JPH08236342A - 熱電冷却型パワーリード - Google Patents

熱電冷却型パワーリード

Info

Publication number
JPH08236342A
JPH08236342A JP7318600A JP31860095A JPH08236342A JP H08236342 A JPH08236342 A JP H08236342A JP 7318600 A JP7318600 A JP 7318600A JP 31860095 A JP31860095 A JP 31860095A JP H08236342 A JPH08236342 A JP H08236342A
Authority
JP
Japan
Prior art keywords
type
superconducting coil
thermoelectric material
thermoelectric
thermoelectric cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7318600A
Other languages
English (en)
Other versions
JP3377350B2 (ja
Inventor
Sakutaro Yamaguchi
作太郎 山口
Kiyoshi Takita
清 滝田
Hisaaki Higami
久彰 樋上
Ikuo Ito
郁夫 伊藤
Shinichi Nose
眞一 能瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIE NET KK
Original Assignee
UNIE NET KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIE NET KK filed Critical UNIE NET KK
Priority to JP31860095A priority Critical patent/JP3377350B2/ja
Publication of JPH08236342A publication Critical patent/JPH08236342A/ja
Application granted granted Critical
Publication of JP3377350B2 publication Critical patent/JP3377350B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • H01F6/065Feed-through bushings, terminals and joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】 【課題】超伝導コイルと該超伝導コイルを駆動する電源
とを電気的に接続するパワーリードにおいて、特別な冷
却手段を不要とし効率的に自ら放熱・冷却を行なう熱電
冷却型パワーリードの提供。 【解決手段】電源の正極に接続されたN型熱電材料と電
源の負極に接続されたP型熱電材料とから成る熱電冷却
素子を含む。また、この熱電冷却素子と超伝導コイルと
の間に高温超伝導体を備えてもよい。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は超伝導コイルと電源
との電気的接続を行なうパワーリードに関し、特に、熱
電変換(ペルチェ効果)により冷却作用を行なう熱電冷
却型パワーリードに関する。
【0002】
【従来の技術】従来の超伝導コイル装置におけるパワー
リード(「電流リード」ともいう)の構成を図7を参照
して説明する。図7には、従来のガス冷却型パワーリー
ドの構成の一例が示されている。
【0003】図7を参照して、超伝導コイルは低温空間
(極低温空間)すなわち液体He内(4.2K)に配置
され、電源は常温空間に配設され、超伝導コイルはパワ
ーリードの一端に接続され、パワーリードの他端は電源
端子に接続されている。
【0004】パワーリードは、例えばOFCu(Oxy
gen Free Copper)等の常伝導体から形
成され、高い電気伝導度を有するが、熱伝導率も高いた
め、常温空間からの熱が容易に侵入し低温空間側に流入
してしまうことになる。
【0005】このため、超伝導コイル装置においては、
図7に示すように、パワーリードをガスHe等の冷媒に
よって冷却することが必要とされる。
【0006】このように、低温空間から常温空間への遷
移領域において低温側からガス冷媒(ガスHe)を流す
ことにより、(1)冷却に伴うパワーリードの電気抵抗
の低減によるジュール発熱の低減、(2)常温側からの
熱を熱交換することによって外部に排出する等の作用を
なしている。
【0007】そして、パワーリードは、ガス冷媒との熱
交換率を向上させるために、表面積をできるだけ大きく
する構成とされ、このため例えばメッシュ状又はスパイ
ラル管状の構成とされている。なお、図7にはメッシュ
状の形態(図中のパワーリードの破線部で示す)のパワ
ーリードが示されている。
【0008】図7を参照して、ヒータは、液体Heを加
熱してガス冷媒としてのガスHeをより強制的に気化さ
せるためのものである。液体Heは供給口から供給され
ている。
【0009】更に図16に縦断面図を示す超伝導装置を
参照して、従来のガス冷却型パワーリードを以下に説明
する。前述した通り、超伝導コイルは冷媒として高価な
液体ヘリウムを使用して超伝導状態に保持するため、こ
の液体ヘリウムの蒸発量を小さく抑えることが望まし
く、またパワーリード(電流リード)から超伝導コイル
への熱侵入量を小さくすることも必要である。
【0010】図16を参照して、低温容器1の内部に超
伝導コイル2が設置されており、低温容器1の外周は、
外周からの熱侵入(輻射熱)を断熱するために二重円筒
型状の液体窒素シールド13で囲繞されており、さらに
液体窒素シールド13の外周には、真空断熱層を形成す
るための真空容器15が設置されている。液体窒素シー
ルド13の内部には、液体窒素31と、この液体窒素3
1が蒸発した低温の窒素ガス32が収容されている。こ
の窒素ガス32は液体窒素シールド13の上部に設置さ
れた窒素ガス配管14から外部に放出される。
【0011】超伝導コイル2は、パワーリード3の構成
要素の一つであるリード導体3aの一端に引出し線20
を介して接続され、リード導体3aの他端は外部の常温
部端子3bに接続されている。一般に、通電時にリード
導体3aに発生するジュール発熱と外部の常温部から内
部の極低温部への伝導による熱侵入を除去するために、
液体ヘリウム22が蒸発した低温のヘリウムガス23
を、リード導体3aを収納するリード配管3c内に導
き、リード配管3c内部の間隙3dを流通させてリード
導体3aを冷却する方法が採用されている。ヘリウムガ
ス23はリード導体3aを冷却したのちリード配管3c
の上部から分岐して電気絶縁性の管継手4によって電気
的に絶縁されたガス配管5、6に入り、さらにガス配管
6に結合された外部配管7より放出される。なおリード
配管3cと真空容器15、低温容器1とは電気絶縁体8
によって電気的に絶縁されている。
【0012】次に、図8を参照して、高温超伝導体を用
いたパワーリードを説明する。
【0013】これは、パワーリードにBi系2223焼
結体又はYCBO等の高温超伝導体を用いたもので、低
