JPH08236093A - Battery separator - Google Patents

Battery separator

Info

Publication number
JPH08236093A
JPH08236093A JP7063360A JP6336095A JPH08236093A JP H08236093 A JPH08236093 A JP H08236093A JP 7063360 A JP7063360 A JP 7063360A JP 6336095 A JP6336095 A JP 6336095A JP H08236093 A JPH08236093 A JP H08236093A
Authority
JP
Japan
Prior art keywords
film
battery separator
heat
separator
air permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7063360A
Other languages
Japanese (ja)
Inventor
Atsushi Hashimoto
淳 橋本
Yasuo Kaminami
康夫 神波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7063360A priority Critical patent/JPH08236093A/en
Publication of JPH08236093A publication Critical patent/JPH08236093A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE: To exhibit excellent safety when there is abnormality such as a short circuit by laminating porous films constituted of heat resistant resin having a melting point higher than polyolefine on both surfaces or a single surface of a polyolefine porous film. CONSTITUTION: A battery separator is composed of by laminating heat resistant films 2 having a melting point higher than polyolefine on both surfaces of a polyolefine microporous film 1. The heat resistant porous films 2 may be laminated only on a single surface of the polyolefine microporous film 1. The microporous film is preferable to be composed of an ultra high molecular weight polyethylene film on which air permeability is 20 to 2000sec/cc and a thickness is 5 to 50μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バッテリーセパレータ
ーに関するものであり、詳しくは、短絡などの異常時に
優れた安全性を発揮し得るバッテリーセパレーターに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator, and more particularly to a battery separator capable of exhibiting excellent safety when an abnormality such as a short circuit occurs.

【0002】[0002]

【従来の技術】近年、バッテリーの高容量化および高出
力化に伴い、短絡などの異常時に発生する安全上の問題
がクローズアップされている。例えば、電極体として、
正極と負極との間にセパレーターが介挿され且つ巻回さ
れた渦巻電極体を使用した非水電解液電池は、正極と負
極の対向面積を広くとることが出来るために優れている
が、例えば、外部短絡を起こした場合、次の様な安全上
の問題がある。すなわち、短絡電流が流れてジュール熱
が発生することにより、電池内の温度が上昇し、電池内
容物が噴出する危険がある。
2. Description of the Related Art In recent years, with the increase in capacity and output of batteries, safety problems that occur during abnormalities such as short circuits have been highlighted. For example, as an electrode body,
A non-aqueous electrolyte battery using a spirally wound electrode body in which a separator is inserted between a positive electrode and a negative electrode and wound is excellent because the facing area between the positive electrode and the negative electrode can be wide, but for example, When an external short circuit occurs, there are the following safety problems. That is, there is a risk that the temperature inside the battery rises due to the generation of Joule heat due to the flow of the short-circuit current, and the battery contents are ejected.

【0003】従来、上記の様な問題を解決するため、バ
ッテリーセパレーターについての改良が種々提案されて
いる。例えば、特開昭60−23954号公報には、微
多孔膜から成るセパレーターが提案されている。この提
案は、電池内の温度がセパレーターの融点に達するとセ
パレーターが溶融して微多孔を閉塞すると言うセパレー
ターの自己閉塞性を利用した方法である。すなわち、セ
パレーターの微多孔が高温で閉塞されると正負両極間の
イオンの移動が阻止されて電流が流れ難くなり、電池の
温度上昇が抑制される。
Conventionally, in order to solve the above problems, various improvements have been proposed for battery separators. For example, Japanese Patent Application Laid-Open No. 60-23954 proposes a separator composed of a microporous membrane. This proposal is a method utilizing the self-closing property of the separator, in which the separator melts when the temperature in the battery reaches the melting point of the separator and blocks the micropores. That is, if the micropores of the separator are blocked at high temperature, the movement of ions between the positive and negative electrodes is blocked, and it becomes difficult for current to flow, and the temperature rise of the battery is suppressed.

【0004】また、特開昭63−308866号公報に
は、融点の異なる複数種類の材質で形成された微多孔膜
から成るセパレーターが提案されている。具体的には、
ポリプロピレンの微多孔膜とポリエチレンの微多孔膜を
貼り合わせたセパレーターが提案されている。この提案
は、セパレーターの自己閉塞性を一層高めることを目的
としている。
Further, Japanese Patent Laid-Open No. 63-308866 proposes a separator composed of a microporous film made of a plurality of kinds of materials having different melting points. In particular,
A separator in which a polypropylene microporous film and a polyethylene microporous film are bonded together has been proposed. This proposal aims at further enhancing the self-closing property of the separator.

