JPH08236132A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH08236132A
JPH08236132A JP7041475A JP4147595A JPH08236132A JP H08236132 A JPH08236132 A JP H08236132A JP 7041475 A JP7041475 A JP 7041475A JP 4147595 A JP4147595 A JP 4147595A JP H08236132 A JPH08236132 A JP H08236132A
Authority
JP
Japan
Prior art keywords
exhaust
reformed gas
fuel cell
heat
exhaust air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7041475A
Other languages
Japanese (ja)
Inventor
Hideo Nishigaki
英雄 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7041475A priority Critical patent/JPH08236132A/en
Publication of JPH08236132A publication Critical patent/JPH08236132A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To cool a reformed gas and an exhaust air so as to keep optimum temperature, working as safety protection when a heat exchanger for exhaust heat recovery using as a heat source of heating-cooling equipment stops and without being affected by heat load variation in an exhaust heat utilizing line in a fuel cell power generating system adopting cogeneration. CONSTITUTION: Heat exchangers 6, 10 for exhaust heat recovery for using as a heat source of exhaust heat utilizing equipment are installed in the front steps of a reformed gas cooling device 7 and an exhaust air cooling device 11 in a reformed gas supply line 3 and an exhaust air line 4. Bypass paths 6a, 10a for bypassing the whole amounts of reformed gas and exhaust air when the operation of the exhaust heat utilizing equipment is stopped and gas shut off valves 6b-6d, 10b-10d are arranged in the heat exchangers for exhaust heat recovery. Flow rate control valves 7a, 11a of cooling water and temperature controllers 7b, 11b are installed in the reformed gas cooling device and the exhaust air cooling device to cool the reformed gas and the exhaust air to a constant temperature, and to condense and separate steam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池発電プラント
生じた排熱を回収して地域冷,暖房などに利用するコ・
ゼネレーション方式を採用した燃料電池発電システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to collect exhaust heat generated in a fuel cell power plant and use it for district cooling and heating.
The present invention relates to a fuel cell power generation system that employs a generation method.

【0002】[0002]

【従来の技術】周知のように燃料電池(リン酸形燃料電
池)の発電システムでは、天然ガスなどの原燃料を水蒸
気改質して得た水素リッチなガス,および空気を反応ガ
スとして燃料電池の燃料極,空気極に供給して発電して
いる。また、この場合に燃料改質装置に投入した過剰な
水蒸気,および燃料電池での電極反応に伴って空気極側
に生成した水蒸気は、発電システムの系内で凝縮させて
気液分離し、ここで得た凝縮水を燃料電池本体の冷却
水,あるいは再び水蒸気に変えて改質器に供給するよう
利用している。また、改質ガス,排空気中に含まれてい
る水蒸気を系内で凝縮させるためには改質ガス冷却器,
排空気冷却器(熱交換器)を使用し、多くの発電プラン
トでは冷却器の排熱を冷却塔などを介してそのまま系外
に放出しているのが現状である。
2. Description of the Related Art As is well known, in a fuel cell (phosphoric acid fuel cell) power generation system, a hydrogen-rich gas obtained by steam reforming a raw fuel such as natural gas and air are used as a reaction gas in the fuel cell. Power is generated by supplying it to the fuel electrode and air electrode. Further, in this case, excess steam introduced into the fuel reformer and steam generated on the air electrode side due to the electrode reaction in the fuel cell are condensed in the system of the power generation system to be separated into gas and liquid. The condensed water obtained in step 2 is used as cooling water for the fuel cell main body or steam again to be supplied to the reformer. In order to condense the reformed gas and water vapor contained in the exhaust air in the system, a reformed gas cooler,
In the current situation, exhaust gas coolers (heat exchangers) are used, and in many power plants, the exhaust heat of the coolers is directly discharged to the outside of the system via a cooling tower or the like.

【0003】一方、昨今では発電によって生じた排熱を
回収し、冷房,暖房などに利用してエネルギーの利用効
率を高めるコ・ゼネレーションシステムの開発,普及が
進んでおり、燃料電池発電システムでも一部にコ・ゼネ
レーション方式を採用する試みがなされている。そして
具体的には、燃料電池の燃料極に通じる改質ガス供給ラ
イン,空気極から引出した排空気ラインに挿入した前記
の改質ガス冷却器,排空気冷却器と直列に排熱回収用熱
交換器を介挿接続し、該熱交換器を通じて回収した排熱
を利用して温水焚き吸収式冷凍器,あるいは温水暖房器
を運転して冷房,暖房を行うようにしている。
On the other hand, recently, a co-generation system for recovering exhaust heat generated by power generation and utilizing it for cooling, heating, etc. to improve energy use efficiency has been developed and popularized, and even in a fuel cell power generation system. Attempts have been made to adopt the co-generation system in some areas. And specifically, the reformed gas supply line leading to the fuel electrode of the fuel cell, the reformed gas cooler inserted in the exhaust air line drawn from the air electrode, and the exhaust heat recovery heat in series with the exhaust air cooler. An exchanger is inserted and connected, and the exhaust heat recovered through the heat exchanger is used to operate a hot water-fired absorption type refrigerator or a hot water heater for cooling and heating.