温空間は液体Heで冷却され(4.2K)、高温超伝導
体が配置された遷移領域(常温と低温に挟まれた領域)
は液体ヘリウム(LHe)及び液体窒素にて冷却され
る。
【0014】この遷移領域はサーマルアンカーにて常温
空間と区画され、高温超伝導体が超伝導特性を示す温度
以下に保たれる。サーマルアンカーは熱容量の大きな材
料で構成され例えばCu等から成る。
【0015】図8に示す高温超伝導パワーリードにおい
ては、高温超伝導体部(約100K以下)は通電時の発
熱がないため、低温側への熱侵入量を低減できる。
【0016】さらに、伝導冷却により全体を高温超伝導
体の臨界温度Tc以下に保ち、ガス冷却を行なわないよ
うな構成も可能とされる等の利点を有する。例えばガス
冷却を用いない電流リード(パワーリード)として、低
熱侵入型の酸化物超伝導電流リードの構成が提案されて
いる(例えば、横山その他、「クライストロン用伝導冷
却方式 超電導磁石の開発 〜酸化物超電導電流リード
の設計・試験〜」、第52回、1994年度秋季低温工
学・超電導学会予稿集、第235頁参照)。
【0017】
【発明が解決しようとする課題】しかしながら、図7に
示す従来のガス冷却型パワーリードにおいては、以下の
問題点を有する。
【0018】(1)ガス冷媒の消費量が多く不経済であ
る(高価)。
【0019】(2)低温側への熱侵入量を決めるパワー
リードの電気抵抗分布、温度分布はガス冷媒量の関数と
して与えられるが、パワーリードの温度分布は逆にガス
冷媒のコンダクタンスに影響するため、ガス冷媒の最適
な流量調節を図ることは極めて困難である。このため、
図7に示すように、ヒータを用いて強制的に液体Heを
気化させている。
【0020】また、図16を参照して説明した上記従来
のパワーリード部の構成によれば、通電時において、極
低温部への熱侵入量を大幅に低減することは困難であ
る。
【0021】さらに、図8の高温超伝導体を用いたパワ
ーリードの場合、高温側からの熱侵入を零にすることは
できないため何等かの冷却手段を設けることが必要とさ
れる。
【0022】そして、高温超伝導体として酸化物超伝導
体を用いたパワーリードも開発されている(例えば、文
献(「工業材料」、Vol.41、No.3、第33頁)等参照)
が、高温超伝導体の上部の温度が77K(液体窒素温
度)で固定されているため、高温超伝導体の臨界電流値
が小さく、高温超伝導体の断面積を大きくする必要があ
る。このため、高温超伝導体からの伝導熱により、極低
温部への熱侵入量の低減にも制約があり、大幅な熱侵入
量の低減は困難であった。
【0023】本発明は、上記問題点に鑑みてなされたも
のであって、特別な冷却手段を不要とし効率的に自ら放
熱・冷却を行なう熱電冷却型パワーリードを提供するこ
とを目的とする。また、本発明の目的は、常温部から低
温容器内における低温部への熱侵入を軽減し、その結果
高価な液体ヘリウムの消費量を削減すると共に経済性の
高い装置の運転を可能とするパワーリードを提供するこ
とにある。
【0024】
【課題を解決するための手段】前記目的を達成するた
め、本発明は、超伝導コイルと該超伝導コイルを駆動す
る電源とを電気的に接続するパワーリードが、前記電源
の正極に接続されたN型熱電材料と、前記電源の負極に
接続されたP型熱電材料とから成る熱電冷却素子を含む
ことを特徴とする熱電冷却型パワーリードを提供する。
【0025】また、本発明は、超伝導コイルと該超伝導
コイルを駆動する電源とを電気的に接続するパワーリー
ドが、前記電源の正極に接続されたN型熱電材料と前記
電源の負極に接続されたP型熱電材料とから成る熱電冷
却素子と、前記熱電冷却素子と前記超伝導コイルとの間
に接続された高温超伝導体と、を含むことを特徴とする
熱電冷却型パワーリードを提供する。
【0026】さらに、本発明は、超伝導コイルと該超伝
導コイルを駆動する電源とを電気的に接続するパワーリ
ードが、前記電源の正極に接続されたN型熱電材料と前
記電源の負極に接続されたP型熱電材料とから成る熱電
冷却素子と、前記熱電冷却素子に一端がそれぞれ接続さ
れた金属又は半導体から成る導電体と、前記導電体と前
記超伝導コイルとの間に接続された高温超伝導体と、を
含むことを特徴とする熱電冷却型パワーリードを提供す
る。
【0027】本発明の熱電冷却型パワーリードは、好ま
しくは、N型熱電材料とP型熱電材料とから成る熱電冷
却素子を複数段接続してなることを特徴とする。
【0028】本発明の熱電冷却型パワーリードは、好ま
しくは、N型熱電材料とP型熱電材料とから成る熱電冷
却素子を複数個直列接続して成るモジュールをさらに複
数段カスケード形態に構成してなることを特徴とする。
【0029】また、本発明は、別の視点として、超伝導
コイルと該超伝導コイルを駆動する電源とを電気的に接
続するパワーリードにおいて、電源が交流電源からな
り、N型熱電材料とP型熱電材料との対から成る第1及
び第2の熱電冷却素子を備え、前記交流電源の一側の端
子と前記第1の熱電冷却素子の間に第1のスイッチを設
けると共に、前記交流電源の他側の端子と前記熱電冷却
素子との間に第2のスイッチを設け、前記第1及び第2
の熱電冷却素子の前記交流電源に対向する側に前記超伝
導コイルを接続し、前記第1及び第2の熱電冷却素子に
おける前記N型熱電材料が上流、前記P型熱電材料が下
流に配されるようにライン周波数に応じて前記第1及び
第2のスイッチを切替え制御し、前記超伝導コイルを交
流駆動することを特徴とする熱電冷却型パワーリードを
提供する。
【0030】本発明の熱電冷却型パワーリードにおいて
は、好ましくは、前記第1及び第2の熱電冷却素子と前
記超伝導コイルとの間に接続された高温超伝導体と、を
含むことを特徴とする。
【0031】本発明の熱電冷却型パワーリードにおいて
は、好ましくは、N型熱電材料とP型熱電材料から成る
熱電冷却素子を前記第1及び第2の熱電冷却素子にそれ
ぞれ複数段接続してなることを特徴とする。
【0032】さらに、本発明は、別の視点として、超伝
導コイルと該超伝導コイルを駆動する電源(「第1の電
源」という)を電気的に接続するパワーリードにおい
て、N型熱電材料とP型熱電材料との対から成る第1及
び第2の熱電冷却素子を備え、前記第1及び第2の熱電
冷却素子のN型熱電材料とP型熱電材料は、超伝導コイ
ル側において互いに電気的に接続されて前記超伝導コイ
ルに接続され、前記第1の電源側においては、前記N型
熱電材料と前記P型熱電材料との間に、前記N型熱電材
料が前記P型熱電材料に対して正の電圧を供給する第2
の電源がそれぞれ接続され、さらに、前記超伝導コイル
と前記熱電冷却素子に流れる電流とをそれぞれ監視し
て、最適な冷却を保持するように第1の電源及び第2の
電源を制御する制御回路を備えたことを特徴とする熱電
冷却型パワーリードを提供する。本発明においても、好
ましくは、前記第1及び第2の熱電冷却素子と前記超伝
導コイルとの間に接続された高温超伝導体と、を含むこ
とを特徴とする。また、本発明においても、好ましく
は、N型熱電材料とP型熱電材料とから成る熱電冷却素
子を前記第1及び第2の熱電冷却素子にそれぞれ複数段
接続してなることを特徴とする。
【0033】本発明は、さらに別の視点として、超伝導
コイルと該超伝導コイルを駆動する電源とを電気的に接
続するパワーリードが、前記電源の正極に接続されたN
型熱電材料と、前記電源の負極に接続されたP型熱電材
