JP5164396B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP5164396B2
JP5164396B2 JP2007051343A JP2007051343A JP5164396B2 JP 5164396 B2 JP5164396 B2 JP 5164396B2 JP 2007051343 A JP2007051343 A JP 2007051343A JP 2007051343 A JP2007051343 A JP 2007051343A JP 5164396 B2 JP5164396 B2 JP 5164396B2
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin
polyolefin resin
stretching
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007051343A
Other languages
Japanese (ja)
Other versions
JP2008218085A (en
Inventor
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2007051343A priority Critical patent/JP5164396B2/en
Publication of JP2008218085A publication Critical patent/JP2008218085A/en
Application granted granted Critical
Publication of JP5164396B2 publication Critical patent/JP5164396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はポリオレフィン微多孔膜、その製造方法及びそれを用いた蓄電デバイス用セパレータに関する。   The present invention relates to a polyolefin microporous membrane, a method for producing the same, and a separator for an electricity storage device using the same.

微多孔膜は、様々な孔径、孔形状、孔数を有し、その特異な構造により発現され得る特性から幅広い分野に利用されている。例えば、孔径の違いによるふるい効果を利用した水処理や濃縮などに用いられる分離膜、微多孔化による大表面積と多孔空間を利用した吸水、吸油、脱臭用材に用いられる吸着シート、分子サイズの違いにより空気や水蒸気などは通すが水は通さないという特徴を利用した透湿防水シート、多孔空間に各種材料を充填することで多機能化し、燃料電池などに有用な高分子電解質膜や加湿膜、さらには液晶材料、電池材料として用いられている。
分離膜分野では、選択透過性の確保と初期透過量の維持は常々要求される課題である。そのため孔形状の最適化や、膜基材とろ過液との親和性制御が過去検討されているが、ろ過液、ろ過方法の多様化に伴い、膜基材には更なる改良が求められている。
近年では、省エネルギー化や省資源化の観点から、特にリチウムイオン二次電池(LIB)やリチウムイオンキャパシター(LIC)、電気二重層キャパシター(EDLC)などの蓄電デバイスの研究開発や用途展開の検討が積極的に行われている。これら蓄電デバイスには、正負極間の接触を防ぎ、イオンを透過させる機能を有するセパレータと呼ばれる電解液を保持した多孔膜が正負極間に設けられている。蓄電デバイスの使用用途に応じ、各様な性能が要求されている。
Microporous membranes have various pore diameters, pore shapes, and numbers of pores, and are used in a wide range of fields because of their characteristics that can be manifested by their unique structures. For example, separation membranes used for water treatment and concentration utilizing the sieving effect due to the difference in pore diameter, adsorption sheets used for water absorption, oil absorption, deodorizing materials utilizing large surface area and porous space due to microporosity, difference in molecular size Moisture permeable waterproof sheet using the feature that allows air and water vapor to pass through but not water, multi-functionalized by filling various materials in the porous space, polymer electrolyte membrane and humidifying membrane useful for fuel cells, etc. Furthermore, they are used as liquid crystal materials and battery materials.
In the separation membrane field, ensuring selective permeability and maintaining the initial permeation amount are always required issues. For this reason, optimization of the pore shape and affinity control between the membrane substrate and the filtrate have been studied in the past, but with the diversification of the filtrate and filtration method, further improvements have been required for the membrane substrate. Yes.
In recent years, research and development of energy storage devices such as lithium ion secondary batteries (LIB), lithium ion capacitors (LIC), electric double layer capacitors (EDLC), and application development have been studied from the viewpoint of energy and resource saving. It is being actively conducted. In these electricity storage devices, a porous film holding an electrolytic solution called a separator having a function of preventing contact between positive and negative electrodes and transmitting ions is provided between the positive and negative electrodes. Various performances are required depending on the intended use of the electricity storage device.

例えば、自動車用途等への展開としては高出力特性、高安全性が、パソコンや携帯電話用途等への展開としては更なる高容量化、高エネルギー密度化が、無停電電源装置(UPS)や電力貯蔵システム用途等への展開としては、高容量化、高信頼性などが、蓄電デバイスには求められている。蓄電デバイス構成部材の一つであるセパレータにも電気特性の向上と安全・信頼性の両立が強く求められているが、トレードオフな関係であり必ずしも十分に満足しうるものではなかった。
特許文献1では、濾過材や医療用衣料等の用途に適したフィルムとして、開放セル式のフィルムが提案されており、相互に結合し合っている伸長された多数の無孔性表面領域と多数の平行小繊維からなり、これらが実質的に直角の位置関係にある微孔性フィルムが開示されている。
For example, high output characteristics and high safety for automotive applications, etc., and higher capacity and higher energy density for applications such as personal computers and mobile phones, uninterruptible power supply (UPS) and As development for power storage system applications and the like, high capacity and high reliability are required for power storage devices. A separator, which is one of the storage device constituent members, is also strongly required to achieve both improved electrical characteristics and safety / reliability. However, this is a trade-off relationship and is not always satisfactory.
In Patent Document 1, an open cell film is proposed as a film suitable for applications such as filter media and medical clothing, and a large number of stretched non-porous surface regions and many bonded to each other. A microporous film comprising a plurality of parallel fibrils, which are substantially perpendicular to each other, is disclosed.