【0004】この場合に、燃料改質器,一酸化炭素変成
器を経由した改質ガスのガス温度は150〜160℃、
また燃料電池から排出される排空気温度はリン酸形燃料
電池(動作温度は約200℃)の場合で約190℃であ
る。そして、いずれの場合にも改質ガス,排空気中に過
剰に含まれている水蒸気を凝縮させて気水分離させるた
めには改質ガス,排空気を80℃程度まで降温させる必
要がある。
In this case, the gas temperature of the reformed gas passing through the fuel reformer and the carbon monoxide shift converter is 150 to 160 ° C.,
The temperature of the exhaust air discharged from the fuel cell is about 190 ° C in the case of the phosphoric acid fuel cell (operating temperature is about 200 ° C). In either case, it is necessary to lower the temperature of the reformed gas and the exhaust air to about 80 ° C. in order to condense the steam contained in the reformed gas and the exhaust air in excess and separate the water vapor.

【0005】一方、コ・ゼネレーションシステム機器で
ある温水焚き吸収式冷凍機の運転には水温90℃程度の
温水が、また温水暖房器の運転には水温55℃程度の温
水が必要である。そこで、先記のコ・ゼネレーション方
式を採用した燃料電池発電システムでは、高温の改質ガ
ス,排空気の冷却をガス冷却器とこれに直列接続した排
熱回収用熱交換器とで分担して行い、排熱回収用熱交換
器で排熱回収を行いつつ最終的にガス温度を80℃程度
まで降温させて水蒸気の凝縮,気水分離を行うようにし
ている。
On the other hand, hot water of about 90 ° C. is required for operation of the hot water-fired absorption type refrigerator, which is a co-generation system device, and hot water of about 55 ° C. is required for operation of the hot water heater. Therefore, in the fuel cell power generation system adopting the above-mentioned co-generation system, the cooling of the high temperature reformed gas and the exhaust air is shared by the gas cooler and the heat exchanger for exhaust heat recovery connected in series therewith. The temperature of the gas is finally lowered to about 80 ° C. while the exhaust heat is recovered by the heat exchanger for recovery of exhaust heat to condense steam and separate water and water.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記のよう
に燃料電池発電システムの改質ガス冷却器,排空気冷却
器と直列に排熱回収用熱交換器を接続して排熱回収を行
うコ・ゼネレーション方式では、運転上で次記のような
問題が生じる。すなわち、 1)春期,秋期など季節によって冷,暖房設備を使用し
ない期間では、燃料電池発電システムの運転に伴い排熱
回収用熱交換器に改質ガス,排空気などの高温ガスな流
れるにも係わらず、排熱回収用熱交換器は停止したまま
で熱回収用の循環水が流れない。このために、停止中の
排熱回収用熱交換器には器内にスケール(水垢)が多量
に発生して熱交換効率を劣化させたり、冷却水の沸騰に
伴う内圧上昇で熱交換器が破損するなどのトラブルを引
き起こすおそれがある。
By the way, as described above, the exhaust gas heat recovery heat exchanger is connected in series with the reformed gas cooler and the exhaust air cooler of the fuel cell power generation system to recover the exhaust heat. -The following problems occur in operation in the generation method. In other words, 1) During periods when the cooling and heating facilities are not used depending on the season such as spring and autumn, high temperature gas such as reformed gas and exhaust air may flow to the heat exchanger for exhaust heat recovery as the fuel cell power generation system operates. Regardless, the heat recovery heat exchanger remains stopped and the circulating water for heat recovery does not flow. For this reason, a large amount of scale (scale) is generated in the heat exchanger for exhaust heat recovery while stopped, deteriorating the heat exchange efficiency, or the heat exchanger is changed due to an increase in internal pressure due to boiling of cooling water. May cause troubles such as damage.

【0007】2)また、燃料改質系で得た改質ガスを燃
料電池に供給して発電を行う場合には、その改質ガスの
組成(水素ガス濃度)をできる限り一定に保つ必要があ
が、前記のように改質ガス供給ラインに流れる改質ガス
を改質ガス冷却器と排熱回収用熱交換器を併用して凝縮
温度まで降温させる場合に、排熱利用先の用途、つまり
排熱利用機器が先記した温水焚き吸収式冷凍機である
か,温水暖房器であるかにより、さらには冷,暖房の熱
負荷変動によって燃料電池に供給する改質ガスの温度も
変化する。しかも、改質ガス温度が変化するとその飽和
温度とともに水蒸気分圧,すなわち水蒸気モル分圧も変
化し、結果として燃料電池に供給される燃料ガスの水素
濃度が変動してしまう。
2) When the reformed gas obtained in the fuel reforming system is supplied to the fuel cell to generate electricity, the composition (hydrogen gas concentration) of the reformed gas must be kept as constant as possible. However, as described above, when the reformed gas flowing through the reformed gas supply line is cooled to the condensing temperature by using the reformed gas cooler and the exhaust heat recovery heat exchanger together, the use of the exhaust heat utilization destination, In other words, the temperature of the reformed gas supplied to the fuel cell also changes depending on whether the exhaust heat utilization device is the hot water-fired absorption refrigerating machine or the hot water heater described above, and further due to the heat load fluctuation of cooling and heating. . Moreover, when the reformed gas temperature changes, the steam partial pressure, that is, the steam molar partial pressure also changes with the saturation temperature, resulting in a change in the hydrogen concentration of the fuel gas supplied to the fuel cell.