料とから成る熱電冷却素子を含み、前記N型熱電材料と
前記P型熱電材料とが、前記電源と反対側の端部を含む
所定の領域において互いに熱的に接続されると共に電気
的には絶縁されていることを特徴とする熱電冷却型パワ
ーリードを提供する。
【0034】そして、本発明は、真空断熱容器内に収納
され液体ヘリウムに浸漬された超伝導コイルに外部電源
から励磁電流を通電するパワーリードにおいて、常温側
から順に、液体窒素で冷却される金属導体と、該金属導
体に接続されたN型熱電材料又はP型熱電材料を含むこ
とを特徴とする熱電冷却型パワーリードを提供する。
【0035】本発明の熱電冷却型パワーリードにおいて
は、好ましくは、前記N型熱電材料又はP型熱電材料と
前記超伝導コイルとの間に高温超伝導体からなる電気導
体を接続してなることを特徴とする。
【0036】また、本発明においては、常温側から順
に、金属導体と、高温超伝導体と、を含み、前記金属導
体の前記超伝導コイル側の端部側近傍に熱良導体を設
け、熱電冷却素子が前記熱良導体を介して前記金属導
体、前記高温超伝導体および前記超伝導コイルを冷却す
るように構成してもよい。
【0037】本発明によれば、熱電変換材料(ペルチェ
素子)が電源に接続され、ペルチェ効果により、放熱、
吸熱作用を行なうため、従来必要とされていたガス冷媒
等による冷却は不要とされる。
【0038】本発明においては、ペルチェ素子を複数段
接続した場合、冷却効果は一段と高められる。
【0039】そして、本発明においては、パワーリード
をペルチェ素子と高温超伝導体とから構成した場合、ペ
ルチェ素子によりTc(臨界温度)にまで冷却され、液
体窒素による高温超伝導体を冷却することが不要とされ
る。あるいは、高温超伝導体の冷却が不足する場合に
は、液体窒素により冷却してもよいが、高温超伝導体の
超伝導コイル側はガスHeにより冷却される。
【0040】また、本発明においては、前記従来例(高
温超伝導を利用したパワーリード)のように、液体ヘリ
ウムもしくは液体窒素を利用しない時には、放熱部のみ
が常温大気に露出されるが、その他の部分は真空中に設
置されることはいうまでもない。これによって断熱特性
が向上するからである。
【0041】本発明によれば、熱電冷却素子を形成する
N型とP型の熱電材料は、冷却側にて、熱伝導率が大
で、電気的絶縁体となる材料を介して互いに接続された
ことにより、吸熱量が制御され、低温側温度が同一に保
たれる。
【0042】さらに、本発明(請求項17参照)によれ
ば、真空断熱容器内に収納され液体ヘリウムに浸漬され
た超伝導コイルに外部電源から励磁電流を通電するパワ
ーリードを、常温側から順に金属導体と、該金属導体に
接続されたN型熱電材料又はP型熱電材料を含むものと
し、前記金属導体を例えば、液体窒素(77K)で冷却
する。これによって、前記パワーリードの金属導体は液
体窒素で冷却されるとともに、熱電冷却素子によっても
冷却されるので、極低温部への熱侵入量が低減する。
【0043】また、請求項18に記載の発明は、請求項
17に記載の発明を、特に極低温側に高温超伝導体から
なる電気導体を設けたパワーリードに適用したものであ
る。この発明では、高温超伝導体は100K程度で超伝
導状態となり、電気抵抗がゼロとなることから、ジュー
ル発熱の発生がゼロとされると共に、熱伝導率も銅導体
の1/100以下とされるため、極低温部への熱侵入量
が低減できる。そして、常温側の導体が液体窒素で冷却
されていることから、高温超伝導体の臨界電流は、77
K近傍の値となる。さらに、本発明によれば、高温超伝
導体の高温側に熱電冷却素子を設置して冷却することに
より、より低温に保持できるため、臨界電流値が大き
く、必要な断面積を減少でき、結果として、極低温部へ
の熱侵入量を低減できる。
【0044】また、N型及びP型熱電材料を含むパワー
リードに通電しない場合には、パワーリードの温度が上
昇して、安定な(通電できる状態)温度分布を維持する
ことは困難となる場合があるが、請求項19に記載の発
明は、この技術的課題を解決するもので、パワーリード
の導体構成を、常温側から順に金属導体および高温超伝
導体からなるものとし、前記金属導体の下部近傍に熱良
導体を設け、前記熱良導体を介して熱電冷却素子で金属
導体、高温超伝導体および超伝導コイルを冷却する構成
とした。
【0045】本発明(請求項19参照)によれば、パワ
ーリードに通電しない場合でも、パワーリードは低温に
冷却されることから、いつでも通電可能な状態を維持で
きる。また、熱電冷却素子の電流を制御することによ
り、温度分布も最適に制御することが可能とされる。
【0046】
【発明の実施の形態】図面を参照して、本発明の実施の
形態を以下に説明する。
【0047】
【実施形態1】図1は本発明の第1の実施形態の構成を
説明する図である。図1を参照して、液体He中に配設
された超伝導コイルと室温に配設された電源とを接続す
るパワーリードは、電源の正極側にN型熱電材料が、電
源の負極側にP型熱電材料が接続されて構成されてい
る。
【0048】P型、N型の熱電材料をπ型に接合し、N
電極からP電極に直流電流を流すと、ペルチェ効果によ
りP型とN型の接合部で吸熱が生じ、それぞれの電極端
子側で放熱が生じることにより、熱電冷却が行なわれ
る。
【0049】より詳細には低温側では、次式(1)で与
えられる吸熱が行なわれる。
【0050】qN−qP=(ΠN−ΠP)J …(1)
【0051】ここに、Jは電流密度、ΠN、ΠPはN型、
P型熱電材料の絶対ペルチェ係数、qN、qPはN型、P
型熱電材料中で電子が運ぶ熱流をそれぞれ表わしてい
る。
【0052】図1を参照して、パワーリードがN型及び
P型の熱電冷却素子から形成されたことにより、通電時
に低温側から熱が除去されるため、常温空間から低温側
への熱侵入も回避され、結果として、従来必要とされた
パワーリードの冷却機構が不要とされる。
【0053】液体窒素温度領域において、大きな性能指
数を示す熱電冷却素子として、例えば、N型のBi−S
b系合金、P型材料としてBi系2223相(焼結体)
高温超伝導体が用いられる(例えば、中野その他、「高
温超伝導体を用いたペルチェ冷凍(熱電冷却)」、第5
0回、1993年度秋季低温工学・超電導学会予稿集、
第270頁参照)。
【0054】なお、本実施形態においては、N型及びP
型の熱電冷却素子を液体Heから気化したガスHeを用
いて補助的に冷却してもよいことは勿論である。この場
合、本実施形態によれば、ガスHeの消費量は特段に削
減される。
【0055】
【実施形態2】図2は、本発明の第2の実施形態の構成
を説明する図である。
【0056】図2を参照して、本実施形態に係るパワー
リードにおいては、電源の正極側にN型熱電材料が、電
源の負極側にP型熱電材料が接続され、これらの熱電材
料には高温超伝導体が接続され、高温超伝導体が超伝導
コイルに接続されている。
【0057】N型、P型熱電材料(熱電冷却素子)は、
実質的に常温(約300K)から冷却して温度を下げ、
高温超伝導体が配設された領域において吸熱が行なわ
れ、好ましくは、高温超伝導体のTc(臨界温度)以下
に冷却維持されるが、不足の場合には、液体窒素による
冷却を用いてもよい。この場合も、N型、P型材料(熱
電冷却素子)により冷却効率が高められる。
【0058】本実施形態においては、高温超伝導体は、