特許文献2では、無菌包装シート、コンデンサー用セパレータやバッテリーセパレータに適したフィルムとして、三次元網目構造と一方向に配列したフィブリルから構成されている微孔性ポリプロピレンフィルムが開示されている。
特許文献3では、ポリオレフィン樹脂、無機粒子、可塑剤を溶融混練し、シート状に成形したものを高倍率に二軸延伸し、可塑剤を抽出した微多孔膜が開示されている。本技術より開示されている微多孔膜は、高突刺強度と高温での耐短絡性を有し、電解液含浸性に優れることから蓄電池用セパレータとして適しているとしている。
特許文献4では、ポリオレフィン樹脂と無機粉体とで構成される多孔膜からなる非水電池用セパレータの製造方法が開示されている。本技術ではポリオレフィンの融点以上の温度下で延伸方向に5〜50%の緩和率にて熱処理することで低収縮を達成している。
特公昭55−32531号公報 特許第2503007号公報 WO2006−25323号公報 特開2001−266831号公報
Patent Document 2 discloses a microporous polypropylene film composed of a three-dimensional network structure and fibrils arranged in one direction as a film suitable for aseptic packaging sheets, capacitor separators and battery separators.
Patent Document 3 discloses a microporous membrane in which a polyolefin resin, inorganic particles, and a plasticizer are melt-kneaded and formed into a sheet shape, biaxially stretched at a high magnification, and the plasticizer is extracted. The microporous membrane disclosed in the present technology is said to be suitable as a separator for a storage battery because it has a high puncture strength and a short circuit resistance at high temperatures and is excellent in electrolyte impregnation.
Patent Document 4 discloses a method for producing a separator for a non-aqueous battery comprising a porous film composed of a polyolefin resin and an inorganic powder. In this technique, low shrinkage is achieved by heat treatment at a relaxation rate of 5 to 50% in the stretching direction at a temperature equal to or higher than the melting point of polyolefin.
Japanese Patent Publication No.55-32531 Japanese Patent No. 2503007 WO2006-25323 JP 2001-266831 A

しかしながら、上記従来技術で得られる膜は透過性と耐熱性の点で十分ではなかった。上記特許文献1で開示されている微孔性フィルムは、透過性は十分とは言い難い。また、高温下(例えば基材融点以上)の耐熱性に課題が残り、蓄電デバイス用セパレータとして使用された場合には、安全性に不安がある。上記特許文献2で開示されている微孔性フィルムは、孔形状の均一性には課題が残り、局所的な透過性能は広い分布を有するために、その結果、例えば蓄電デバイス用セパレータとして使用された場合には、イオンの移動が高透過性部分に集中するために、出力特性や長期的な特性維持が十分ではなかった。更に、基材のポリプロピレンの融点以下での延伸、または熱固定がなされており、融点以上の耐熱性が劣るために、蓄電デバイス用セパレータとして使用された場合には、安全性に不安がある。上記特許文献3の実施例では延伸温度は基材のポリエチレンの融点以下であり、収縮性に不安が残る。そのため、耐熱性の点で更なる改良が必要であった。また、本実施例での孔形状は、その製法よりフィブリルがランダムに配列した三次元網目構造であることが推測され、孔形状の均一性には課題が残り、局所的な透過性能は広い分布を有するために、その結果、例えば蓄電デバイス用セパレータとして使用された場合には、イオンの移動が高透過性部分に集中するために、出力特性や長期的な特性維持が十分ではなかった。上記特許文献4で開示されている熱処理すなわち、融点以上、かつ5〜50%の緩和率での熱処理では、透過性は大きく低減し、蓄電用セパレータとして使用した場合に、例えば出力特性等の電気特性に不安が残る。
本発明は、高透過性と耐熱性に優れた微多孔膜を提供することを目的とする。更に、透過性と耐久性が要求されるろ過膜、加湿膜等に適した微多孔膜や、出力特性等の電気特性と安全性に優れることが要求される蓄電池用セパレータ等として特に好適な微多孔膜を提供することを目的とする。
However, the membrane obtained by the above prior art is not sufficient in terms of permeability and heat resistance. It is difficult to say that the microporous film disclosed in Patent Document 1 has sufficient permeability. In addition, there remains a problem in heat resistance at high temperatures (for example, the melting point of the base material or higher), and there is concern about safety when used as a separator for an electricity storage device. The microporous film disclosed in Patent Document 2 has a problem in the uniformity of the pore shape, and the local permeation performance has a wide distribution. As a result, for example, it is used as a separator for an electricity storage device. In this case, since the movement of ions concentrates on the highly permeable part, the output characteristics and long-term characteristics cannot be maintained sufficiently. Further, the base material is stretched below the melting point of polypropylene or heat-set, and the heat resistance above the melting point is inferior. Therefore, when used as a power storage device separator, there is a concern about safety. In the Example of the above-mentioned Patent Document 3, the stretching temperature is lower than the melting point of the polyethylene as the base material, and there remains anxiety in shrinkability. Therefore, further improvement was necessary in terms of heat resistance. In addition, the hole shape in this example is presumed to be a three-dimensional network structure in which fibrils are randomly arranged by the manufacturing method, and there remains a problem in the uniformity of the hole shape, and the local permeation performance has a wide distribution. As a result, when used as, for example, a separator for an electricity storage device, the movement of ions concentrates on the highly permeable part, so that the output characteristics and long-term characteristics cannot be maintained sufficiently. In the heat treatment disclosed in Patent Document 4, that is, the heat treatment at a melting point or higher and a relaxation rate of 5 to 50%, the permeability is greatly reduced. Anxiety remains in the characteristics.
An object of the present invention is to provide a microporous membrane excellent in high permeability and heat resistance. Furthermore, microporous membranes suitable for filtration membranes and humidification membranes that require permeability and durability, and separators for storage batteries that are required to have excellent electrical characteristics such as output characteristics and safety, etc. An object is to provide a porous membrane.