【0008】この場合に、改質ガスの圧力を6.5kg/cm
2 G、温度80℃を基準として、排熱利用設備(冷,暖
房機器)の熱負荷変動によりガスの冷却温度が70℃,
90℃に変化した場合を想定して試算すると、70℃で
は改質ガス中の水素量が2.3%多くなり、90℃では水
素量が3.3%少なくなる。一方、リン酸形燃料電池は、
一般に水素利用率75〜80%の範囲で運転している。
したがって、燃料電池に供給する改質ガスの温度80℃
を基準とした場合に、そのガス温度が上昇すると水素量
が不足して燃料電池の発電特性が低下し、逆に冷却温度
が低くなった場合には燃料電池に必要以上に過剰な水素
量を投入することになって発電効率が低下するなどの問
題に発展する。
In this case, the pressure of the reformed gas is 6.5 kg / cm.
2 G, with reference to the temperature of 80 ° C., waste heat utilization facility (cold, heating equipment) 70 ° C. cooling temperature of the gas by the heat load change,
Assuming that the temperature has changed to 90 ° C, a trial calculation shows that the hydrogen amount in the reformed gas increases by 2.3% at 70 ° C, and the hydrogen amount decreases by 3.3% at 90 ° C. On the other hand, the phosphoric acid fuel cell is
Generally, the hydrogen utilization rate is in the range of 75-80%.
Therefore, the temperature of the reformed gas supplied to the fuel cell is 80 ° C.
When the gas temperature rises, the amount of hydrogen becomes insufficient and the power generation characteristics of the fuel cell deteriorates.On the contrary, when the cooling temperature becomes low, an excessive amount of hydrogen is needed for the fuel cell. When it is input, it causes problems such as a decrease in power generation efficiency.

【0009】3)一方、燃料電池の空気極から排出され
る排空気には約10%の未反応酸素が含まれていること
から、燃料電池発電システムでは効率向上のために排空
気をそのまま大気中に放出せずに、排空気中に含まれて
いる水蒸気を凝縮分離させてその分酸素濃度を高めた上
で、燃料改質器のバーナに供給して燃焼空気として利用
するようにしているが、この場合にはバーナの燃焼性
(燃料/酸素比率)の安定化から排空気の酸素濃度はで
きるだけ一定に保つことが望ましい。
3) On the other hand, since the exhaust air discharged from the air electrode of the fuel cell contains about 10% of unreacted oxygen, the exhaust air in the fuel cell power generation system is used as it is to improve the efficiency. Instead of releasing it inside, the water vapor contained in the exhaust air is condensed and separated to increase the oxygen concentration, and then supplied to the burner of the fuel reformer and used as combustion air. However, in this case, it is desirable to keep the oxygen concentration of the exhaust air as constant as possible in order to stabilize the burnability (fuel / oxygen ratio) of the burner.

【0010】かかる点、前項2)で述べた改質ガスの場
合と同様に、高温の排空気を排空気冷却器,排熱回収用
熱交換器の併用で凝縮温度まで冷却する場合に、排熱利
用側で冷,暖房などの熱負荷変動に伴って排空気の冷却
温度が変化すると、排空気中の酸素濃度も変化する。こ
こで、排空気の圧力を5.5kg/cm2 G,温度80℃を基
準として、排空気温度が70℃,90℃に変化した場合
を想定して排空気中の酸素濃度を試算すると、70℃で
は酸素濃度が0.3%高くなり、90℃では逆に酸素濃度
が0.42%低くなる。したがって、排空気を燃料改質器
のバーナの燃焼空気として利用する場合に、熱回収側の
熱負荷変動などによって水蒸気分離後の排空気の酸素濃
度が変化すると、バーナでの燃料/燃酸素量比が当初の
計画値と実際値とで乖離し、特に排空気の酸素濃度が低
下するとバーナが不完全燃焼となって改質器の炉内温度
が変動し、改質反応効率にも悪影響が及ぶようになる。
In this respect, as in the case of the reformed gas described in 2) above, when the high temperature exhaust air is cooled to the condensing temperature by using the exhaust air cooler and the exhaust heat recovery heat exchanger in combination, When the cooling temperature of the exhaust air changes due to heat load fluctuations such as cooling and heating on the heat utilization side, the oxygen concentration in the exhaust air also changes. Here, when the exhaust air pressure is 5.5 kg / cm 2 G and the temperature is 80 ° C. as a reference, the oxygen concentration in the exhaust air is calculated on the assumption that the exhaust air temperature changes to 70 ° C. and 90 ° C. At 70 ° C, the oxygen concentration increases by 0.3%, and at 90 ° C, the oxygen concentration decreases by 0.42%. Therefore, when the exhaust air is used as the combustion air of the burner of the fuel reformer, if the oxygen concentration of the exhaust air after steam separation changes due to fluctuations in the heat load on the heat recovery side, the amount of fuel / fuel oxygen in the burner will change. The ratio deviates from the initially planned value and the actual value, and especially when the oxygen concentration in the exhaust air decreases, the burner will be incompletely burned and the temperature inside the reformer furnace will fluctuate, and the reforming reaction efficiency will also be adversely affected. It will be covered.