液体Heが気化したガスHeによっても冷却される。
【0059】本実施形態においては、パワーリードに高
温超伝導体を用いたことにより、Tc以下の温度におい
て通電時の発熱がないため、低温側への熱侵入量を大幅
に低減すると共に、パワーリードが熱電冷却素子から構
成されることにより、特別な冷却機構を必要とせずに高
温超伝導体のTc以下に容易且つ効率的に冷却維持でき
る。
【0060】また、本実施形態においては、高温超伝導
体を液体窒素あるいはガスHeで冷却した場合にも、熱
電冷却素子による冷却作用のために、液体窒素、Heの
消費量は前記従来例と比較して特段に削減される。
【0061】
【実施形態3】図3は、本発明の第3の実施形態の構成
を説明する図である。図3を参照して、本実施形態にお
いて、パワーリードは、N型、P型熱電材料、金属(又
は半導体)、及び高温超伝導体から構成されている。
【0062】本実施形態においては、金属又は半導体を
液体窒素により冷却してもよい。この場合、図3の金属
部(又は半導体部)には液体窒素のバス(不図示)が設
けられる。
【0063】本実施形態は、N型、P型熱電材料からな
る熱電冷却素子のみでは高温超伝導体のTc(臨界温
度)以下に冷却できない場合に好適に用いられる。
【0064】
【実施形態4】図4は、本発明の第4の実施形態の構成
を説明する図である。図4を参照して、本実施形態にお
いて、パワーリードは、N型、P型熱電材料から成る熱
電冷却素子を複数段カスケード形態に接続してなるもの
である。図4において、各段の熱電冷却素子はそれぞれ
異なった温度領域に配置され、それぞれ低温側から吸熱
を、高温側にて放熱を行う。
【0065】本実施形態によれば、複数段(=n)の熱
電冷却素子による最高温度と最低温度の温度差は、各熱
電冷却素子による冷却温度差ΔTi(i=1〜n)の略
総和程度に等しい値が期待される。このため、パワーリ
ードの冷却が全く不要になる場合もある。
【0066】また、本実施形態においては、熱電冷却素
子の別の態様として、図9に示すように、N型、P型熱
電材料から成る熱電冷却素子をセラミック板の間に挟ん
で数個から十数個の直列形態に接続して構成してもよい
(この構成を「1段モジュール」ともいう)。
【0067】図9に示すように、N型、P型熱電材料か
ら成る熱電冷却素子の金属電極による接合部が一側にな
るようにアレイ状に配列されており、各熱電冷却素子に
ついてN型熱電材料には電流が流れ込み、P型熱電材料
からは電流が流れ出すように接続され、各熱電冷却素子
はそれぞれ低温側(接合部側)から吸熱、高温側にて放
熱を行なう。
【0068】本実施形態において、図9に示す熱電冷却
モジュールを用いる場合、液体Heに配設された超伝導
コイル(不図示)は、図中の吸熱側において1段モジュ
ールの所定の熱電冷却素子の間に接続される。
【0069】本実施形態によれば、複数の直列に接続さ
れた熱電冷却素子による最高温度と最低温度の温度差
は、直列形態に接続された熱電冷却素子の数に略比例
し、冷却効果が増大する。このため、パワーリードの冷
却が全く不要になる場合さえある。
【0070】なお、直列形態に接続された複数(=n)
の熱電冷却素子は、各温度領域において最適な性能指数
が得られるように、各段毎に異なる材料から構成しても
よいことは勿論である。
【0071】また、図9に示した一段モジュールを複数
段、例えば、図10に示すように、ピラミッド型に多段
(例えば6段カスケード形態)に構成する(下部側で熱
電冷却素子数が大、上部側で熱電冷却素子数が小)こと
によって、さらに大きな温度差を得ることができる。
【0072】図17に、図10に斜視図にて示したピラ
ミッド型に多段構成の熱電冷却素子からなる電流リード
の、超伝導コイル及び駆動電源との電気的接続の様子を
模式的に示す(但し、図17では3段カスケード形態が
示されている)。図17を参照して、高段側端部(図で
は3段目)のN型及びP型熱電材料から成る熱電冷却素
子に超伝導コイル端部がそれぞれ接続され、1段目のア
レイ状に複数配設された、N型及びP型熱電材料から成
る熱電冷却素子に対して、N型熱電材料に電流が流れ込
み、P型熱電材料からは電流が流れ出すように電源端子
が接続配線され、各段の熱電冷却素子はそれぞれ低温側
(図示上部接合部側)から吸熱し、高温側(図示下部接
合部)にて放熱を行なう。
【0073】図9に示す一段モジュール構成の場合、素
子接合部温度差は、一般に、N型、P型材料から成る熱
電冷却素子の最大温度差(「ΔTJM」という)を超える
ことはできない。従って、一段モジュールにおける個々
の熱電冷却素子の温度差(ΔTj)について、ΔTj=Δ
JMの場合、低温接合部の吸収能力及び成績係数は零と
なる。しかしながら、図10に示すように、モジュール
を多段に積み重ね、上段モジュールの高温側発熱を下段
モジュールの低温側で吸収することにより、上記制約が
解消される。
【0074】なお、本実施形態においては、図9に示す
1段モジュール、又は図10に示す多段モジュール(不
図示)から成る熱電冷却モジュールを、後に説明するよ
うに、超伝導コイルを駆動するための電源とは別の電源
により駆動してもよいことは勿論である。
【0075】
【実施形態5】図5は、本発明の第5の実施形態の構成
を説明する図である。図5を参照して、本実施形態にお
いては、電源として、超伝導コイルを交流駆動するため
の交流電源が用いられ、N型、P型熱電材料から成る2
つの熱電冷却素子をパワーリードとし、交流電源の一側
の端子と第1の熱電冷却素子の間に第1のスイッチSW
1が設けられ、交流電源の他側の端子と第2の熱電冷却
素子の間に第2のスイッチSW2が設けられている。
【0076】より詳細には、図5を参照して、第1の熱
電冷却素子のN型、P型熱電材料の一端はそれぞれ第1
のスイッチSW1の端子に接続され、N型、P型熱電材
料の他端は超伝導コイルの端部に接続されている。ま
た、第2の熱電冷却素子のN型、P型熱電材料の一端は
それぞれ第2のスイッチSW2の端子に接続され、N
型、P型熱電材料の他端は超伝導コイルの端部に接続さ
れている。
【0077】第1及び第2のスイッチを介して、第1及
び第2の熱電冷却素子におけるN型熱電材料は、交流電
源から常に電流が流れ込み(上流に配置され)、P型熱
電材料からは交流電源側電流が流れ出す(下流に配置さ
れる)ように、ライン周波数の半周期毎に切替制御さ
れ、このため、N型、P型材料は熱電冷却素子として作
用する。
【0078】超伝導コイルの両端部と熱電冷却素子の端
部とがライン周波数の半周期毎に切替制御され、超伝導
コイルは交流駆動される。なお、本実施形態において、
パワーリードとして、高温超伝導体を含む構成、あるい
は、熱電冷却素子を多段に含むようにした構成としても
よいことは勿論である。
【0079】
【実施形態6】図6は、本発明の第6の実施形態の構成
を説明する図である。図6を参照して、本発明の第6の
実施形態を説明する。
【0080】N型、P型熱電材料からなる熱電冷却素子
による冷却は、該素子に流す電流に依存する。
【0081】前記各実施形態においては、超伝導コイル
を駆動するための電源と、熱電冷却素子とは直接接続さ
れているため、冷却と超伝導コイル電流とを互いに独立
に制御することはできない。
【0082】本実施形態は、この問題を解決するもので
あり、電源1は、超伝導コイルに流れる電流を供給し、
電源2は熱電冷却素子(「ペルチェ素子」ともいう)に