本発明者は、ポリオレフィン樹脂と微細粒子を含有する島状構造体と、島状構造体間をつなぐフィブリルとを含み、フィブリルが実質的に一方向に配列していることを特徴とする微多孔膜が、高透過性と耐熱性を併せ持つことを見出し、本発明を為すに至った。
すなわち、本発明は下記の通りである。
(1)ポリオレフィン樹脂及び微細粒子を含有する島状構造体と、該島状構造体間をつなぐフィブリルとを含み、該フィブリルがポリオレフィン樹脂を含有し、実質的に一方向に配列し、該微細粒子が、無機粒子、前記ポリオレフィン樹脂よりも高い融点を有する有機粒子、又は融点を有さず、前記ポリオレフィン樹脂よりも高いガラス転移点を有する有機粒子であるポリオレフィン微多孔膜であって、実質的に上記島状構造体と、上記一方向に配列するフィブリルとからなるポリオレフィン微多孔膜
(2)微細粒子の一次粒径が、1nm以上1μm未満である上記(1)に記載のポリオレフィン微多孔膜。
(3)フィブリルが実質的に長さ方向に配列している上記(1)又は(2)に記載のポリオレフィン微多孔膜。
(4)上記(1)〜(3)のいずれかに記載のポリオレフィン微多孔膜の製造方法であって、ポリオレフィン樹脂及び微細粒子を含有する多孔シートを、下記式(a)及び(b)を満たす延伸温度で、少なくとも一軸方向に、少なくとも一回延伸するポリオレフィン微多孔膜の製造方法であって、前記多孔シートはポリオレフィン樹脂、微細粒子及び可塑剤を溶融混錬して成形されたシートから可塑剤を抽出して得られたものであり、且つ前記多孔シートの空孔率が25%以上90%以下であるポリオレフィン微多孔膜の製造方法。
(a)延伸温度Tme−5
(b)延伸温度>Tm
(但し、上記式(a)中のTmeは、示差走査熱量計にて測定される、多孔シート中のポリオレフィン樹脂のエンドセット温度を、同(b)中のTmは、示差走査熱量計にて測定される、多孔シート中のポリオレフィン樹脂の融点を各々示す。)
(5)上記(1)〜(3)のいずれかに記載のポリオレフィン微多孔膜からなる蓄電デバイス用セパレータ。
The inventor includes an island-like structure containing a polyolefin resin and fine particles, and fibrils connecting the island-like structures, and the fibrils are arranged substantially in one direction. The inventors have found that the membrane has both high permeability and heat resistance, and have made the present invention.
That is, the present invention is as follows.
(1) including an island-like structure containing a polyolefin resin and fine particles, and fibrils connecting the island-like structure, said fibrils contain a polyolefin resin, substantially arranged in one direction, the fine A polyolefin microporous membrane in which the particles are inorganic particles, organic particles having a melting point higher than that of the polyolefin resin, or organic particles having no melting point and a glass transition point higher than that of the polyolefin resin , A polyolefin microporous membrane comprising the island-like structures and the fibrils arranged in one direction .
(2) The polyolefin microporous membrane according to (1), wherein the primary particle size of the fine particles is 1 nm or more and less than 1 μm.
(3) The polyolefin microporous membrane according to (1) or (2), wherein the fibrils are arranged substantially in the length direction.
(4) The method for producing a polyolefin microporous membrane according to any one of (1) to (3) above, wherein a porous sheet containing a polyolefin resin and fine particles is represented by the following formulas (a) and (b): A method for producing a polyolefin microporous membrane that is stretched at least once in a uniaxial direction at a stretching temperature that satisfies the requirement, wherein the porous sheet is plasticized from a sheet formed by melt-kneading a polyolefin resin, fine particles, and a plasticizer. A method for producing a polyolefin microporous membrane obtained by extracting an agent and having a porosity of 25% or more and 90% or less of the porous sheet.
(A) Stretching temperature Tme-5
(B) Stretching temperature> Tm
(However, Tme in the above formula (a) is the end-set temperature of the polyolefin resin in the porous sheet measured with a differential scanning calorimeter, and Tm in (b) is with a differential scanning calorimeter. Each of the melting points of the polyolefin resin in the porous sheet to be measured is shown.)
(5) A separator for an electricity storage device comprising the polyolefin microporous film according to any one of (1) to (3) above.

本発明の微多孔膜は高透過性と耐熱性とを併せ持つ。そのため、本発明によれば、出力特性および安全性に優れることが要求される蓄電池用セパレータ等として特に好適である微多孔膜を提供することが出来る。   The microporous membrane of the present invention has both high permeability and heat resistance. Therefore, according to the present invention, it is possible to provide a microporous membrane that is particularly suitable as a separator for a storage battery that is required to have excellent output characteristics and safety.

まず、本発明の微多孔膜について、その好ましい形態を中心に説明する。
本発明における微多孔膜は、島状構造体と島状構造体間をつなぐフィブリルとを有する。島状構造体はポリオレフィン樹脂及び微細粒子を含有し、フィブリルはポリオレフィン樹脂を含有する。
微多孔膜100質量%中のポリオレフィン樹脂と微細粒子の総計含有量は、耐久性の点から50質量%以上であることが好ましく、ポリオレフィン樹脂と微細粒子の各含有量は耐熱性の点から10質量%以上であることが好ましい。特に、本発明の微多孔膜における微細粒子の含有量は20質量%以上80質量%以下が好ましく、より好ましくは20質量%以上60質量%以下であり、更に好ましくは40質量%以上60質量%以下である。微細粒子の含有量が20質量%以上の場合は、ポリオレフィン樹脂が溶融した際の増粘効果が更に大きく、耐熱性により優れるために好ましい。またポリオレフィン樹脂の融点より高温で延伸しても、良好な透過性を有する微多孔膜が得られやすいので好ましい。微細粒子の含有量が80質量%以下の場合、より高倍率での延伸が可能であり孔形状のフレキシビリティーがより高くなり好ましい。
First, the microporous membrane of the present invention will be described focusing on its preferred form.
The microporous membrane in the present invention has island structures and fibrils connecting the island structures. The island structure contains a polyolefin resin and fine particles, and the fibril contains a polyolefin resin.
The total content of polyolefin resin and fine particles in 100% by mass of the microporous membrane is preferably 50% by mass or more from the viewpoint of durability, and each content of polyolefin resin and fine particles is 10 from the point of heat resistance. It is preferable that it is mass% or more. In particular, the content of fine particles in the microporous membrane of the present invention is preferably 20% by mass to 80% by mass, more preferably 20% by mass to 60% by mass, and still more preferably 40% by mass to 60% by mass. It is as follows. A content of fine particles of 20% by mass or more is preferable because the thickening effect when the polyolefin resin is melted is further large and the heat resistance is excellent. Further, it is preferable to stretch at a temperature higher than the melting point of the polyolefin resin because a microporous membrane having good permeability can be easily obtained. When the content of the fine particles is 80% by mass or less, stretching at a higher magnification is possible, and the flexibility of the hole shape becomes higher, which is preferable.

