinder operation to reduced-cylinder operation. Further, as the flowchart of the processing procedure of the CPU in the control circuit, a flow different from the flow shown in FIG. 4 may be used as long as it achieves the same function.
以上のように本発明によれば、低負荷運転時に
減筒運転を行なうようにしたエンジンの気筒数制
御装置において、全気筒運転から減筒運転への切
換時には休止すべき気筒への燃料供給量を所定量
まで徐々に減少された後、該気筒への燃料の供給
を停止するようにしたので、全気筒運転から減筒
運転への切換時にエンジンのトルクを滑らかに減
少させてトルクシヨツクの発生を大きく低減で
き、これによつて運転性の悪化等の不具合を解消
できる効果がある。 As described above, according to the present invention, in an engine cylinder number control device that performs reduced-cylinder operation during low-load operation, the amount of fuel supplied to the cylinders that should be stopped when switching from all-cylinder operation to reduced-cylinder operation is controlled. After the amount of fuel is gradually reduced to a predetermined amount, the supply of fuel to that cylinder is stopped, so when switching from full-cylinder operation to reduced-cylinder operation, the engine torque is smoothly reduced and torque shock occurs. This has the effect of eliminating problems such as deterioration of drivability.
また全気筒運転から減筒運転への切換時に、休
止気筒の失火発生のおそれを検出し、失火直前に
は、休止気筒の吸気通路を遮断して該気筒への燃
料供給をカツトするようにしたので、失火の発生
を回避することができる効果もある。 Additionally, when switching from all-cylinder operation to reduced-cylinder operation, the system detects the possibility of a misfire occurring in a dormant cylinder, and immediately before a misfire occurs, the intake passage of the dormant cylinder is shut off to cut off fuel supply to that cylinder. Therefore, there is an effect that the occurrence of misfire can be avoided.
第1図は本発明の一実施例によるエンジンの気
筒数制御装置の構成図、第2図は上記装置の回路
構成図、第3図a〜dは上記装置の動作を説明す
るための図であり、第3図aは気筒数判断回路1
6の判断状態を示す図、第3図bは噴射量補正回
路13の出力の時間的変火を示す図、第3図cは
失火可能性検知回路17の出力の時間的変化を示
す図、第3図dはシヤツターバルブ5a,5bの
開閉状態を示す図、第4図はマイクロコンピユー
タを用いて構成した本発明の他の実施例における
CPUの演算処理のフローチヤートを示す図であ
る。
1……エンジン、5a,5b……シヤツターバ
ルブ(吸気通路遮断機構)、8,9……回転セン
サ、スロツトルセンサ(運動センサ)、10……
制御回路、17……失火可能性検知回路(失火可
能性検知手段)。
FIG. 1 is a block diagram of an engine cylinder number control device according to an embodiment of the present invention, FIG. 2 is a circuit diagram of the above device, and FIGS. 3 a to 3 d are diagrams for explaining the operation of the above device. Yes, Fig. 3a shows the cylinder number judgment circuit 1.
6, FIG. 3b is a diagram showing temporal variations in the output of the injection amount correction circuit 13, and FIG. 3c is a diagram showing temporal variations in the output of the misfire possibility detection circuit 17. FIG. 3d is a diagram showing the open and closed states of the shutter valves 5a and 5b, and FIG. 4 is a diagram showing another embodiment of the present invention configured using a microcomputer.
FIG. 3 is a diagram showing a flowchart of CPU arithmetic processing. 1... Engine, 5a, 5b... Shutter valve (intake passage blocking mechanism), 8, 9... Rotation sensor, throttle sensor (motion sensor), 10...
Control circuit, 17... Misfire possibility detection circuit (misfire possibility detection means).