【0005】また、特開平4−154043号公報に
は、a層、b層、c層の3層構造を有し、a層およびc
層は、合成樹脂製の微多孔膜または不織布であり、b層
は、低融点樹脂の微粒子である、セパレーターが提案さ
れている。この提案は、セパレーターの自己閉塞性と共
にセパレーターが溶融しながらも電池内の温度がより高
温となるまで正負両極間の絶縁を維持することが必要で
あるとの観点に基づく。
Further, Japanese Patent Laid-Open No. 154043/1992 has a three-layer structure of an a layer, a b layer and a c layer.
A separator has been proposed in which the layer is a microporous membrane or a nonwoven fabric made of synthetic resin, and the layer b is fine particles of a low melting point resin. This proposal is based on the viewpoint that it is necessary to maintain the insulation between the positive and negative electrodes until the temperature in the battery becomes higher while the separator melts together with the self-closing property of the separator.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本発明
者等の知見によれば、短絡などの異常時に優れた安全性
を発揮し得るためには、高温におけるセパレーターの自
己閉塞性と共に耐膜破裂性(非破壊性)が重要である
が、特開平4−154043号公報によって提案された
セパレーターでは、セパレーターの耐膜破裂性は充分と
は言えない。
However, according to the findings of the present inventors, in order to exhibit excellent safety in the event of an abnormality such as a short circuit, the self-closing property of the separator at high temperature and the film rupture resistance are high. (Non-destructiveness) is important, but the separator proposed by JP-A-4-154043 cannot be said to have sufficient resistance to membrane rupture.

【0007】本発明は、上記実情に鑑みなされたもので
あり、その目的は、セパレーターの高温における自己閉
塞性と共に更に高温での耐膜破裂性(非破壊性)を改良
し、短絡などの異常時に優れた安全性を発揮し得るバッ
テリーセパレーターを提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to improve the self-closing property of a separator at a high temperature as well as the film rupture resistance (non-destructiveness) at a higher temperature and to prevent abnormalities such as a short circuit. It is to provide a battery separator that can sometimes exhibit excellent safety.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明の要旨
は、ポリオレフィン製微多孔質膜の両面または片面に微
多孔質膜を構成するポリオレフィンよりも高い融点を有
する耐熱性樹脂にて構成された多孔フイルムをラミネー
トして成ることを特徴とするバッテリーセパレーターに
存する。
Means for Solving the Problems That is, the gist of the present invention is to use a heat-resistant resin having a melting point higher than that of the polyolefin constituting the microporous membrane on both or one side of the polyolefin microporous membrane. The battery separator is characterized by being formed by laminating porous films.

【0009】[0009]

【作用】ポリオレフィン製微多孔質膜は、電池内の温度
がセパレーターの融点に達した際に自己閉塞性を発揮
し、一方、耐熱性樹脂にて構成された多孔フイルムは、
ポリオレフィン製微多孔質膜の自己閉塞性を損なうこと
なく、更に高温でのセパレーター自体の耐膜破裂性(非
破壊性)を発揮して陽極と陰極との隔膜の機能を維持す
る。
[Function] The polyolefin microporous film exhibits self-closing property when the temperature in the battery reaches the melting point of the separator, while the porous film made of heat-resistant resin is
Without deteriorating the self-closing property of the polyolefin microporous film, the separator itself exhibits the film rupture resistance (non-destructive property) at high temperature to maintain the function of the diaphragm between the anode and the cathode.

【0010】以下、本発明を添付図面に基づいて詳細に
説明する。図1は、本発明のバッテリーセパレーターの
一例の断面を示す模式図である。図中、(1)はポリオ
レフィン製微多孔質膜、(2)は耐熱性樹脂にて構成さ
れた多孔フイルム(耐熱性多孔フイルムと略記する)を
表す。
The present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a schematic view showing a cross section of an example of the battery separator of the present invention. In the figure, (1) represents a polyolefin microporous film, and (2) represents a porous film made of a heat-resistant resin (abbreviated as heat-resistant porous film).

【0011】ポリオレフィン製微多孔質膜(1)として
は、ポリエチレン製のものが好適に使用される。微多孔
質膜の構造としては、微細な連通孔から成る複雑な網状
構造が好適である。また、ポリオレフィン製微多孔質膜
(1)の平均孔径は、通常0.05〜5μm、好ましく
は0.05〜1μmとされ、透気度は、20〜2,00
0秒/ccの範囲が好ましい。ポリオレフィン製微多孔
質膜(1)の厚さは、5〜50μmの範囲が好ましい。
上記の各規定は、ポリオレフィン製微多孔質膜(1)の
自己閉塞性の観点から選択されたものである。
Polyethylene microporous membrane (1) is preferably used as polyethylene microporous membrane (1). As the structure of the microporous membrane, a complicated network structure composed of fine communication holes is suitable. The average pore diameter of the polyolefin microporous membrane (1) is usually 0.05 to 5 μm, preferably 0.05 to 1 μm, and the air permeability is 20 to 2,000.
The range of 0 second / cc is preferable. The thickness of the polyolefin microporous membrane (1) is preferably in the range of 5 to 50 μm.
Each of the above rules is selected from the viewpoint of the self-closing property of the polyolefin microporous film (1).