【0011】本発明は上記の点にかんがみなされたもの
であり、発電システムの系内に生じた排熱を回収して地
域冷,暖房などに利用するコ・ゼネレーションを採用し
た燃料電池発電システムを対象に、前記1)〜3)に記
した課題を解決して冷,暖房機器などの熱原として使用
する排熱回収用熱交換器の停止時における安全保護,並
びに排熱利用系の熱負荷変動などに影響されることなく
改質ガス,排空気の冷却温度を安定よく保つことができ
るようにした燃料電池発電システムを提供することを目
的とする。
The present invention has been made in view of the above points, and a fuel cell power generation system adopting co-generalization for recovering exhaust heat generated in the system of a power generation system and utilizing it for district cooling, heating, etc. In order to solve the problems described in 1) to 3) above, the safety protection when the heat exchanger for exhaust heat recovery used as a heat source for cooling and heating equipment is stopped, and the heat of the exhaust heat utilization system. It is an object of the present invention to provide a fuel cell power generation system capable of maintaining a stable cooling temperature of reformed gas and exhaust air without being affected by load fluctuations.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、燃料電池発電システムを次記のよ
うに構成するものとする。 1)燃料電池への改質ガス供給ラインには気水分離器と
組合わせて改質ガス中の過剰な水蒸気を凝縮させる改質
ガス冷却器を備えたものにおいて、前記改質ガス冷却器
を冷却温度調節機能付きの熱交換器とし、かつその前段
に冷,暖房などの排熱利用設備の熱源となる排熱回収用
熱交換器,および該排熱回収用熱交換器の未使用時に改
質ガスを当該熱交換器を迂回して後段の改質ガス冷却器
に通流させるバイパス路を設ける。
In order to achieve the above object, according to the present invention, a fuel cell power generation system is constructed as follows. 1) In the reformed gas supply line to the fuel cell, which is provided with a reformed gas cooler for condensing excess steam in the reformed gas in combination with a steam separator, the reformed gas cooler is used. A heat exchanger with a cooling temperature control function, and a heat exchanger for exhaust heat recovery that serves as a heat source for exhaust heat utilization equipment such as cooling and heating in the preceding stage, and is modified when the exhaust heat recovery heat exchanger is not in use. A bypass passage is provided to allow the quality gas to bypass the heat exchanger and flow to the reformed gas cooler in the subsequent stage.

【0013】2)燃料電池から引出した排空気ラインに
は気水分離器と組合わせて排空気中の過剰な水蒸気を凝
縮させる排空気冷却器を備えたものにおいて、前記排空
気冷却器を冷却温度調節機能付き熱交換器とし、かつそ
の前段に冷,暖房などの排熱利用設備の熱源となる排熱
回収用熱交換器,および該排熱回収用熱交換器の未使用
時に排空気を当該熱交換器を迂回して後段の排空気冷却
器に通流させるバイパス路を設ける。
2) In the exhaust air line drawn from the fuel cell, which is provided with an exhaust air cooler for condensing excess water vapor in the exhaust air in combination with a steam separator, the exhaust air cooler is cooled. A heat exchanger with a temperature control function, and a heat exchanger for exhaust heat recovery, which serves as a heat source for waste heat utilization equipment such as cooling and heating, and exhaust air when the heat exchanger for exhaust heat recovery is not in use. A bypass path is provided for bypassing the heat exchanger and flowing to the exhaust air cooler in the subsequent stage.

【0014】3)前項1),2)項において、排熱回収用
熱交換器に対してそのバイパス路との間にガス流路切換
弁を設ける。
3) In the above paragraphs 1) and 2), a gas flow path switching valve is provided between the heat exchanger for exhaust heat recovery and its bypass passage.

【0015】[0015]

【作用】上記の構成において、排熱利用設備(冷房,暖
房機器)を運転する場合には、バイパス路の弁を閉じ、
高温の改質ガス,排空気を排熱回収用熱交換器に通流さ
せて排熱回収を行った後、さらにその後段側の改質ガス
冷却器,ないし排空気冷却器により冷却温度調節を行っ
て所定の凝縮温度(80℃)まで降温させ、改質ガス,
排空気中に含まれている過剰な水蒸気を気水分離する。
この運転状態で排熱利用設備の熱負荷が変動した場合に
は、後段側の冷却器の出口端で検出した改質ガス,排空
気の温度を基に冷却器に流す冷媒(冷却水)の流量を制
御するなどして改質ガス,排空気の凝縮温度をほぼ一定
に保つ。
In the above structure, when operating the exhaust heat utilization equipment (cooling, heating equipment), the valve of the bypass path is closed,
After passing the high-temperature reformed gas and exhaust air through the exhaust heat recovery heat exchanger to recover the exhaust heat, the cooling temperature is adjusted by the reformed gas cooler or exhaust air cooler on the subsequent stage. The temperature is lowered to the predetermined condensing temperature (80 ° C) by the reforming gas,
Excess water vapor contained in the exhaust air is separated into steam and water.
When the heat load of the exhaust heat utilization equipment fluctuates in this operating state, the refrigerant (cooling water) flowing to the cooler is changed based on the temperatures of the reformed gas and the exhaust air detected at the outlet end of the cooler on the subsequent stage. The condensing temperature of the reformed gas and exhaust air is kept almost constant by controlling the flow rate.

【0016】一方、排熱利用設備備の運転を停止する場
合には、排熱回収用熱交換器の入口,出口弁を閉じると
ともに、バイパス路の弁を開いて高温の改質ガス,排空
気を排熱回収用熱交換器を迂回して後段側の改質ガス冷
却器,排空気冷却に直接通流させ、かつこれら冷却器で
冷媒流量制御を行って改質ガス,排空気を所定の凝縮温
度まで冷却する。
On the other hand, when the operation of the equipment for utilizing exhaust heat is stopped, the inlet and outlet valves of the heat exchanger for exhaust heat recovery are closed and the valve of the bypass passage is opened so that the high temperature reformed gas and exhaust air can be discharged. To bypass the exhaust heat recovery heat exchanger to directly flow to the reformed gas cooler and exhaust air cooling on the latter stage side, and control the refrigerant flow rate with these coolers to control the reformed gas and exhaust air to a predetermined level. Cool to condensation temperature.