流れる電流を供給し、これらの電源は、制御装置を介し
て常に最適な冷却が維持されるように制御される。より
詳細には、制御装置は、超伝導コイル電流と熱電冷却素
子に流れる電流のそれぞれを監視しながらそれぞれの電
源に制御信号を出力し、電源電流の可変に制御して冷却
を最適制御する。
【0083】
【実施形態7】図11は、本発明の第7の実施形態の構
成を説明する図である。図11を参照して、本発明の第
7の実施形態を説明する。
【0084】熱電冷却素子を構成するN型とP型の熱電
材料は、その特性に関して完全に対称的であることはな
く、このため、冷却素子の作製時においては、性能指数
が最大となるように、最適設計が行なわれる。その際、
N型とP型の熱電材料の断面積が異なることになる。そ
の結果、N型とP型の熱電材料で吸収熱量に相違が生じ
る。
【0085】一般のペルチェ素子の場合には、典型的に
はΠ型で構成され、N型とP型の熱電材料は熱伝導率の
高いCu等で接続されているため、このN型とP型の熱
電材料における熱吸収量の差は問題とはならないが、パ
ワーリードとして利用する場合、N型とP型の熱電材料
は互いに電気的に隔離されているため、N型とP型の熱
電材料は冷却側にて温度が互いに異なることになる。
【0086】本実施形態は、このような問題を解消する
ものであり、図11に示すように、N型とP型の熱電材
料の冷却側を熱的に接続し、且つ電気的に絶縁したもの
である。すなわち、N型とP型の熱電材料は、冷却側に
おいて、電気的に絶縁性で且つ熱伝導率の大きな部材に
より互いに接続され、N型とP型の熱電材料は、冷却側
において同一温度に維持される。
【0087】
【実施形態8】通常、大電流電源は高価である。特に超
伝導コイルのようにインピーダンスの低い負荷には大電
流低電圧の電源になるので、電源としてはあまり好まし
いものではない。このため、ペルチェ素子では多くの素
子を直列に接続し、低電流で適当な電圧の電源を利用し
ている。
【0088】また超伝導コイルを励磁する電流は大きい
ので、超伝導コイル励磁用の電源の電流は大きくなり高
価になる。そして超伝導コイル励磁用の電源を作動させ
ない時に低温側に熱が入らないようにするためには、ペ
ルチェ素子に電流を供給する電源2を設けた前記第6の
実施形態(図6参照)の構成とすればよいが、電源2も
大電流を出力できる電源である必要がある。
【0089】しかしながら、これは高価になるので、本
実施形態においては、図12に示すように、数多くのP
型、N型の熱電材料を並列に接続する場合には、電源1
で超伝導コイルを励磁し(電源からスイッチSW1を介
して並列に配設されたN型熱電材料にそれぞれ流れ込
み、超伝導コイル下流の並列に配設されたP型熱電材料
からスイッチSW1を介して電源1に戻る)、それ以外
の場合には、切替スイッチSW1、SW2を利用して複
数の熱電変換素子を直列形態に接続して、電源2の電流
値を下げる。
【0090】
【実施形態9】図13を参照して、本発明の第9の実施
形態を説明する。図13を参照して、本実施形態におい
ては、図3を参照して説明した前記第3の実施形態にお
いて、N型及びP型熱電材料(半導体)と高温超伝導体
との間に配設された導体部(Cu等)間に新たにスイッ
チSWが設けられている。
【0091】このスイッチSWは、超伝導コイル(「超
伝導マグネット」ともいう)が励磁していないときで超
伝導コイルを冷却しているときには閉成され、二つの導
体部間を電気的に接続し電源からの電流はN型熱電材
料、導体及びスイッチSWを介してP型熱電材料側の導
体に流れることになる。これによって、超伝導コイルが
磁場を発生していない時にも、低温系への熱の侵入を減
らすことができる。一方、超伝導コイルを励磁する時
は、当然このスイッチSWを開状態として電源からN型
熱電材料、導体、高温超伝導体、超伝導コイル、高温超
伝導体、導体、P型熱電材料のループに電流が流れる。
【0092】なお、本実施形態においては、N型及びP
型熱電材料(半導体)にはラジエターが備えられて放熱
特性を向上している。
【0093】
【実施形態10】図14を参照して、本発明の第10の
実施形態を以下に説明する。図14において、従来の超
伝導装置の説明で参照した図16の要素と同一又は同等
の機能の要素については同一の参照符号が付されてい
る。以下では前記従来例との相違点を主に説明する。
【0094】本実施形態によるパワーリードと従来の高
温超伝導体を用いたパワーリード(例えば、前記文献
(「工業材料」、Vol.41、No.3、第33頁))との主たる
相違点は、銅導体300と高温超伝導体(酸化物超伝導
体)301との間において直流電源50の正極側にN型
熱電材料200を接続し、負極側にP型熱電材料201
を接続して構成した点である。以下に詳説する。
【0095】真空断熱などにより断熱された低温容器1
の内部に超伝導コイル2が配置され、極低温の液体ヘリ
ウム22により冷却される。超伝導コイル2は、接続線
21を介してパワーリード(正極:301、200、3
00、負極:301、201、300で構成)に接続さ
れている。銅導体300の室温部はケーブル9によって
直流電源50に接続され、直流電源50は超伝導コイル
2に必要な電流を供給している。
【0096】パワーリードの常温部はフタ(蓋)101
により支持されている。フタ101には、常温側導体
(銅導体300)を冷却するための液体窒素31が蒸発
したガス32を外部に放出するための配管が設置され外
部に室温近傍の窒素ガスが放出される。
【0097】銅導体300を液体窒素31で冷却するこ
とにより銅導体300の下部の温度を77K近傍に保持
している。さらに、銅導体300と高温超伝導体301
の間に正極にN型熱電材料200、負極にP型熱電材料
201を接続して高温超伝導体の温度を77K以下に冷
却している。
【0098】なお、図14の構成において、超伝導コイ
ル2の線材を高温超伝導材料で形成した場合には、超伝
導コイル2の温度も77K以下に冷却すればよいので、
冷媒の液体ヘリウム22が不要になるとともに、パワー
リードの内の高温超伝導体301も不要になり、超伝導
コイル2の両端子と銅導体300との間にN型熱電材料
200およびP型熱電材料201が接続されるという簡
易な構成の超伝導コイル装置を提供することができる。
【0099】
【実施形態11】図15を参照して、本発明の第11の
実施形態を以下に説明する。図14に示した前記第10
の実施形態では、超伝導コイル2に電流を通電している
状態では、パワーリード3は冷却され、極低温部への熱
侵入量を低減できるが、超伝導コイル2の電流をゼロに
した場合、熱電冷却素子(200、201)に流れる電
流がゼロになるため、熱電冷却素子(ペルチェ素子)に
よる冷却作用が無くなる。本実施形態は、上記問題を解
決するために、パワーリードの構成を以下のように構成
したものである。
【0100】図15において、前記第10の実施形態の
説明で参照した図14と同一又は同等の機能の要素には
同一の参照符号が付されている。以下では、前記第10
の実施形態との相違点を説明する。
【0101】低温容器1の内部に配置される液体ヘリウ
ム容器100の内部に超伝導コイル2が収容されてい
る。超伝導コイル2は、接続線21を介して高温超伝導
体301に接続され、さらに銅導体300に接続されて
いる。
【0102】そして、銅導体300の室温部はケーブル