【0012】ポリオレフィン製微多孔質膜(1)は、従
来公知の各種の方法によって得ることが出来るが、例え
ば、超高分子量ポリエチレン及び可塑剤から成るフイル
ムを得、これから可塑剤を抽出除去する方法は、好適な
方法の一つである。超高分子量ポリエチレンとしては、
通常、分子量が50〜400万のものが使用され、可塑
剤としては、ステアリルアルコール、セリルアルコール
等の高級脂肪族アルコール、n−デカン、n−ドデカン
等のn−アルカン、流動パラフィン、灯油、パラフィン
ワックス等が使用される。
The microporous polyolefin membrane (1) can be obtained by various conventionally known methods. For example, a film comprising ultrahigh molecular weight polyethylene and a plasticizer is obtained, and the plasticizer is extracted and removed therefrom. Is one of the preferred methods. For ultra high molecular weight polyethylene,
Usually, those having a molecular weight of 500 to 4,000,000 are used, and as the plasticizer, higher aliphatic alcohols such as stearyl alcohol and ceryl alcohol, n-alkanes such as n-decane and n-dodecane, liquid paraffin, kerosene, and paraffin. Wax or the like is used.

【0013】可塑剤の使用割合は、超高分子量ポリエチ
レンと可塑剤の合計量に対する割合として、通常40〜
95重量%とされる。超高分子量ポリエチレン及び可塑
剤から成る組成物のフイルム化は、公知の押出機による
押出成形方法に従ってTダイ又はインフレチューブ法な
ど行われるが、必要に応じ、一軸または二軸延伸法にっ
て延伸してもよい。可塑剤の抽出除去は、例えば、エタ
ノール、イソプロパノール、ヘキサン等の溶媒中にフイ
ルムを浸漬することにより行うことが出来る。
The proportion of the plasticizer used is usually 40 to 40 as a proportion of the total amount of the ultrahigh molecular weight polyethylene and the plasticizer.
It is set to 95% by weight. Film formation of a composition composed of ultra-high molecular weight polyethylene and a plasticizer is performed by a T-die or inflation tube method according to a known extrusion molding method using an extruder, and if necessary, it may be drawn by a uniaxial or biaxial drawing method. You may. Extraction and removal of the plasticizer can be carried out, for example, by immersing the film in a solvent such as ethanol, isopropanol or hexane.

【0014】耐熱性多孔フイルム(2)としては、ポリ
エステル、特にはポリエチレンテレフタレートの延伸フ
イルムが好適に使用される。また、ポリオレフィン製微
多孔質膜(1)がポリエチレンにて構成される場合は、
ポリ(3−メチル−ブテン−1)の延伸フイルムも好適
に使用される。何れにしても耐熱性多孔フイルム(2)
としては融点が200℃以上のフイルムが好適に使用さ
れる。耐熱性多孔フイルム(2)の平均孔径は、通常
0.1〜50μm、好ましくは10〜30μmとされ、
透気度は、5〜500秒/ccの範囲が好ましい。耐熱
性多孔フイルム(2)の厚さは5〜50μmの範囲が好
ましい。上記の各規定は、ポリオレフィン製微多孔質膜
(1)の自己閉塞性を損なわずに耐熱性多孔フイルム
(2)によるセパレーター自体の高温での耐膜破裂性
(非破壊性)を改良するとの観点から選択されたもので
ある。また、耐熱性多孔フイルム(2)に形成される孔
の形状は、実質的に円形状とするのが好ましい。ここ
に、「円形状」の語は、真円のみに限定されず、角張っ
た(エッヂ)部分を含まないことを条件として円状ない
しは長円状を含む。
As the heat resistant porous film (2), a stretched film of polyester, particularly polyethylene terephthalate, is preferably used. When the polyolefin microporous membrane (1) is made of polyethylene,
A stretched film of poly (3-methyl-butene-1) is also preferably used. Either way, heat resistant porous film (2)
As the film, a film having a melting point of 200 ° C. or higher is preferably used. The heat-resistant porous film (2) has an average pore size of usually 0.1 to 50 μm, preferably 10 to 30 μm,
The air permeability is preferably in the range of 5 to 500 seconds / cc. The thickness of the heat resistant porous film (2) is preferably in the range of 5 to 50 μm. Each of the above provisions is to improve the membrane rupture resistance (non-destructiveness) at high temperature of the separator itself by the heat resistant porous film (2) without impairing the self-closing property of the polyolefin microporous membrane (1). It was selected from a viewpoint. The shape of the holes formed in the heat resistant porous film (2) is preferably substantially circular. Here, the term “circular shape” is not limited to a perfect circle, and includes a circular shape or an elliptical shape provided that it does not include an angular (edge) portion.