島状構造体はフィブリルによりつながれている。ここで、島状構造体は1対1の関係でフィブリルによってつながれている必要はない。例えば島状構造体Aが他の島状構造体Bとフィブリルによってつながれていると同時に、他の島状構造体C、Dとも別のフィブリルによってつながっていてもよい。
フィブリルが実質的に一方向に配列していることが本発明の特徴の一つである。ここで「実質的に一方向」とは、90%以上のフィブリルが所望の一方向±20度の角度範囲内に含まれることを意味する。フィブリルが実質的に一方向に配列することでフィブリルの間隙により形成される孔径分布は一様となり均一な透過性や選択透過性を有する微多孔膜が得られやすい。
Island structures are connected by fibrils. Here, the island-like structures do not have to be connected by fibrils in a one-to-one relationship. For example, the island-like structure A is connected to the other island-like structures B by fibrils, and at the same time, the other island-like structures C and D may be connected by another fibril.
One feature of the present invention is that the fibrils are arranged substantially in one direction. Here, “substantially in one direction” means that 90% or more of fibrils are included in an angle range of ± 20 degrees in a desired one direction. By arranging the fibrils substantially in one direction, the pore size distribution formed by the gaps between the fibrils becomes uniform, and a microporous membrane having uniform permeability and selective permeability can be easily obtained.

本発明の微多孔膜は、ポリオレフィン樹脂と微細粒子を含有する島状構造体間がフィブリルによりつながれた構造であり、フィブリルが実質的に一方向に配列しているゆえに、従来と異なる耐熱挙動を示すと言える。推論ではあるが、本発明の微多孔膜が上記耐熱挙動を示す理由は以下のように考えられる。島状構造体を構成するポリオレフィン樹脂の融点以上の高温下では、ポリオレフィン樹脂が溶融状態であるにも関わらず、微細粒子の増粘効果により、島状構造体は流動性が乏しい。一方、島状構造体をつなぐフィブリルは、著しく配向していると推測されるために加熱溶融することで収縮応力が生じる。しかしながらフィブリルは流動性が乏しい島状構造体とつながれた構造であるがゆえにフィブリルの収縮が低減され、その結果、良好な耐熱性が得られると考える。またフィブリルが実質的に一方向に配列していることで収縮応力が一方向に均一に働くために、ランダム方向にフィブリルが配列している場合と異なり、応力集中による破膜が抑制されると考える。
フィブリルは長さ方向に配列していることが好ましい。長さ方向とは、微多孔膜を製造する際の進行方向(MD:Machine Direction)をいう。なお、これと表面において直角をなす方向がTD(Transverse Direction)または幅方向である。フィブリルが長さ方向に配列しているとTDへの収縮応力は極めて小さく、一般的に捲回体構造を有する蓄電池用セパレータとして使用した場合、より高い安全性が得られるので好ましい。
The microporous membrane of the present invention has a structure in which island-like structures containing polyolefin resin and fine particles are connected by fibrils, and the fibrils are arranged substantially in one direction. It can be said that it shows. Although it is inference, the reason why the microporous membrane of the present invention exhibits the above heat-resistant behavior is considered as follows. Under a high temperature equal to or higher than the melting point of the polyolefin resin constituting the island structure, the island structure has poor fluidity due to the thickening effect of the fine particles even though the polyolefin resin is in a molten state. On the other hand, since the fibrils connecting the island-like structures are presumed to be remarkably oriented, contraction stress is generated by heating and melting. However, since the fibril has a structure connected to an island structure having poor fluidity, the shrinkage of the fibril is reduced, and as a result, good heat resistance can be obtained. In addition, since the fibrils are arranged substantially in one direction, the shrinkage stress works uniformly in one direction. Unlike the case where the fibrils are arranged in a random direction, the film breakage due to stress concentration is suppressed. Think.
The fibrils are preferably arranged in the length direction. A length direction means the advancing direction (MD: Machine Direction) at the time of manufacturing a microporous film. The direction perpendicular to the surface is the TD (Transverse Direction) or the width direction. When the fibrils are arranged in the length direction, the shrinkage stress to the TD is extremely small, and when used as a separator for a storage battery generally having a wound structure, it is preferable because higher safety is obtained.