Claims (1)
ンサと、 該運転センサの出力を受けてエンジンに減筒運
転を行なわせる機能を有し全気筒運転から減筒運
転への切換時に休止すべき休止気筒への燃料供給
量を所定量まで徐々に減少させた後該休止気筒へ
の燃料の供給を停止させる制御回路と、 上記切換時の休止気筒への燃料供給量を検出し
て失火発生の可能性を検知する失火可能性検知手
段と、 上記休止気筒の吸気通路に構成され、該吸気通
路を遮断するための吸気通路遮断機構とを備え、 失火直前には、上記休止気筒への燃料供給を遮
断するようにしたことを特徴とするエンジンの気
筒数制御装置。[Scope of Claims] 1. An operation sensor that detects the low-load operating state of the engine, and a function that receives the output of the operation sensor and causes the engine to perform reduced-cylinder operation, and switches from all-cylinder operation to reduced-cylinder operation. A control circuit that gradually reduces the amount of fuel supplied to a deactivated cylinder that is to be deactivated at certain times to a predetermined amount and then stops the supply of fuel to the deactivated cylinder; and a control circuit that detects the amount of fuel supplied to the deactivated cylinder at the time of the switching. a misfire possibility detection means for detecting the possibility of a misfire occurrence; and an intake passage blocking mechanism configured in the intake passage of the inactive cylinder for blocking the intake passage, and immediately before a misfire, the inactive cylinder An engine cylinder number control device characterized by cutting off fuel supply to the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14519482A JPS5934430A (en) | 1982-08-20 | 1982-08-20 | Number-of-cylinders control device of engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14519482A JPS5934430A (en) | 1982-08-20 | 1982-08-20 | Number-of-cylinders control device of engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5934430A JPS5934430A (en) | 1984-02-24 |
JPH0319370B2 true JPH0319370B2 (en) | 1991-03-14 |
Family
ID=15379594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14519482A Granted JPS5934430A (en) | 1982-08-20 | 1982-08-20 | Number-of-cylinders control device of engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5934430A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357338U (en) * | 1986-10-02 | 1988-04-16 | ||
JPS63124839A (en) * | 1986-11-12 | 1988-05-28 | Honda Motor Co Ltd | Air-fuel ratio setting method |
JP2668036B2 (en) * | 1991-07-30 | 1997-10-27 | 三菱自動車工業株式会社 | Engine control method |
KR101219969B1 (en) * | 2011-05-23 | 2013-01-09 | 주식회사 현대케피코 | Method for preventing engine irregularity when misfire occur |
-
1982
- 1982-08-20 JP JP14519482A patent/JPS5934430A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5934430A (en) | 1984-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60237142A (en) | Controller for internal-combustion engine | |
EP0924420A2 (en) | Torque controller for internal combustion engine | |
JPH0416622B2 (en) | ||
JP3149813B2 (en) | Fuel injection control device for in-cylinder injection type internal combustion engine | |
JP2002047973A (en) | Fuel injection controller of direct injection engine | |
US5983854A (en) | Control apparatus of direct injection spark ignition type internal combustion engine | |
JPH0319370B2 (en) | ||
JP2932183B2 (en) | Engine fuel supply | |
JP2002089342A (en) | Control device for internal combustion engine | |
JP3379165B2 (en) | In-cylinder injection spark ignition engine | |
JP3189733B2 (en) | Control device for in-cylinder injection spark ignition internal combustion engine | |
JPS5841240A (en) | Engine controlled in number of operating cylinders | |
JPS58185947A (en) | Fuel-injection controller for internal-combustion engine | |
JPH0585740B2 (en) | ||
JPH0526939B2 (en) | ||
JP3230387B2 (en) | Exhaust gas recirculation control device for internal combustion engine | |
JPH0454057B2 (en) | ||
JP2002130028A (en) | Combustion controller for internal combustion engine | |
JPH0240055A (en) | Output control device for engine | |
JPH0192547A (en) | Electronically controlled fuel injection device for multi-cylinder internal combustion engine | |
JP2004036578A (en) | Intake air control device for internal combustion engine | |
JPH06108894A (en) | Intake device for engine | |
JPH10299536A (en) | Control device for cylinder injection type spark ignition type internal combustion engine | |
JPS62126242A (en) | Electronically controlled fuel injection device for internal combustion engine | |
JPS62101858A (en) | Fuel control device for electronic fuel-injection type engine |