【0017】これにより、排熱利用機器の種類,その利
用温度、および排熱利用機器の熱負荷変動に左右される
たとなく、排熱回収用熱交換器を介して必要な温度で熱
回収を行いつつ、後段側の冷却器での冷却温度制御によ
り改質ガス,排空気を燃料電池のプロセスで要求される
適正温度に冷却して水蒸気の気水分離を行うことができ
る。
Thus, heat recovery at a required temperature can be performed through the exhaust heat recovery heat exchanger without being influenced by the type of the exhaust heat utilization device, its utilization temperature, and the heat load fluctuation of the exhaust heat utilization device. While performing, the reformed gas and the exhaust air can be cooled to an appropriate temperature required in the process of the fuel cell by the cooling temperature control in the cooler on the latter stage side to separate the steam from the steam.

【0018】また、排熱回収用熱交換器にバイパス路を
設け、排熱利用機器の停止時には排熱回収用熱交換器へ
のガス通流を止めてバイパス路を迂回させることによ
り、スケール(水垢)の発生,および熱交換器の水沸騰
による破損などのトラブルが防げる。
Further, by providing a bypass passage in the exhaust heat recovery heat exchanger and stopping the gas flow to the exhaust heat recovery heat exchanger to bypass the bypass passage when the exhaust heat utilization equipment is stopped, the scale ( Problems such as generation of water stains and damage due to boiling water in the heat exchanger can be prevented.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は燃料電池発電システムのプラント系統図で
あり、図において、1は燃料電池、2は燃料改質器、3
は燃料改質器2で水蒸気改質した改質ガスを燃料電池1
の燃料極1aに供給する改質ガス供給ライン、4は燃料
電池1の空気極1bから引出した排空気ラインであり、
改質ガス供給ライン3には燃料改質器2側から順に熱交
換器5,排熱回収用熱交換器6,改質ガス冷却器7,お
よび気水分離器8が接続されている。また、排空気ライ
ン4には燃料電池1側から順に熱交換器9,排熱回収用
熱交換器10,排空気冷却器11,および気水分離器1
2が接続されている。なお、図示されてないが前記の排
熱回収用熱交換器6,10の二次側には排熱利用設備と
して温水焚き吸収式冷凍機,温水暖房器などが接続され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plant system diagram of a fuel cell power generation system, in which 1 is a fuel cell, 2 is a fuel reformer, and 3 is a fuel reformer.
Is the reformed gas steam-reformed by the fuel reformer 2 in the fuel cell 1
The reformed gas supply line 4 for supplying the fuel electrode 1a of the fuel cell 1a to the exhaust electrode 1b of the fuel cell 1
A heat exchanger 5, an exhaust heat recovery heat exchanger 6, a reformed gas cooler 7, and a steam separator 8 are sequentially connected to the reformed gas supply line 3 from the fuel reformer 2 side. In the exhaust air line 4, a heat exchanger 9, an exhaust heat recovery heat exchanger 10, an exhaust air cooler 11, and a steam separator 1 are arranged in this order from the fuel cell 1 side.
2 is connected. Although not shown, hot water-fired absorption type refrigerators, hot water heaters, etc. are connected to the secondary sides of the heat exchangers 6 and 10 for recovering exhaust heat as waste heat utilization equipment.

【0020】かかる燃料電池発電システムにおいて、周
知のように原燃料(天然ガス)は燃料改質器2で水蒸気
改質された後、さらに改質ガス供給ライン3を通じて過
剰な水蒸気を含む高温の改質ガスを冷却,気水分離した
上で燃料電池1の燃料極1aに供給され、ブロア13を
通じて空気極1bに供給された空気との電極反応で発電
する。また、燃料電池1の燃料極1aから出たオフガス
は燃料改質器2のバーナ2aへ燃料として供給される。
一方、空気極1bから出た高温の排空気は、排空気ライ
ン4で冷却,気水分離された後、燃料改質器2のバーナ
2aへ燃焼空気として供給される。さらに、排熱回収用
熱交換器6,10の二次側で回収した熱は排熱利用設備
(冷,暖房機器)に供給して排熱利用される。
In such a fuel cell power generation system, as is well known, after the raw fuel (natural gas) is steam-reformed by the fuel reformer 2, the reformed gas supply line 3 is used to further reform the high-temperature fuel containing excess steam. After the quality gas is cooled and separated into water and water, it is supplied to the fuel electrode 1a of the fuel cell 1 and the electrode reaction with the air supplied to the air electrode 1b through the blower 13 generates electricity. The off gas emitted from the fuel electrode 1a of the fuel cell 1 is supplied to the burner 2a of the fuel reformer 2 as fuel.
On the other hand, the high-temperature exhaust air discharged from the air electrode 1b is cooled in the exhaust air line 4 and separated into water and steam, and then supplied to the burner 2a of the fuel reformer 2 as combustion air. Furthermore, the heat recovered on the secondary side of the heat exchangers 6 and 10 for recovering exhaust heat is supplied to the exhaust heat utilization equipment (cooling and heating equipment) for exhaust heat utilization.