【0015】上記の円形の孔は、例えば、感熱穿孔法、
フラッシュ穿孔法などによって容易に形成することが出
来る。感熱穿孔法においては、例えば、ロール間を走行
する耐熱性フイルムの上に例えば16ドット/mmの走
行ヒートバーを配置し、耐熱性フイルムにヒートバーを
接触させて穿孔して耐熱性多孔フイルムとする。また、
フラッシュ穿孔法においては、例えば、特公昭58−2
4454号公報に記載の様な熱透孔プラスチックシート
の上に耐熱性フイルムをラミネートし、耐熱性フイルム
の上にパターン原紙を載置し、パターン原紙の上からキ
セノンランプを照射して耐熱性フイルムに穿孔部を形成
して耐熱性多孔フイルムとした後、耐熱性多孔フイルム
から熱透孔プラスチックシートを剥離する。さらに、上
記の他、レーザー穿孔法を採用することも出来る。レー
ザー穿孔法においては、耐熱性フイルムに変調レーザー
を走査させて耐熱性多孔フイルムとする。
The above-mentioned circular holes are formed, for example, by a heat-sensitive perforation method,
It can be easily formed by a flash punching method or the like. In the heat-sensitive perforation method, for example, a running heat bar of 16 dots / mm is arranged on a heat-resistant film running between rolls, and the heat-resistant film is brought into contact with the heat bar to punch the heat-resistant porous film. Also,
In the flash perforation method, for example, Japanese Patent Publication No. 58-2
No. 4454, a heat-resistant film is laminated on a heat-permeable plastic sheet, a pattern base paper is placed on the heat-resistant film, and a xenon lamp is irradiated onto the pattern base paper to heat-resistant film. After forming a perforated part in the heat-resistant porous film, the heat-permeable porous plastic sheet is peeled from the heat-resistant porous film. Further, in addition to the above, a laser perforation method can be adopted. In the laser perforation method, a heat-resistant film is scanned with a modulated laser to form a heat-resistant porous film.

【0016】上記の穿孔法によれば、形成される孔の形
状を円形状とし、また、孔の形状が円形であるが故に均
一に分布した孔の形成が容易である。また、円形状の孔
は、本発明のバッテリーセパレーターにより、正極と負
極との間にセパレーターが介挿され且つ巻回された渦巻
電極体を構成する場合にも有利である。すなわち、渦巻
電極体は、バッテリーセパレーターの両面に正極剤層と
陰極剤層を形成した後に渦巻き状に巻回して成形される
が、耐熱性多孔フイルムの孔の形状が例えば角張った部
分を有する形状の場合は上記の巻回時の張力により角張
った部分から裂け目(クラック)を生じる虞がある。こ
れに対し、耐熱性多孔フイルムの孔の形状が円形の場合
は、上記の様な裂け目(クラック)を生じる可能性は殆
どない。
According to the above-mentioned perforation method, the holes formed are circular, and the holes are circular, so that it is easy to form uniformly distributed holes. The circular hole is also advantageous when the battery separator of the present invention constitutes a spirally wound electrode body in which a separator is inserted between a positive electrode and a negative electrode and wound. That is, a spirally wound electrode body is formed by forming a positive electrode material layer and a negative electrode material layer on both surfaces of a battery separator and then spirally winding the same. In this case, the tension at the time of winding may cause a crack in the angular portion. On the other hand, when the heat-resistant porous film has circular holes, there is almost no possibility of causing the cracks as described above.

【0017】図示したバッテリーセパレーターは、ポリ
オレフィン製微多孔質膜(1)の両面に耐熱性多孔フイ
ルム(2)をラミネートとして構成されているが、耐熱
性多孔フイルム(2)は、ポリオレフィン製微多孔質膜
(1)の片面のみにラミネートしてもよい。ラミネート
の方法としては、単なるドライラミネーション、実質的
に孔を塞ぐことのない、接着剤を用いたロール圧着ラミ
ネーション、溶融ラミネーション等を適宜採用すること
が出来る。また、低融点の熱可塑性樹脂の粉末を散布し
た耐熱性多孔フイルム(2)の表面にポリオレフィン製
微多孔質膜(1)を重ねた後、熱可塑性樹脂の粉末を溶
融させて実質的に孔を塞ぐことなくラミネートする方法
も好適に採用し得る。
In the battery separator shown in the figure, a heat-resistant porous film (2) is laminated on both surfaces of a polyolefin microporous membrane (1). The heat-resistant porous film (2) is made of polyolefin microporous film. It may be laminated on only one surface of the membrane (1). As a laminating method, simple dry lamination, roll compression lamination using an adhesive that does not substantially close the holes, melt lamination, and the like can be appropriately adopted. Moreover, after overlaying the polyolefin microporous film (1) on the surface of the heat-resistant porous film (2) sprinkled with the low melting point thermoplastic resin powder, the thermoplastic resin powder is melted to substantially form pores. A method of laminating without blocking the film can also be suitably adopted.