微多孔膜表面における島状構造体の割合は5%以上70%以下が好ましく、10%以上60%以下がより好ましく、20%以上50%以下がさらに好ましい。5%以上であればより良好な耐熱性が得られ、70%以下ではより良好な透過性が得られるので好ましい。なお、微多孔膜表面は、島状構造体領域とフィブリル領域とフィブリル間隙より形成される孔領域の3領域からなる(本明細書ではフィブリル領域とフィブリル間隙より形成される孔領域を合わせて、「海部」と表現することがある)。微多孔膜表面における島状構造体の割合は、例えば走査型顕微鏡等を用い得られた表面像より、島状構造部と海部を分離することで算出できる。   The ratio of the island-shaped structures on the surface of the microporous membrane is preferably 5% to 70%, more preferably 10% to 60%, and still more preferably 20% to 50%. If it is 5% or more, better heat resistance is obtained, and if it is 70% or less, better permeability is obtained, which is preferable. The surface of the microporous membrane is composed of three regions of a pore region formed by an island structure region, a fibril region, and a fibril gap (in this specification, the pore region formed by the fibril region and the fibril gap is combined, Sometimes referred to as “Kaibe”). The ratio of the island-like structures on the surface of the microporous membrane can be calculated by separating the island-like structures and the sea from a surface image obtained using, for example, a scanning microscope.

島状構造体の一つ当たりの大きさは特に制限はないが、高透過性と耐熱性の両立の点から、フィブリルが配列している方向での長さが0.1〜50μmであることが好ましく、0.5〜10μmであることがより好ましい。
島状構造体間をつなぐフィブリルの長さは0.5μm以上50μm以下が好ましく、より好ましくは1μm以上20μm以下、さらに好ましくは1.5μm以上10μm以下である。0.5μm以上であればより良好な透過性が得られ、例えばろ過膜と使用した場合には透過性の目詰りによる透過性の低減もより少なく好ましい。50μm以下であればより良好な耐熱性が得られるので好ましい。
The size per island structure is not particularly limited, but the length in the direction in which the fibrils are arranged is 0.1 to 50 μm from the viewpoint of achieving both high permeability and heat resistance. Is preferable, and it is more preferable that it is 0.5-10 micrometers.
The length of the fibril connecting the island-like structures is preferably 0.5 μm or more and 50 μm or less, more preferably 1 μm or more and 20 μm or less, and further preferably 1.5 μm or more and 10 μm or less. If it is 0.5 μm or more, better permeability can be obtained. For example, when it is used with a filtration membrane, the reduction in permeability due to permeability clogging is also less preferable. If it is 50 micrometers or less, since more favorable heat resistance is obtained, it is preferable.

海部におけるフィブリル密度は、100本/10μm以下が好ましい。100本/10μmとは、フィブリルと直角をなす方向10μm長さ当たりに存在するフィブリル本数である。より好ましくは5本/10μm以上80本/10μm以下であり、さらに好ましくは10本/10μm以上50本/10μm以下である。100本/10μm以下であれば、透過性に優れるために好ましく、5本/10μm以上であれば、強度面に優れるために好ましい。フィブリル密度は走査型電子顕微鏡(SEM)を用いて後述の方法により測定できる。フィブリル密度が大きいまたはフィブリルが微小で計測困難な場合は、高倍率で観察した表面写真を用い、1μm長さ当たりで計測したフィブリル数を用いて、10μm当たりのフィブリル密度を算出するなどしても構わない。   The fibril density in the sea is preferably 100 pieces / 10 μm or less. 100/10 μm is the number of fibrils present per length of 10 μm in a direction perpendicular to the fibrils. More preferably, it is 5/10 μm or more and 80/10 μm or less, and further preferably 10/10 μm or more and 50/10 μm or less. If it is 100/10 μm or less, it is preferable for excellent permeability, and if it is 5/10 μm or more, it is preferable for excellent strength. The fibril density can be measured by a method described later using a scanning electron microscope (SEM). If the fibril density is large or the fibrils are very small and difficult to measure, the surface photograph observed at a high magnification may be used to calculate the fibril density per 10 μm using the number of fibrils measured per 1 μm length. I do not care.

本発明の微多孔膜は、ポリオレフィンと微細粒子を含有する島状構造体と、島状構造体をつなぐ、実質的に一方向に配列したフィブリルを含有する構造であれば特に制限はなく、三次元網目構造が部分的に存在する場合も包含するが、透過性や耐熱性の点から、実質的に上記島状構造体と、上記フィブリルとからなる構造であること、更には、三次元網目構造を含まない構造であることが好ましい。
本発明において使用するポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形等に使用可能なポリオレフィン樹脂を包含し、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテン等のホモ重合体及び共重合体、多段重合体等を使用することができる。また、これらのホモ重合体及び共重合体、多段重合体の群から選んだポリオレフィンを単独、もしくは混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の微多孔膜を電池セパレータとして使用する場合、低融点樹脂であることが好ましく、更に高強度の要求性能から、特に高密度ポリエチレンを主要成分(例えば、ポリオレフィン樹脂100質量部中に10質量部以上)とする樹脂を使用することが好ましい。
The microporous membrane of the present invention is not particularly limited as long as it has a structure containing island-like structures containing polyolefin and fine particles, and fibrils arranged in substantially one direction connecting the island-like structures. Including the case where the original network structure is partially present, from the viewpoint of permeability and heat resistance, the structure is substantially composed of the island structure and the fibril, and further, a three-dimensional network. A structure that does not include a structure is preferable.
The polyolefin resin used in the present invention includes polyolefin resins that can be used for ordinary extrusion, injection, inflation, blow molding, and the like. For example, ethylene, propylene, 1-butene, 4-methyl-1-pentene, Homopolymers and copolymers such as 1-hexene and 1-octene, multistage polymers, and the like can be used. In addition, polyolefins selected from the group of these homopolymers, copolymers, and multistage polymers can be used alone or in combination. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, and ethylene propylene rubber. . When the microporous membrane of the present invention is used as a battery separator, it is preferably a low-melting point resin. In addition, high-density polyethylene is particularly used as a main component (for example, 10 parts by mass in 100 parts by mass of polyolefin resin) because of the required performance of high strength. Part or more) is preferably used.