【0021】一方、前記の排熱回収用熱交換器6,10
に対しては、本発明により、熱交換器を迂回するバイパ
ス路6a,10aがそれぞれ並列接続されており、かつ
バイパス路6a,10a,および排熱回収用熱交換器
6,10の入口,出口側にはそれぞれガスしゃ断弁6
b,6c,6d,および10b,10c,10dが設け
てある。また、前記の改質ガス冷却器7,および排空気
冷却器11は、二次側の冷却水(冷媒)供給ラインに流
量制御弁7a,11aを設け、冷却器の出口側に接続し
たガス温度調節器7b,11bの信号を基に冷却水の流
量制御を行って、気水分離器8,12へ供給するガ改質
ガス,排空気の温度を所定の温度(約80℃)に保つよ
うに温度制御する。なお、図示例のほかに、冷却器7,
11の一次側にバイパス路を設け、冷却水量を一定のま
まバイパス路に流すガス流量を調節して改質ガス,排空
気を所定温度に制御する方法もある。
On the other hand, the heat exchangers 6 and 10 for exhaust heat recovery
In contrast, according to the present invention, the bypass passages 6a and 10a bypassing the heat exchanger are connected in parallel, and the bypass passages 6a and 10a and the exhaust heat recovery heat exchangers 6 and 10 have inlets and outlets. Gas shutoff valve 6 on each side
b, 6c, 6d and 10b, 10c, 10d are provided. Further, the reformed gas cooler 7 and the exhaust air cooler 11 are provided with flow rate control valves 7a and 11a in the cooling water (refrigerant) supply line on the secondary side, and the gas temperature is connected to the outlet side of the cooler. The flow rate of the cooling water is controlled based on the signals from the regulators 7b and 11b so that the temperatures of the gas reforming gas and the exhaust air supplied to the steam separators 8 and 12 are maintained at a predetermined temperature (about 80 ° C.). To control the temperature. In addition to the illustrated example, the cooler 7,
There is also a method in which a bypass passage is provided on the primary side of 11 and the reforming gas and exhaust air are controlled to a predetermined temperature by adjusting the flow rate of the gas flowing through the bypass passage while keeping the cooling water amount constant.

【0022】そして、排熱利用設備の運転して排熱回収
する場合には、前記した排熱回収用熱交換器6,10の
バイパス路6a,10aに接続したガスしゃ断弁6b,
10bを閉じ、高温の改質ガス,排空気を排熱回収用熱
交換器6,10に通流させて熱回収を行った後、後段の
改質ガス冷却器7,排空気冷却器11による冷却温度制
御により所定の温度(80℃)に冷却して過剰な水蒸気
を凝縮させ、さらに気水分離器8,12で気水分離す
る。なお、排熱利用設備側での熱負荷変動が生じた場合
でも、これに相応して改質ガス冷却器7,排空気冷却器
11の冷却水流量を制御して改質ガス,排空気の凝縮温
度を一定に保つ。
When the exhaust heat utilization equipment is operated to recover the exhaust heat, the gas cutoff valve 6b connected to the bypass passages 6a, 10a of the exhaust heat recovery heat exchangers 6, 10 described above,
After 10b is closed and high-temperature reformed gas and exhaust air are passed through the heat exchangers 6 and 10 for exhaust heat recovery to recover heat, the reformed gas cooler 7 and the exhaust air cooler 11 in the latter stage are used. It is cooled to a predetermined temperature (80 ° C.) by controlling the cooling temperature to condense excess steam, and further steam-water separators 8 and 12 separate the steam. Even if a heat load fluctuation occurs on the side of the exhaust heat utilization equipment, the flow rate of the cooling water of the reformed gas cooler 7 and the exhaust air cooler 11 is controlled accordingly to control the reformed gas and the exhaust air. Keep the condensing temperature constant.

【0023】一方、排熱利用設備の運転を停止(春期,
秋期などの季節に冷房,暖房運転を停止する)した際に
は、排熱回収用熱交換器6,10の入口,出口側のガス
しゃ断弁6c,6d,10c,10dを閉じ、バイパス
路6a,10aのガスしゃ断弁6b,10bを開いて改
質ガス,排空気の全量をバイパス路6a,10aを経由
して後段側の改質ガス冷却器7,排空気冷却器11に通
流させ、ここで温度制御を行って所定のガス温度に冷却
する。
On the other hand, the operation of the waste heat utilization equipment is stopped (in spring,
When the cooling and heating operations are stopped in the season such as autumn, the gas cutoff valves 6c, 6d, 10c, 10d on the inlet and outlet sides of the exhaust heat recovery heat exchangers 6, 10 are closed and the bypass line 6a is closed. , 10a to open the gas shutoff valves 6b and 10b to allow the entire amount of the reformed gas and exhaust air to flow to the reformed gas cooler 7 and the exhaust air cooler 11 on the subsequent stage via the bypass paths 6a and 10a. Here, temperature control is performed to cool to a predetermined gas temperature.

【0024】なお、図示実施例では、改質ガス供給ライ
ン3,および排空気ライン4に排熱回収用熱交換器6,
10を設置して二箇所で排熱回収を行っているが、いず
れか一方でのみ排熱回収を行うこともできる。
In the illustrated embodiment, the reformed gas supply line 3 and the exhaust air line 4 have exhaust heat recovery heat exchangers 6, 6.
Although 10 is installed and exhaust heat is recovered at two places, it is also possible to recover exhaust heat only at either one.