【0018】上記のラミネート方法は、ポリオレフィン
製微多孔質膜(1)の両面または片面に耐熱性多孔フイ
ルム(2)を貼り合わせてラミネートフイルムとして構
成される本発明のバッテリーセパレーターの透気度がポ
リオレフィン製微多孔質膜(1)自体の透気度を損なわ
ず、従って、20〜2,000秒/ccの値を維持し得
る様に行うのが好ましい。なお、本発明において、透気
度は、「JIS P8117」に準拠して測定された値
を意味し、測定には、東洋精器社製の「B型ガーレ式デ
ンソメータ」(商品名)を使用することが出来る。
According to the above-mentioned laminating method, the air permeability of the battery separator of the present invention constituted by laminating the heat-resistant porous film (2) on both sides or one side of the polyolefin microporous membrane (1) has the air permeability. It is preferable to carry out so that the air permeability of the polyolefin microporous membrane (1) itself is not impaired and therefore the value of 20 to 2,000 seconds / cc can be maintained. In the present invention, the air permeability means a value measured according to "JIS P8117", and for the measurement, "B-type Gurley densometer" (trade name) manufactured by Toyo Seiki Co., Ltd. is used. You can do it.

【0019】[0019]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0020】実施例1 重量平均分子量(Mw)が90万のポリエチレン(融点
135℃)15重量部と流動パラフィン(64cst/
40℃)85重量部とを攪拌機付オートクレーブに充填
して20℃で30分間攪拌することにより、ポリエチレ
ンの均一溶液を得た。得られたポリエチレン溶液を直径
45mmの押出機のTダイから押し出して冷却ロールで
引き取りゲル状シートを成形した。
Example 1 15 parts by weight of polyethylene having a weight average molecular weight (Mw) of 900,000 (melting point: 135 ° C.) and liquid paraffin (64 cst /
(40 ° C.) 85 parts by weight was charged into an autoclave equipped with a stirrer and stirred at 20 ° C. for 30 minutes to obtain a uniform solution of polyethylene. The obtained polyethylene solution was extruded from a T die of an extruder having a diameter of 45 mm and drawn by a cooling roll to form a gel-like sheet.

【0021】上記のゲル状シートを二軸延伸機にセット
し、延伸温度115℃、延伸速度0.5m/分、延伸倍
率5×5(縦横)の条件下、同時二軸延伸を行った。得
られた延伸膜を塩化メチレンで洗浄して流動パラフィン
を抽出除去した後、乾燥してポリエチレン製微多孔膜を
得た。この微多孔膜の平均孔径は0.08μm、透気度
は900秒/cc、厚さは25μmであった。
The above gel-like sheet was set in a biaxial stretching machine and simultaneously biaxially stretched under the conditions of a stretching temperature of 115 ° C., a stretching speed of 0.5 m / min and a stretching ratio of 5 × 5 (longitudinal and transverse). The obtained stretched membrane was washed with methylene chloride to extract and remove liquid paraffin, and then dried to obtain a polyethylene microporous membrane. The average pore diameter of this microporous membrane was 0.08 μm, the air permeability was 900 seconds / cc, and the thickness was 25 μm.

【0022】一方、厚さ25μmの二軸延伸ポリエチレ
ンテレフタレート(PET:融点265℃)フイルムに
フラッシュ穿孔法を適用して平均孔径20μ円形状の孔
を4×105 個/cm2 形成し、多孔フイルムを得た。
このPET製多孔フイルムの透気度は250秒/ccで
あった。
On the other hand, a flash-piercing method was applied to a biaxially stretched polyethylene terephthalate (PET: melting point 265 ° C.) film having a thickness of 25 μm to form 4 × 10 5 circular holes with an average pore diameter of 20 μm / cm 2, and the porous I got a film.
The air permeability of this PET porous film was 250 seconds / cc.