本発明において使用するポリオレフィン樹脂または微多孔膜のマトリックスポリマーの粘度平均分子量は、5万以上1000万未満が好ましく、より好ましくは20万以上300万未満、さらに好ましくは40万以上100万未満である。粘度平均分子量が5万以上であれば、溶融成形の際のメルトテンションが大きくなり成形性が向上しやすい上に、十分な絡み合いを付与しやすく高強度となりやすいので好ましい。粘度平均分子量が1000万以下であれば、均一な溶融混練を得やすい傾向があり、シートの成形性、特に厚み安定性に優れる傾向があるので好ましい。
ポリオレフィン樹脂には、本発明の利点を損なわない範囲で必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の添加剤を混合して使用できる。
The viscosity average molecular weight of the matrix resin of the polyolefin resin or microporous membrane used in the present invention is preferably 50,000 or more and less than 10 million, more preferably 200,000 or more and less than 3 million, more preferably 400,000 or more and less than 1 million. . A viscosity average molecular weight of 50,000 or more is preferable because the melt tension at the time of melt molding is increased and the moldability is easily improved, and sufficient entanglement is easily imparted and the strength is easily increased. If the viscosity average molecular weight is 10 million or less, it tends to be easy to obtain uniform melt kneading, and it is preferable because it tends to be excellent in sheet formability, particularly thickness stability.
Polyolefin resins include phenolic, phosphorus and sulfur-based antioxidants, metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light as necessary, as long as the advantages of the present invention are not impaired. Additives such as stabilizers, antistatic agents, antifogging agents, and coloring pigments can be mixed and used.

微細粒子は、無機粒子、前記ポリオレフィン樹脂よりも高い融点を有する有機粒子、又は融点を有さず、前記ポリオレフィン樹脂よりも高いガラス転移点を有する有機粒子であることが好ましい。有機粒子が融点とガラス転移点の両方を有する場合は、その融点がポリオレフィン樹脂の融点より高いことが好ましく、ガラス転移点はポリオレフィン樹脂の融点よりも低くても構わない。無機粒子としては、具体的には珪素、アルミニウム、チタン、マグネシウムなどの酸化物や窒化物、カルシウム、バリウムなどの炭酸塩や硫酸塩が好ましい。また、適宜、表面処理を施した無機粒子を用いることが出来る。例えば、水系溶媒を使用したろ過用途向け微多孔膜や水系電解液蓄電デバイス用セパレータを製造する場合は、親水性処理を施した無機粒子が好適であり、非水系電解液蓄電デバイス用セパレータを製造する場合は、疎水処理を施した無機粒子が好適である。有機粒子としては、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリロニトリル、スチレン等の単独重合体、2種類以上のモノマーから選択された共重合体、その架橋体などの粒子が好ましい。   The fine particles are preferably inorganic particles, organic particles having a melting point higher than that of the polyolefin resin, or organic particles having no melting point and a glass transition point higher than that of the polyolefin resin. When the organic particles have both a melting point and a glass transition point, the melting point is preferably higher than the melting point of the polyolefin resin, and the glass transition point may be lower than the melting point of the polyolefin resin. Specifically, the inorganic particles are preferably oxides and nitrides such as silicon, aluminum, titanium and magnesium, and carbonates and sulfates such as calcium and barium. Moreover, the inorganic particle which performed the surface treatment suitably can be used. For example, when producing microporous membranes for filtration applications using aqueous solvents and separators for aqueous electrolyte storage devices, hydrophilic particles are suitable, and separators for nonaqueous electrolyte storage devices are manufactured. In this case, inorganic particles that have been subjected to hydrophobic treatment are suitable. As the organic particles, particles such as homopolymers such as methyl methacrylate, ethyl methacrylate, methyl acrylate, acrylonitrile, styrene and the like, copolymers selected from two or more types of monomers, and crosslinked products thereof are preferable.

微細粒子は、一次粒径が1nm以上1μm未満であることが好ましい。より好ましくは1nm以上100nm未満である。粒径は走査型電子顕微鏡や透過型電子顕微鏡にて計測できる。ポリオレフィン樹脂への良好な分散が達成できる点から、一次粒径が1nm以上であることが好ましい。良好な分散を示すことで十分な増粘効果を付与でき、耐熱性がより優れると考えられる。同様に十分な増粘効果が得られる点から、一次粒径が1μm未満であることが好ましい。また延伸した場合には、ポリオレフィン樹脂と微細粒子間の界面剥離が起こりにくく均一な孔径分布となりやすい点からも一次粒径が1μm未満であることが好ましい。   The fine particles preferably have a primary particle size of 1 nm or more and less than 1 μm. More preferably, it is 1 nm or more and less than 100 nm. The particle size can be measured with a scanning electron microscope or a transmission electron microscope. In view of achieving good dispersion in the polyolefin resin, the primary particle size is preferably 1 nm or more. It is considered that a sufficient thickening effect can be imparted by showing good dispersion, and the heat resistance is more excellent. Similarly, the primary particle size is preferably less than 1 μm from the viewpoint that a sufficient thickening effect can be obtained. Further, when stretched, the primary particle size is preferably less than 1 μm from the viewpoint that the interfacial separation between the polyolefin resin and the fine particles hardly occurs and a uniform pore size distribution is likely to occur.