9を介して外部電源50に接続される。フタ101は、
低温容器1内部を真空に封止するための気密部品であ
る。銅導体300はこのフタ101により支持されてい
る。
【0103】本実施形態においては、銅導体300の低
温部に、好ましくは電気絶縁性の熱良導体203を介し
て、N型熱電材料200、P型熱電材料201からなる
熱電冷却素子の共通接続部202を接続する。熱電冷却
素子(200、201)は電源51の正極にN型熱電材
料200を、また負極にP型熱電材料201を接続する
ように配設されておりフタ101において所定の気密封
止がされて支持されている。
【0104】電源51と熱電冷却素子(200、20
1)はケーブルによって接続される。本実施形態に係る
パワーリードにおいては、銅導体300、高温超伝導体
301から導体を構成しているが、それぞれの導体の内
部を液体ヘリウムが蒸発した低温のガスヘリウムで冷却
してもよい。
【0105】また、超伝導コイル用の線材は金属系超伝
導線材又は高温超伝導体線材であってよい。この場合の
冷媒は液体ヘリウム又は液体窒素である。
【0106】以上、上記実施形態を説明したが、本発明
は、上記各形態及びその組合せにのみ限定されるもので
なく、本発明の原理に準ずる各種形態を含むことは勿論
である。
【0107】
【発明の効果】以上説明したように、本発明によれば、
熱電冷却素子(ペルチェ素子)が電源に接続され、ペル
チェ効果により、放熱、吸熱作用を行なうため、従来必
要とされていたガス冷媒等によるパワーリードの冷却は
不要とされる。
【0108】そして、本発明においては、パワーリード
を熱電冷却素子と高温超伝導体とから構成した場合、ペ
ルチェ素子により高温超伝導体のTc(臨界温度)以下
にまで冷却され、液体窒素による高温超伝導体を冷却す
ることが不要とされる。
【0109】本発明においては、パワーリードを構成す
る高温超伝導体を液体窒素あるいはガスHeで冷却した
場合にも、熱電冷却素子による冷却作用のために、液体
窒素、Heの消費量は従来例と比較して特段に削減さ
れ、ランニングコストを大幅に低減する。
【0110】あるいは、本発明においては、高温超伝導
体の冷却が不足する場合には、液体窒素により冷却して
もよいが、高温超伝導体の超伝導コイル側はガスHeに
より冷却され、冷却効率が向上する。
【0111】本発明においては、熱電冷却素子を複数段
カスケード形態に接続した場合、冷却効果は一段と高め
られる。
【0112】そして、本発明によれば、熱電冷却素子を
含むパワーリードと交流電源との間に切替スイッチを設
けたことにより、熱電冷却を行ないながら超伝導コイル
を交流駆動できるという利点を有する。
【0113】さらに、本発明によれば、熱電冷却素子に
電流を供給する電源を超伝導コイル電流を供給する電源
とは別途設け、超伝導コイルに流れる電流と、熱電冷却
素子に流れる電流をモニタして、それぞれの電源電流を
制御することにより最適な冷却が達成される。
【0114】本発明によれば、熱電冷却素子を形成する
N型とP型の熱電材料は、冷却側にて、熱伝導率が大
で、電気的絶縁体となる材料を介して互いに接続された
ことにより、N型とP型の熱電材料の特性の非対称性に
原因する、低温側におけるN型とP型の熱電材料の温度
差が解消され、これらは同一温度に保たれる。
【0115】そして、本発明によれば、真空断熱容器内
に収納され液体ヘリウムに浸漬された超伝導コイルに外
部電源から励磁電流を通電するパワーリードを、常温側
から順に、金属導体と、該金属導体に接続されたN型熱
電材料又はP型熱電材料を含むものとし、前記金属導体
を液体窒素で冷却する。これによって、前記パワーリー
ドの金属導体は液体窒素で冷却されるとともに、熱電冷
却素子によっても冷却されるので、極低温部への熱侵入
量をより低減することができる。また、前記N型熱電材
料またはP型熱電材料と前記超伝導コイルとの間に高温
超伝導体からなる電気導体を接続してなる構成とするこ
とにより、高温超伝導体が金属導体を介して液体窒素で
冷却されるとともに、熱電冷却素子によっても冷却され
るため、より低温に保持できることから、臨界電流値が
大きくなり、必要な断面積を減少することができ、極低
温部への熱侵入量を大幅に低減することができ、その結
果、高価な液体ヘリウムの消費量を大幅に削減すること
ができるという効果が得られる。
【0116】また、本発明によれば、真空断熱容器内に
収納され液体ヘリウムに浸漬された超伝導コイルに外部
電源から励磁電流を通電するパワーリードにおいて、導
体の構成を常温側から順に金属導体および高温超伝導体
からなるものとし、金属導体の下部近傍を熱良導体を介
して熱電冷却素子で冷却することにより、高温超伝導体
を超伝導状態に保持し、超伝導コイルの非通電状態時に
おいても、パワーリードを低温に冷却することが可能と
され、さらに、熱電冷却素子用の電源の電流を制御する
ことにより、パワーリードの温度分布も任意に制御でき
るという効果を有する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の構成を説明する図で
ある。
【図2】本発明の第2の実施形態の構成を説明する図で
ある。
【図3】本発明の第3の実施形態の構成を説明する図で
ある。
【図4】本発明の第4の実施形態の構成を説明する図で
ある。
【図5】本発明の第5の実施形態の構成を説明する図で
ある。
【図6】本発明の第6の実施形態の構成を説明する図で
ある。
【図7】従来のガス冷却型パワーリードの構成を説明す
る図である。
【図8】従来の高温超伝導体を用いたパワーリードの構
成を説明する図である。
【図9】直列接続された熱電冷却モジュールの構成例を
説明する図である。
【図10】多段にカスケード接続された熱電冷却モジュ
ールの構成例を説明する図である。
【図11】本発明の第7の実施形態の構成を説明する図
である。
【図12】本発明の第8の実施形態の構成を説明する図
である。
【図13】本発明の第9の実施形態の構成を説明する図
である。
【図14】本発明の第10の実施形態の構成を説明する
図である。
【図15】本発明の第11の実施形態の構成を説明する
図である。
【図16】従来のパワーリードを用いた超伝導装置の縦
断面を示す図である。
【図17】図10に示した、本発明の実施形態に係る、
多段カスケード接続構成の熱電冷却素子からなる電流リ
ードの、超伝導コイル及び駆動電源との電気的接続の様
子を模式的に示す図である。
【符号の説明】
1 低温容器 2 超伝導コイル 3 パワーリード 3a リード導体 3b 常温部端子 3c リード配管 23 ヘリウムガス 22 液体ヘリウム 31 液体窒素 32 窒素ガス 50 超伝導コイル用の電源 51 熱電冷却素子用の電源 100 LN2タンク(液体窒素タンク) 200 N型熱電材料 201 P型熱電材料 203 熱良導体(電気絶縁物) 300 銅導体 301 高温超伝導体(酸化物超伝導体) LHe 液体He GHe ガスHe
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 郁夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 能瀬 眞一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内