【0025】[0025]

【発明の効果】以上述べたように、本発明によれば、燃
料電池発電システムのプラント系内で改質ガス供給ライ
ン,排空気ラインから排熱回収を行うように改質ガス冷
却器,排空気冷却器に排熱回収用熱交換器を併設したも
のにおいて、排熱回収用熱交換器を改質ガス冷却器,排
空気冷却器の前段側に設置した上で、排熱回収用熱交換
器を迂回するバイパス路,およびガス流路切換弁を設け
るるとともに、後段側の改質ガス冷却器,排空気冷却器
に冷却温度調節機能を持たせて構成したことにより、次
記の効果を奏する。
As described above, according to the present invention, the reformed gas cooler and the exhaust gas are recovered so that the exhaust heat is recovered from the reformed gas supply line and the exhaust air line in the plant system of the fuel cell power generation system. In an air cooler with an exhaust heat recovery heat exchanger, the exhaust heat recovery heat exchanger is installed in front of the reformed gas cooler and exhaust air cooler, and then the exhaust heat recovery heat exchanger is installed. By providing a bypass passage bypassing the air conditioner and a gas flow path switching valve, the reformed gas cooler and the exhaust air cooler on the rear stage side are configured to have a cooling temperature adjusting function. Play.

【0026】1)排熱回収用熱交換器を熱原とする冷
房,暖房器などの排熱利用設備の運転を停止する際に、
高温の改質ガス,排空気の全量を排熱回収用熱交換器を
迂回してバイパス路に通流させることにより、停止中の
排熱回収用熱交換器をスケール(水垢),並びに熱交換
器内の水沸騰による破損から安全に保護できる。 2)排熱回収用熱交換器を熱原として使用する排熱利用
設備の種類,利用温度,および排熱利用設備側の熱負荷
変動に左右されることなく、後段の改質ガス冷却器,排
空気冷却器での冷却温度制御によりその出口側のガス温
度を適正な所定温度に降温して改質ガス,排空気中に過
剰に含まれている水蒸気の凝縮,分離を行うことができ
る。
1) When stopping the operation of the exhaust heat utilization equipment such as an air conditioner and a heater using the exhaust heat recovery heat exchanger as a heat source,
The entire amount of high-temperature reformed gas and exhaust air bypasses the heat exchanger for exhaust heat recovery and flows through the bypass passage, so that the heat exchanger for exhaust heat recovery that is stopped is scale (scale) and heat exchange. Can be safely protected from damage due to boiling water in the vessel. 2) The reformed gas cooler in the subsequent stage, without being influenced by the type of exhaust heat utilization equipment that uses the heat exchanger for exhaust heat recovery as a heat source, the operating temperature, and the heat load fluctuations on the exhaust heat utilization equipment side, By controlling the cooling temperature in the exhaust air cooler, the gas temperature on the outlet side can be lowered to an appropriate predetermined temperature to condense and separate the reformed gas and steam excessively contained in the exhaust air.

【0027】そして、改質ガス供給系では燃料電池に供
給する改質ガスの温度を一定に保つことで、ガス温度の
変化に起因する改質ガスの水素濃度の変動を抑えること
ができ、これにより水素不足による燃料電池の特性低
下,および水素の過剰投入を避けて燃料電池を高い発電
効率で安定よく運転できる。また、排空気を気水分離後
に燃料改質器のバーナへ供給して燃焼空気として利用す
る場合でも、排空気の冷却温度を一定に保つことによ
り、排空気中の酸素濃度変動を抑えてバーナでの燃料/
酸素量比の安定確保が確保できるなどの効果が得られ
る。
In the reformed gas supply system, by keeping the temperature of the reformed gas supplied to the fuel cell constant, it is possible to suppress the fluctuation of the hydrogen concentration of the reformed gas due to the change of the gas temperature. As a result, it is possible to operate the fuel cell stably with high power generation efficiency while avoiding deterioration of fuel cell characteristics due to lack of hydrogen and avoiding excessive hydrogen injection. Even when the exhaust air is separated into steam and used as combustion air by supplying it to the burner of the fuel reformer, the cooling temperature of the exhaust air is kept constant to suppress the fluctuation of oxygen concentration in the exhaust air. Fuel at
It is possible to obtain an effect that a stable oxygen content ratio can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による燃料電池発電システムの
プラント系統図
FIG. 1 is a plant system diagram of a fuel cell power generation system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 燃料改質器 2a バーナ 3 改質ガス供給ライン 4 排空気ライン 6 排熱回収用熱交換器 6a バイパス路 6b,6c,6d ガスしゃ断弁 7 改質ガス冷却器 8,12 気水分離器 10 排熱回収用熱交換器 10a バイパス路 10b,10c,10d ガスしゃ断弁 11 排空気冷却器 1 Fuel Cell 2 Fuel Reformer 2a Burner 3 Reformed Gas Supply Line 4 Exhaust Air Line 6 Exhaust Heat Recovery Heat Exchanger 6a Bypass Path 6b, 6c, 6d Gas Cutoff Valve 7 Reformed Gas Cooler 8, 12 Steam Separator 10 Heat exchanger for exhaust heat recovery 10a Bypass passages 10b, 10c, 10d Gas cutoff valve 11 Exhaust air cooler