微細粒子は、一次粒子内部に内部表面積を実質的に有さない、すなわち、一次粒子自身に微細な細孔を実質的に有さないことが好ましい。このような微細粒子を用いると例えば非水電解液電池用セパレータとして用いた場合に容量低下等の性能劣化を起こし難い傾向がある。理由は定かではないが、一次粒子内部に微細な細孔を実質的に有していなければ、通常の乾燥工程において容易に吸着水等を除去できるために、水分混在による容量低下を引き起こし難いと推測される。
本発明の微多孔膜の最終的な膜厚は2μm以上100μm以下の範囲が好ましく、5μm以上40μm以下の範囲がより好ましく、5μm以上35μm以下の範囲がさらに好ましい。膜厚が2μm以上であれば機械強度が十分であり、また、100μm以下であればセパレータの占有体積が減るため、電池の高容量化の点においてより有利となる傾向があるので好ましい。
It is preferable that the fine particles have substantially no internal surface area inside the primary particles, that is, the primary particles themselves have substantially no fine pores. When such fine particles are used, for example, when used as a separator for a non-aqueous electrolyte battery, there is a tendency that performance deterioration such as capacity reduction is difficult to occur. The reason is not clear, but if it does not substantially have fine pores inside the primary particles, it is easy to remove adsorbed water etc. in the normal drying process, so it is difficult to cause capacity reduction due to moisture mixing. Guessed.
The final film thickness of the microporous membrane of the present invention is preferably in the range of 2 μm to 100 μm, more preferably in the range of 5 μm to 40 μm, and still more preferably in the range of 5 μm to 35 μm. If the film thickness is 2 μm or more, the mechanical strength is sufficient, and if the film thickness is 100 μm or less, the occupied volume of the separator is reduced, which tends to be more advantageous in terms of increasing the capacity of the battery.

気孔率は、好ましくは25%以上90%以下、より好ましくは40%以上80%以下、さらに好ましくは50%以上80%以下の範囲である。気孔率が25%以上では、透過性が低下しにくく、一方90%以下では電池セパレータとして使用した場合に自己放電の可能性が少なく信頼性があるので好ましい。
透気度は、好ましくは1秒以上500秒以下、より好ましくは5秒以上200秒以下、さらに好ましくは7秒以上100秒以下の範囲である。透気度が1秒以上では電池用セパレータとして使用した際に自己放電が少なく、500秒以下では良好な充放電特性が得られるので好ましい。
The porosity is preferably in the range of 25% to 90%, more preferably 40% to 80%, and still more preferably 50% to 80%. When the porosity is 25% or more, the permeability is hardly lowered, while when the porosity is 90% or less, there is little possibility of self-discharge when used as a battery separator, which is preferable.
The air permeability is preferably in the range of 1 second to 500 seconds, more preferably 5 seconds to 200 seconds, and even more preferably 7 seconds to 100 seconds. When the air permeability is 1 second or more, self-discharge is small when used as a battery separator, and when it is 500 seconds or less, good charge / discharge characteristics are obtained, which is preferable.

微多孔膜のバブルポイントは、0.1MPa以上1MPa以下が好ましく、0.2MPa以上0.7MPa以下がさらに好ましい。バブルポイントが1MPa以下であれば透過性は良好であり、目詰まり等の影響も少ないために好ましい。0.1MPa以上であれば、電池セパレータとして使用した場合に自己放電の可能性が少なく信頼性があるので好ましい。
高温時における熱収縮は30%以下が好ましい。MD方向、TD方向とも小さいことが好ましいが、特に電池用セパレータとして使用した場合には、TD方向に低収縮であることが好ましい。高温下(例えば150℃)におけるTD方向の収縮は、30%以下であれば、電池の安全性が確保出来るので好ましい。より好ましくは20%以下であり、さらに好ましくは10%以下である。下限は特に制限されないが、電極との密着性の観点から1%以上が好ましい。
The bubble point of the microporous membrane is preferably from 0.1 MPa to 1 MPa, more preferably from 0.2 MPa to 0.7 MPa. A bubble point of 1 MPa or less is preferable because the permeability is good and the influence of clogging is small. If it is 0.1 MPa or more, it is preferable because it has a low possibility of self-discharge when used as a battery separator and is reliable.
The heat shrinkage at high temperature is preferably 30% or less. Both the MD direction and the TD direction are preferably small, but when used as a battery separator, it is preferably low shrinkage in the TD direction. The shrinkage in the TD direction at a high temperature (for example, 150 ° C.) is preferably 30% or less because the safety of the battery can be secured. More preferably, it is 20% or less, More preferably, it is 10% or less. Although a minimum in particular is not restrict | limited, 1% or more is preferable from an adhesive viewpoint with an electrode.

次に、本発明の微多孔膜を得るための製造方法に関して好適な一例を記述するが、本発明の微多孔膜の製造方法は、本例に限定される訳ではない。例えば本発明の微多孔膜は、以下の(1)〜(4)工程を含む方法により得ることが出来る。
(1) ポリオレフィン樹脂、微細粒子及び可塑剤を溶融混錬する工程
(2) 溶融物を押出し、シート状に成形、冷却固化する工程
(3) 可塑剤を抽出する工程
(4) 少なくとも一軸方向に延伸する工程
これら工程の順序、回数については特に制限はない。
Next, although a suitable example is described regarding the manufacturing method for obtaining the microporous membrane of this invention, the manufacturing method of the microporous membrane of this invention is not necessarily limited to this example. For example, the microporous membrane of the present invention can be obtained by a method including the following steps (1) to (4).
(1) Step of melt-kneading polyolefin resin, fine particles and plasticizer (2) Step of extruding the melt, forming into a sheet, cooling and solidifying (3) Step of extracting the plasticizer (4) At least uniaxially Step of stretching There are no particular restrictions on the order and number of times of these steps.