Claims (21)

    【特許請求の範囲】
  1. 【請求項1】超伝導コイルと該超伝導コイルを駆動する
    電源とを電気的に接続するパワーリードが、前記電源の
    正極に接続されたN型熱電材料と、前記電源の負極に接
    続されたP型熱電材料とから成る熱電冷却素子を含むこ
    とを特徴とする熱電冷却型パワーリード。
  2. 【請求項2】超伝導コイルと該超伝導コイルを駆動する
    電源とを電気的に接続するパワーリードが、前記電源の
    正極に接続されたN型熱電材料と前記電源の負極に接続
    されたP型熱電材料とから成る熱電冷却素子と、前記熱
    電冷却素子と前記超伝導コイルとの間に接続された高温
    超伝導体と、を含むことを特徴とする熱電冷却型パワー
    リード。
  3. 【請求項3】超伝導コイルと該超伝導コイルを駆動する
    電源とを電気的に接続するパワーリードが、前記電源の
    正極に接続されたN型熱電材料と前記電源の負極に接続
    されたP型熱電材料とから成る熱電冷却素子と、前記熱
    電冷却素子に一端がそれぞれ接続された金属又は半導体
    から成る導電体と、前記導電体と前記超伝導コイルとの
    間に接続された高温超伝導体と、を含むことを特徴とす
    る熱電冷却型パワーリード。
  4. 【請求項4】N型熱電材料とP型熱電材料とから成る熱
    電冷却素子を複数段接続してなることを特徴とする請求
    項1又は2記載の熱電冷却型パワーリード。
  5. 【請求項5】N型熱電材料とP型熱電材料とから成る熱
    電冷却素子を複数個直列形態に接続して成るモジュール
    をさらに複数段カスケード形態に構成してなることを特
    徴とする請求項1又は2記載の熱電冷却型パワーリー
    ド。
  6. 【請求項6】超伝導コイルと該超伝導コイルを駆動する
    電源とを電気的に接続するパワーリードにおいて、 電源が交流電源からなり、 N型熱電材料とP型熱電材料との対から成る第1及び第
    2の熱電冷却素子を備え、 前記交流電源の一側の端子と前記第1の熱電冷却素子の
    間に第1のスイッチを設けると共に、前記交流電源の他
    側の端子と前記熱電冷却素子との間に第2のスイッチを
    設け、 前記第1及び第2の熱電冷却素子の前記交流電源に対向
    する側に前記超伝導コイルを接続し、 前記第1及び第2の熱電冷却素子における前記N型熱電
    材料が上流、前記P型熱電材料が下流に配されるように
    ライン周波数に応じて前記第1及び第2のスイッチを切
    替え制御し、前記超伝導コイルを交流駆動することを特
    徴とする熱電冷却型パワーリード。
  7. 【請求項7】前記第1及び第2の熱電冷却素子と前記超
    伝導コイルとの間に接続された高温超伝導体と、を含む
    ことを特徴とする請求項6記載の熱電冷却型パワーリー
    ド。
  8. 【請求項8】N型熱電材料とP型熱電材料とから成る熱
    電冷却素子を前記第1及び第2の熱電冷却素子にそれぞ
    れ複数段接続してなることを特徴とする請求項6記載の
    熱電冷却型パワーリード。
  9. 【請求項9】超伝導コイルと該超伝導コイルを駆動する
    電源(「第1の電源」という)を電気的に接続するパワ
    ーリードにおいて、 N型熱電材料とP型熱電材料との対から成る第1及び第
    2の熱電冷却素子を備え、 前記第1及び第2の熱電冷却素子のN型熱電材料とP型
    熱電材料は、超伝導コイル側において共通接続されて前
    記超伝導コイルに接続され、前記第1の電源側において
    は、前記N型熱電材料と前記P型熱電材料との間に、前
    記N型熱電材料が前記P型熱電材料に対して正の電圧を
    供給する第2の電源がそれぞれ接続され、 さらに、前記超伝導コイルと前記熱電冷却素子に流れる
    電流とをそれぞれ監視して、最適な冷却を保持するよう
    に第1の電源及び第2の電源を制御する制御回路を備え
    たことを特徴とする熱電冷却型パワーリード。
  10. 【請求項10】前記第1及び第2の熱電冷却素子と前記
    超伝導コイルとの間に接続された高温超伝導体と、を含
    むことを特徴とする請求項9記載の熱電冷却型パワーリ
    ード。
  11. 【請求項11】N型熱電材料とP型熱電材料とから成る
    熱電冷却素子を前記第1及び第2の熱電冷却素子にそれ
    ぞれ複数段接続してなることを特徴とする請求項9記載
    の熱電冷却型パワーリード。
  12. 【請求項12】超伝導コイルと該超伝導コイルを駆動す
    る電源とを電気的に接続するパワーリードが、前記電源
    の正極に接続されたN型熱電材料と、前記電源の負極に
    接続されたP型熱電材料とから成る熱電冷却素子を含
    み、前記N型熱電材料と前記P型熱電材料とが、前記電
    源と反対側の端部を含む所定の領域において互いに熱的
    に接続されると共に電気的には絶縁されていることを特
    徴とする熱電冷却型パワーリード。
  13. 【請求項13】前記熱電冷却素子と前記超伝導コイルと
    の間に接続された高温超伝導体と、を含むことを特徴と
    する請求項12記載の熱電冷却型パワーリード。
  14. 【請求項14】N型熱電材料とP型熱電材料とから成る
    熱電冷却素子を複数段接続してなることを特徴とする請
    求項12記載の熱電冷却型パワーリード。
  15. 【請求項15】超伝導コイルと該超伝導コイルを駆動す
    る電源(「第1の電源」という)を電気的に接続するパ
    ワーリードにおいて、 N型熱電材料とP型熱電材料との対から成る熱電冷却素
    子を複数備え、 前記複数の熱電冷却素子のN型熱電材料とP型熱電材料
    の対は、前記超伝導コイル側において共通接続されて前
    記超伝導コイルに接続され、前記超伝導コイルと反対方
    向において、スイッチ群を介して前記第1の電源及び/
    又は第2の電源がそれぞれ接続され、 前記超伝導コイルを励磁する際には、前記P型の熱電材
    料と前記N型の熱電材料を互いに並列形態に接続して少
    くとも前記第1の電源から前記超伝導コイルに電流を供
    給し、それ以外の場合には、前記スイッチ群の接続状態
    を切替えて前記複数の熱電冷却素子を直列形態に接続し
    前記第2の電源から供給される電流値を下げるようにし
    たことを特徴とする熱電冷却型パワーリード。
  16. 【請求項16】超伝導コイルと該超伝導コイルを駆動す
    る電源とを電気的に接続するパワーリードが、前記電源
    の正極に接続されたN型熱電材料と前記電源の負極に接
    続されたP型熱電材料とから成る熱電冷却素子と、前記
    熱電冷却素子に一端がそれぞれ接続された金属又は半導
    体から成る導電体と、前記導電体と前記超伝導コイルと
    の間に接続された高温超伝導体と、を含み、 前記N型熱電材料及び前記P型熱電材料に接続された前
    記導電体をスイッチを介して接続し、前記超伝導コイル
    の励磁時には前記スイッチを開状態とし、それ以外の時
    には前記スイッチを閉成するように切替制御することを
    特徴とする熱電冷却型パワーリード。
  17. 【請求項17】真空断熱容器内に収納され液体ヘリウム
    に浸漬された超伝導コイルに外部電源から励磁電流を通
    電するパワーリードにおいて、 常温側から、液体窒素で冷却される金属導体と、該金属
    導体に接続されたN型熱電材料又はP型熱電材料と、を
    この順に含むことを特徴とする熱電冷却型パワーリー
    ド。
  18. 【請求項18】前記N型熱電材料又はP型熱電材料と前
    記超伝導コイルとの間に高温超伝導体からなる電気導体
    を接続してなることを特徴とする請求項17記載の熱電
    冷却型パワーリード。
  19. 【請求項19】真空断熱容器内に収納され液体ヘリウム
    に浸漬された超伝導コイルに外部電源から励磁電流を通
    電するパワーリードにおいて、 常温側から、金属導体と、高温超伝導体と、をこの順に
    含み、前記金属導体の前記超伝導コイル側の端部側近傍
    に熱良導体を設け、 熱電冷却素子が前記熱良電体を介して前記金属導体、前
    記高温超伝導体および前記超伝導コイルを冷却すること
    を特徴とする熱電冷却型パワーリード。
  20. 【請求項20】前記熱電冷却素子が、N型熱電材料及び
    P型熱電材料からなり、前記N型熱電材料及びP型熱電
    材料の一端が共通接続されて前記熱良導体の少なくとも
    一端部と当接してなることを特徴とする請求項19記載
    の熱電冷却型パワーリード。
  21. 【請求項21】第1の冷却手段により超伝導状態とされ
    る超伝導コイルに外部電源から励磁電流を通電するパワ
    ーリードにおいて、 常温側から、第2の冷却手段で所定温度に冷却される金
    属導体と、該金属導体に接続されたN型熱電材料又はP
    型熱電材料と、をこの順に含むことを特徴とする熱電冷
    却型パワーリード。
JP31860095A 1994-11-21 1995-11-13 熱電冷却型パワーリード Expired - Lifetime JP3377350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31860095A JP3377350B2 (ja) 1994-11-21 1995-11-13 熱電冷却型パワーリード