【0023】ポリエチレン製微多孔膜の両面にPET製
多孔フイルムを重ね、加熱されたロール間に通過させ、
線圧5kg/cmで圧着し、本発明のバッテリーセパレ
ーターを得た。このセパレータの透気度は1,000秒
/ccであった。透気度測定はガーレー式装置によって
行った。
A PET porous film was placed on both sides of a polyethylene microporous membrane and passed between heated rolls,
The battery separator of the present invention was obtained by pressing with a linear pressure of 5 kg / cm. The air permeability of this separator was 1,000 seconds / cc. The air permeability was measured by a Gurley type device.

【0024】上記のバッテリーセパレーターについて次
の方法による耐熱破膜テストを行った。すなわち、15
0番のサンドペーパーの粗面上にバッテリーセパレータ
を載置して二枚のガラス板で挟み、オーブン中で加熱し
た。そして、125℃から200℃までの5℃間隔の各
温度において5分間保持し、各温度における破膜の有無
を確認した。また、同時にポリエチレン製微多孔膜の孔
の閉塞の有無についても確認した。
A heat-resistant film rupture test was conducted on the above battery separator by the following method. That is, 15
The battery separator was placed on the rough surface of No. 0 sandpaper, sandwiched between two glass plates, and heated in an oven. Then, it was held at each temperature of 5 ° C. from 125 ° C. to 200 ° C. for 5 minutes, and the presence or absence of film rupture at each temperature was confirmed. At the same time, it was also confirmed whether or not the pores of the polyethylene microporous film were clogged.

【0025】上記の耐熱破膜テストの結果、本発明のバ
ッテリーセパレーターは、135℃で微多孔膜の孔が閉
塞し、235℃まで破膜せずに膜の形状が維持されてい
た。比較のため、ポリエチレン製微多孔膜単独について
上記の耐熱破膜テストを行った結果、135℃で微多孔
膜が透明になり孔が閉塞した。そして、透気度を測定し
たところ、透気は観察されなかった。その後、更に温度
を上昇させたところ、155℃で破膜した。
As a result of the above heat-resistant membrane rupture test, in the battery separator of the present invention, the pores of the microporous membrane were closed at 135 ° C. and the membrane shape was maintained up to 235 ° C. without membrane rupture. For comparison, the above heat-resistant membrane rupture test was performed on the polyethylene microporous film alone, and as a result, the microporous film became transparent at 135 ° C. and the pores were blocked. Then, when the air permeability was measured, air permeability was not observed. After that, when the temperature was further raised, the film ruptured at 155 ° C.

【0026】[0026]

【発明の効果】以上説明した本発明によれば、ポリオレ
フィン製微多孔質膜の自己閉塞性を損なわずに高温での
耐膜破裂性(非破壊性)を改良したバッテリーセパレー
ターが提供されるが、斯かるバッテリーセパレーター
は、短絡などの異常時に優れた安全性を発揮し得る。
According to the present invention described above, there is provided a battery separator having improved resistance to membrane rupture (non-destructiveness) at high temperature without impairing the self-closing property of the polyolefin microporous membrane. Such a battery separator can exhibit excellent safety in the event of an abnormality such as a short circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のバッテリーセパレーターの一例の断面
を示す模式図である。
FIG. 1 is a schematic view showing a cross section of an example of a battery separator of the present invention.

【符号の説明】[Explanation of symbols]

1:ポリオレフィン製微多孔質膜 2:耐熱性多孔フイルム 1: Microporous polyolefin film 2: Heat-resistant porous film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン製微多孔質膜の両面また
は片面に微多孔質膜を構成するポリオレフィンよりも高
い融点を有する耐熱性樹脂にて構成された多孔フイルム
をラミネートして成ることを特徴とするバッテリーセパ
レーター。
1. A porous film made of a heat-resistant resin having a melting point higher than that of the polyolefin forming the microporous film is laminated on both sides or one side of the microporous film made of polyolefin. Battery separator.
【請求項2】 微多孔質膜が、透気度20〜2,000
秒/cc、厚さ5〜50μmの超高分子量ポリエチレン
フイルムから成る請求項1に記載のバッテリーセパレー
ター。
2. The microporous membrane has an air permeability of 20 to 2,000.
The battery separator according to claim 1, comprising an ultra high molecular weight polyethylene film having a thickness of 5 to 50 μm per second / cc.
【請求項3】 微多孔質膜が、超高分子量ポリエチレン
及び可塑剤を含有する樹脂組成物のフイルムから可塑剤
を抽出除去して得られたものである請求項1又は2に記
載のバッテリーセパレーター。
3. The battery separator according to claim 1, wherein the microporous membrane is obtained by extracting and removing the plasticizer from a film of a resin composition containing ultrahigh molecular weight polyethylene and the plasticizer. .
【請求項4】 多孔フイルムが、直径0.1〜50μm
の円形状の貫通孔を104 〜107 個/cm2 有し、透
気度5〜500秒/cc、厚さ5〜50μmである請求
項1〜3の何れかに記載のバッテリーセパレーター。
4. The porous film has a diameter of 0.1 to 50 μm.
The battery separator according to claim 1, which has 10 4 to 10 7 circular through holes / cm 2 , an air permeability of 5 to 500 seconds / cc, and a thickness of 5 to 50 μm.
【請求項5】 多孔フイルムの貫通孔が、感熱穿孔法、
フラッシュ穿孔法またはレーザー穿孔法によって形成さ
れたものである請求項1〜4の何れかに記載のバッテリ
ーセパレーター。
5. The heat sensitive perforation method is used for the through holes of the porous film,
The battery separator according to claim 1, which is formed by a flash perforation method or a laser perforation method.
【請求項6】 透気度が、20〜2,000秒/ccで
ある請求項1〜5の何れかに記載のバッテリーセパレー
ター。
6. The battery separator according to claim 1, which has an air permeability of 20 to 2,000 seconds / cc.
JP7063360A 1995-02-27 1995-02-27 Battery separator Withdrawn JPH08236093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7063360A JPH08236093A (en) 1995-02-27 1995-02-27 Battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7063360A JPH08236093A (en) 1995-02-27 1995-02-27 Battery separator