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】燃料電池の燃料極,空気極に対し、燃料改
質装置を経て改質した水素リッチな改質ガス,空気を供
給して発電する燃料電池発電システムであり、燃料電池
への改質ガス供給ラインに気水分離器と組合わせて改質
ガス中の過剰な水蒸気を凝縮させる改質ガス冷却器を備
えたものにおいて、前記改質ガス冷却器を冷却温度調節
機能付きの熱交換器とし、かつその前段に冷,暖房など
の排熱利用設備の熱源となる排熱回収用熱交換器,およ
び該排熱回収用熱交換器の未使用時に改質ガスを当該熱
交換器を迂回して後段の改質ガス冷却器に通流させるバ
イパス路を設けたことを特徴とする燃料電池発電システ
ム。
1. A fuel cell power generation system for generating electric power by supplying hydrogen-rich reformed gas reformed through a fuel reforming device and air to a fuel electrode and an air electrode of a fuel cell. In a reformed gas supply line equipped with a reformed gas cooler for condensing excess steam in the reformed gas in combination with a steam separator, the reformed gas cooler is equipped with a cooling temperature control function. A heat exchanger for an exhaust heat recovery, which serves as a heat exchanger and a heat source for exhaust heat utilization equipment such as cooling and heating, and a reformed gas when the exhaust heat recovery heat exchanger is not in use A fuel cell power generation system, characterized in that a bypass path is provided for bypassing the gas and flowing to the reformed gas cooler in the subsequent stage.
【請求項2】燃料電池の燃料極,空気極に対し、燃料改
質装置を経て改質した水素リッチな改質ガス,空気を供
給して発電する燃料電池発電システムであり、燃料電池
から引出した排空気ラインには気水分離器と組合わせて
排空気中の過剰な水蒸気を凝縮させる排空気冷却器を備
えたものにおいて、前記排空気冷却器を冷却温度調節機
能付き熱交換器とし、かつその前段に冷,暖房などの排
熱利用設備の熱源となる排熱回収用熱交換器,および該
排熱回収用熱交換器の未使用時に排空気を当該熱交換器
を迂回して後段の排空気冷却器に通流させるバイパス路
を設けたことを特徴とする燃料電池発電システム。
2. A fuel cell power generation system for supplying power to a fuel electrode and an air electrode of a fuel cell by supplying hydrogen-rich reformed gas reformed through a fuel reforming device and air, which is drawn from the fuel cell. In the exhaust air line equipped with an exhaust air cooler for condensing excess water vapor in the exhaust air in combination with a steam separator, the exhaust air cooler is a heat exchanger with a cooling temperature control function, In addition, a heat exchanger for exhaust heat recovery, which is a heat source for exhaust heat utilization equipment such as cooling and heating, and exhaust air bypasses the heat exchanger when the heat exchanger for exhaust heat recovery is not in use The fuel cell power generation system is characterized in that a bypass passage is provided to allow the exhaust air cooler to flow.
【請求項3】請求項1,または2記載の燃料電池発電シ
ステムにおいて、排熱回収用熱交換器に対してそのバイ
パス路との間にガス流路切換弁を設けたことを特徴とす
る燃料電池発電システム。
3. The fuel cell power generation system according to claim 1 or 2, wherein a gas flow path switching valve is provided between the exhaust heat recovery heat exchanger and the bypass path thereof. Battery power generation system.
JP7041475A 1995-03-01 1995-03-01 Fuel cell power generating system Pending JPH08236132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041475A JPH08236132A (en) 1995-03-01 1995-03-01 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041475A JPH08236132A (en) 1995-03-01 1995-03-01 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH08236132A true JPH08236132A (en) 1996-09-13

Family

ID=12609393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041475A Pending JPH08236132A (en) 1995-03-01 1995-03-01 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH08236132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216823A (en) * 2001-01-12 2002-08-02 Sanyo Electric Co Ltd Fuel cell
US20100279184A1 (en) * 2007-12-06 2010-11-04 Nissan Motor Co., Ltd. Solid electrolyte fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216823A (en) * 2001-01-12 2002-08-02 Sanyo Electric Co Ltd Fuel cell
US20100279184A1 (en) * 2007-12-06 2010-11-04 Nissan Motor Co., Ltd. Solid electrolyte fuel cell system
US8815461B2 (en) * 2007-12-06 2014-08-26 Nissan Motor Co., Ltd. Solid electrolyte fuel cell system

Similar Documents

Publication Publication Date Title
US7052787B2 (en) Solid high polymer type fuel cell power generating device
US8206857B2 (en) Fuel cell combined heat and power generation
US20100248047A1 (en) Fuel cell system
JP2005100873A (en) Fuel cell system
WO2008016257A1 (en) Fuel cell system and operating method
JP2006318750A (en) Fuel cell system
JP2019169419A (en) Fuel cell system
JP4690101B2 (en) Fuel cell system
JP2004127841A (en) Fuel battery cogeneration system
JP3240840B2 (en) Method of adjusting cooling water temperature of fuel cell power generator
JPH08236132A (en) Fuel cell power generating system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP2007242493A (en) Fuel cell system and its operation stopping method
JP2002025590A (en) Fuel cell power generating device and its control method
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
JP2006302792A (en) Fuel cell system
JPH05290865A (en) Fuel cell type power generation device
JP7073049B2 (en) Fuel cell and combined cycle
JP3728742B2 (en) Fuel cell equipment
JPH07130388A (en) Fuel cell generation plant
JP2000123851A (en) Fuel cell power generation plant
JP3670467B2 (en) Fuel cell power generation system
JPH0896822A (en) Fuel cell power generating system
JP2005044571A (en) Hybrid type fuel cell system
JP5212889B2 (en) Fuel cell system