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-309416 1994-11-21
JP30941694 1994-11-21
JP31860095A JP3377350B2 (ja) 1994-11-21 1995-11-13 熱電冷却型パワーリード

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002145003A Division JP3450318B2 (ja) 1994-11-21 2002-05-20 熱電冷却型パワーリード
JP2002145004A Division JP3860070B2 (ja) 1994-11-21 2002-05-20 熱電冷却型パワーリード

Publications (2)

Publication Number Publication Date
JPH08236342A true JPH08236342A (ja) 1996-09-13
JP3377350B2 JP3377350B2 (ja) 2003-02-17

Family

ID=26565948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31860095A Expired - Lifetime JP3377350B2 (ja) 1994-11-21 1995-11-13 熱電冷却型パワーリード

Country Status (1)

Country Link
JP (1) JP3377350B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843323A1 (en) * 1996-11-14 1998-05-20 The Director-General of the National Institute for Fusion Science Current leads adapted for use with superconducting coil and formed of functionally gradient material
WO2013051254A1 (ja) * 2011-10-03 2013-04-11 学校法人中部大学 熱電冷却型電流リード
WO2013073146A1 (ja) * 2011-11-14 2013-05-23 昭和電線ケーブルシステム株式会社 電流リード
WO2013073145A1 (ja) * 2011-11-14 2013-05-23 昭和電線ケーブルシステム株式会社 電流リード
DE112011103478T5 (de) 2010-10-14 2013-08-01 Chubu University Educational Foundation Stromleitervorrichtung
WO2014080591A1 (ja) * 2012-11-21 2014-05-30 昭和電線ケーブルシステム株式会社 電流リード

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0843323A1 (en) * 1996-11-14 1998-05-20 The Director-General of the National Institute for Fusion Science Current leads adapted for use with superconducting coil and formed of functionally gradient material
US6069395A (en) * 1996-11-14 2000-05-30 The Director-General Of The National Institute Of Fusion Science Current leads adapted for use with superconducting coil and formed of functionally gradient material
DE112011103478T5 (de) 2010-10-14 2013-08-01 Chubu University Educational Foundation Stromleitervorrichtung
WO2013051254A1 (ja) * 2011-10-03 2013-04-11 学校法人中部大学 熱電冷却型電流リード
JP2013080798A (ja) * 2011-10-03 2013-05-02 Chube Univ 熱電冷却型電流リード
WO2013073146A1 (ja) * 2011-11-14 2013-05-23 昭和電線ケーブルシステム株式会社 電流リード
WO2013073145A1 (ja) * 2011-11-14 2013-05-23 昭和電線ケーブルシステム株式会社 電流リード
JP2013105907A (ja) * 2011-11-14 2013-05-30 Chube Univ 電流リード
JP2013105906A (ja) * 2011-11-14 2013-05-30 Chube Univ 電流リード
CN103931068A (zh) * 2011-11-14 2014-07-16 昭和电线电缆系统株式会社 电流引线
WO2014080591A1 (ja) * 2012-11-21 2014-05-30 昭和電線ケーブルシステム株式会社 電流リード
JP2014103324A (ja) * 2012-11-21 2014-06-05 Swcc Showa Cable Systems Co Ltd 電流リード

Also Published As

Publication number Publication date
JP3377350B2 (ja) 2003-02-17

Similar Documents

Publication Publication Date Title
US5884485A (en) Power lead for electrically connecting a superconducting coil to a power supply
EP0425165B1 (en) Low-temperature refrigerating device using current-carrying superconducting mode/nonsuperconducting mode junctions
JPH11144938A (ja) 電流リード装置および冷凍機冷却型超電導マグネット
JP3377350B2 (ja) 熱電冷却型パワーリード
JP3450318B2 (ja) 熱電冷却型パワーリード
US5563369A (en) Current lead
WO1994028364A1 (en) A peltier device
JP2756551B2 (ja) 伝導冷却型超電導磁石装置
JP3860070B2 (ja) 熱電冷却型パワーリード
JP4019014B2 (ja) 熱電冷却型パワーリード
JP2004111581A (ja) 超電導マグネット装置
JPH06350146A (ja) 超電導装置
JP3020140B2 (ja) 冷凍機冷却型超電導磁石用永久電流スイッチ装置
JP4703545B2 (ja) 超電導装置および電流リード
JP2005032861A (ja) 超電導マグネット装置
JP4435468B2 (ja) 超伝導マグネット装置
JPH11112043A (ja) 超電導装置用電流リード
JPH10247532A (ja) 超電導装置用電流リード
JPH10247753A (ja) 超電導装置および超電導装置の制御方法
JP2515813B2 (ja) 超電導機器用電流リ−ド
JP3310074B2 (ja) 超電導磁石装置
Herrmann et al. Test results of the 5 kA/sub RMS/-50 kV/sub RMS/HTS AC lead
JPH06268266A (ja) 超電導装置
JPH06224025A (ja) 電流リード
JPH11297524A (ja) 超電導装置用電流リード

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021119

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term