Publications (1)

Publication Number Publication Date
JPH08236093A true JPH08236093A (en) 1996-09-13

Family

ID=13227026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7063360A Withdrawn JPH08236093A (en) 1995-02-27 1995-02-27 Battery separator

Country Status (1)

Country Link
JP (1) JPH08236093A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323115A (en) * 1999-05-07 2000-11-24 Japan Storage Battery Co Ltd Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
JP2001183532A (en) * 1999-10-14 2001-07-06 Asahi Kasei Corp Light guide plate and method of producing the same
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
JP2002355938A (en) * 2001-05-30 2002-12-10 Tonen Chem Corp Composite film, its manufacturing method, and separator for battery using the same or filter
WO2003034517A1 (en) * 2001-10-16 2003-04-24 Enerland Co. Ltd. A separator for a lithium ion secondary battery, method for producing the same, and a lithium ion secondary battery using the same
JP2005041218A (en) * 2003-07-22 2005-02-17 Boeing Co:The Methods for forming pore in laminated material, laminated material with selected pore, structure with substantially selected porosity, and laminated panel; and high-strength panel
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2005268095A (en) * 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
KR100701758B1 (en) * 2004-09-03 2007-03-29 마쯔시다덴기산교 가부시키가이샤 Lithium ion secondary battery
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
US7759004B2 (en) * 2003-12-12 2010-07-20 Panasonic Corporation Electrode for lithium ion secondary batteries, lithium ion secondary battery using the same, and method for manufacturing the battery
JP4794104B2 (en) * 1999-09-13 2011-10-19 帝人株式会社 POLYMETHAPHENYLENEISOPHALAMIDE POLYMER MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SEPARATOR
JP2012502426A (en) * 2008-09-03 2012-01-26 エルジー・ケム・リミテッド Separator provided with porous coating layer and electrochemical device provided with the same
US8216721B2 (en) 2006-01-23 2012-07-10 Panasonic Corporation Sealed battery
WO2013009750A3 (en) * 2011-07-11 2013-06-13 California Institute Of Technology Novel separators for electrochemical systems
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
US9831043B2 (en) 2010-09-09 2017-11-28 California Institute Of Technology Electrochemical energy storage systems and methods
US9991492B2 (en) 2013-11-18 2018-06-05 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US11271214B2 (en) 2015-12-02 2022-03-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323115A (en) * 1999-05-07 2000-11-24 Japan Storage Battery Co Ltd Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2000079618A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Separator for cell, cell, and method for producing separator
US6723467B2 (en) 1999-06-22 2004-04-20 Mitsubishi Denki Kabushiki Kaisha Separator for battery and battery
JP4794104B2 (en) * 1999-09-13 2011-10-19 帝人株式会社 POLYMETHAPHENYLENEISOPHALAMIDE POLYMER MEMBRANE, PROCESS FOR PRODUCING THE SAME, AND SEPARATOR
JP2001183532A (en) * 1999-10-14 2001-07-06 Asahi Kasei Corp Light guide plate and method of producing the same
JP2002240215A (en) * 2001-02-22 2002-08-28 Tonen Chem Corp Composite film and its manufacturing method
JP2002355938A (en) * 2001-05-30 2002-12-10 Tonen Chem Corp Composite film, its manufacturing method, and separator for battery using the same or filter
WO2003034517A1 (en) * 2001-10-16 2003-04-24 Enerland Co. Ltd. A separator for a lithium ion secondary battery, method for producing the same, and a lithium ion secondary battery using the same
JP2005041218A (en) * 2003-07-22 2005-02-17 Boeing Co:The Methods for forming pore in laminated material, laminated material with selected pore, structure with substantially selected porosity, and laminated panel; and high-strength panel
US8057880B2 (en) 2003-07-22 2011-11-15 The Boeing Company Non-oxide selectively porous materials
US7759004B2 (en) * 2003-12-12 2010-07-20 Panasonic Corporation Electrode for lithium ion secondary batteries, lithium ion secondary battery using the same, and method for manufacturing the battery
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP4705334B2 (en) * 2004-03-19 2011-06-22 株式会社巴川製紙所 Separator for electronic parts and method for manufacturing the same
JP2005268095A (en) * 2004-03-19 2005-09-29 Tomoegawa Paper Co Ltd Separator for electronic component and manufacturing method thereof
US7638230B2 (en) 2004-09-03 2009-12-29 Panasonic Corporation Lithium ion secondary battery
KR100701758B1 (en) * 2004-09-03 2007-03-29 마쯔시다덴기산교 가부시키가이샤 Lithium ion secondary battery
US8216721B2 (en) 2006-01-23 2012-07-10 Panasonic Corporation Sealed battery
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2014017261A (en) * 2008-02-06 2014-01-30 Sony Corp Separator and battery including the same
JP2012502426A (en) * 2008-09-03 2012-01-26 エルジー・ケム・リミテッド Separator provided with porous coating layer and electrochemical device provided with the same
US9831043B2 (en) 2010-09-09 2017-11-28 California Institute Of Technology Electrochemical energy storage systems and methods
US9379368B2 (en) 2011-07-11 2016-06-28 California Institute Of Technology Electrochemical systems with electronically conductive layers
CN103650204A (en) * 2011-07-11 2014-03-19 加州理工学院 Novel separators for electrochemical systems
WO2013009750A3 (en) * 2011-07-11 2013-06-13 California Institute Of Technology Novel separators for electrochemical systems
US9954213B2 (en) 2011-07-11 2018-04-24 California Institute Of Technology Electrochemical systems with at least one electronically and ionically conductive layer
JP2018067543A (en) * 2011-07-11 2018-04-26 カリフォルニア インスティチュート オブ テクノロジー Novel separators for electrochemical systems
US10158110B2 (en) 2011-07-11 2018-12-18 California Institute Of Technology Separators for electrochemical systems
US10693117B2 (en) 2011-07-11 2020-06-23 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
US9991492B2 (en) 2013-11-18 2018-06-05 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
US11177537B2 (en) 2013-11-18 2021-11-16 California Institute Of Technology Separator enclosures for electrodes and electrochemical cells
US11271214B2 (en) 2015-12-02 2022-03-08 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells
US11894562B2 (en) 2015-12-02 2024-02-06 California Institute Of Technology Three-dimensional ion transport networks and current collectors for electrochemical cells

Similar Documents

Publication Publication Date Title
JPH08236093A (en) Battery separator
JP4931163B2 (en) Polyolefin microporous membrane
JP4098401B2 (en) Microporous membrane for battery separator made of polyolefin
US6127438A (en) Polyethylene microporous film and process for producing the same
JP3440176B2 (en) Method for producing cross-layer microporous membrane battery separator and battery separator produced thereby
JP3939778B2 (en) Battery separator
JP3960437B2 (en) Closed three-layer battery separator
JP6297685B2 (en) Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method
ES2435786T3 (en) Microporous membranes and procedures for preparing and using such membranes
JP4911723B2 (en) Polyethylene multilayer microporous membrane and battery separator and battery using the same
JP5450929B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US20100129720A1 (en) Polyolefin microporous membrane
WO2004020511A1 (en) Polyolefin microporous membrane and method of evaluating the same
CN110767864A (en) Multilayer hybrid battery separator for lithium ion secondary battery and method for manufacturing same
JP5202866B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP2015514812A (en) Polyolefin composite microporous membrane excellent in heat resistance and stability and method for producing the same
CA2615495A1 (en) Multi-layer, microporous polyolefin membrane and battery separator
JP2001357832A (en) Shutdown battery separator manufactured with blend of polymer and oligomer
KR20180108509A (en) Polyolefin microporous membrane and method for producing the polyolefin microporous membrane
JP5207569B2 (en) Lithium battery separator
JPH11207888A (en) Composite porous body
JP2008214426A (en) Finely porous polyolefin membrane
JP5164396B2 (en) Polyolefin microporous membrane
JP2009076350A (en) Separator, and manufacturing method thereof
JP2011063025A (en) Polyolefin-made microporous film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507