(1)の工程で添加する可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒が好ましい。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコール等が挙げられる。特にポリオレフィン樹脂がポリエチレンの場合、流動パラフィンは、ポリエチレンと相溶性が高く延伸時に樹脂と可塑剤の界面剥離が起こりにくいために均一な延伸を実施しやすく好ましい。
ポリオレフィン樹脂と微細粒子と可塑剤の比率については、均一な溶融混練が可能な比率であり、シート状の微多孔膜前駆体を成形しうるのに充分な比率であり、かつ生産性を損なわない程度であれば良い。具体的には、ポリオレフィン樹脂と微細粒子と可塑剤からなる組成物中に占める可塑剤の質量分率は、好ましくは30〜80質量%、更に好ましくは40〜70質量%である。可塑剤の質量分率が80質量%以下の場合、溶融成形時のメルトテンションが不足しにくく成形性が向上する傾向があるので好ましい。一方、質量分率が30質量%以上の場合は、延伸倍率の増大に伴い厚み方向に薄くなり、薄膜を得ることが可能であるので好ましい。また可塑化効果が十分なために結晶状の折り畳まれたラメラ晶を効率よく引き伸ばすことができ、高倍率の延伸ではポリオレフィン鎖の切断が起こらず均一かつ微細な孔構造となり強度も増加しやすい。ポリオレフィン樹脂と微細粒子と可塑剤を溶融混練する方法は、ポリオレフィン樹脂と微細粒子を押出機、ニーダー等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と微細粒子と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法が好ましい。さらに好ましい方法としては予めポリオレフィン樹脂と微細粒子と可塑剤をヘンシェルミキサー等を用い所定の割合で事前混練する工程を経て、該混練物を押出機に投入し、加熱溶融させながら任意の比率で可塑剤を導入し更に混練することが挙げられる。
The plasticizer added in the step (1) is preferably a non-volatile solvent capable of forming a uniform solution at a temperature equal to or higher than the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol. In particular, when the polyolefin resin is polyethylene, liquid paraffin is preferable because it is highly compatible with polyethylene and is difficult to cause interface peeling between the resin and the plasticizer during stretching.
The ratio of the polyolefin resin, fine particles, and plasticizer is a ratio that enables uniform melt-kneading, is a ratio that is sufficient to form a sheet-like microporous membrane precursor, and does not impair productivity. It ’s fine. Specifically, the mass fraction of the plasticizer in the composition comprising the polyolefin resin, fine particles, and the plasticizer is preferably 30 to 80 mass%, more preferably 40 to 70 mass%. When the plasticizer has a mass fraction of 80% by mass or less, the melt tension at the time of melt molding is hardly insufficient and the moldability tends to be improved, which is preferable. On the other hand, when the mass fraction is 30% by mass or more, it is preferable because the film becomes thinner in the thickness direction as the draw ratio increases and a thin film can be obtained. In addition, since the plasticizing effect is sufficient, the crystalline folded lamellar crystal can be efficiently stretched, and when stretched at a high magnification, the polyolefin chain is not broken and a uniform and fine pore structure is obtained and the strength is easily increased. The method of melt-kneading polyolefin resin, fine particles and plasticizer is to introduce polyolefin resin and fine particles into a resin kneading apparatus such as an extruder or kneader, and introduce a plasticizer at an arbitrary ratio while heating and melting the resin, Furthermore, a method of obtaining a uniform solution by kneading a composition comprising a resin, fine particles and a plasticizer is preferred. As a more preferable method, a polyolefin resin, fine particles, and a plasticizer are previously kneaded at a predetermined ratio using a Henschel mixer or the like, and the kneaded product is put into an extruder and plasticized at an arbitrary ratio while being heated and melted. Introducing an agent and further kneading.

(2)の工程である溶融物を押し出して冷却固化させシート状の微多孔膜前駆体を製造する工程は、ポリオレフィン樹脂と微細粒子と可塑剤の均一溶液をTダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行うことが好ましい。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身等が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込むと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するためより好ましい。Tダイよりシート状に押出す際のダイリップ間隔は400μm以上3000μm以下が好ましく、500μm以上2500μmがさらに好ましい。ダイリップ間隔が400μm以上の場合には、メヤニ等が低減され、スジや欠点など膜品位への影響が少なく、その後の延伸工程に於いて膜破断などを防げるので好ましい。3000μm以下の場合は、冷却速度が速く冷却ムラを防げるほか、厚みの安定性を維持できるので好ましい。   The step (2) of extruding the melt and cooling and solidifying it to produce a sheet-like microporous membrane precursor is a sheet-like solution of a uniform solution of polyolefin resin, fine particles and plasticizer via a T-die or the like. It is preferable to carry out by extruding, contacting with a heat conductor, and cooling to a temperature sufficiently lower than the crystallization temperature of the resin. As the heat conductor used for cooling and solidification, metal, water, air, plasticizer itself, or the like can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Further, it is more preferable that the metal roll is sandwiched between the rolls because the heat conduction efficiency is further increased, the sheet is oriented and the film strength is increased, and the surface smoothness of the sheet is also improved. The die lip interval when extruding into a sheet form from a T die is preferably 400 μm or more and 3000 μm or less, and more preferably 500 μm or more and 2500 μm. A die lip spacing of 400 μm or more is preferable because it reduces the meander and the like, has less influence on the film quality such as streaks and defects, and prevents film breakage in the subsequent stretching process. A thickness of 3000 μm or less is preferable because the cooling rate is high and uneven cooling can be prevented and the thickness stability can be maintained.

(3)の可塑剤を抽出する方法はバッチ式、連続式のいずれでもよいが、抽出溶剤に微多孔膜を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を微多孔膜から実質的に除去することが好ましい。微多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に微多孔膜の端部を拘束することは好ましい。また、抽出後の微多孔膜中の可塑剤残存量は1質量%未満にすることが好ましい。
抽出溶剤は、ポリオレフィン樹脂かつ微細粒子に対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、 例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、ハイドロフロロエーテルやハイドロフロロカーボン等の非塩素系ハロゲン化溶剤、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンやメチルエチルケトン等のケトン類が挙げられる。
The method of extracting the plasticizer of (3) may be either a batch type or a continuous type. However, the plasticizer is extracted by immersing the microporous membrane in an extraction solvent and sufficiently dried. It is preferable to remove substantially from. In order to suppress the shrinkage of the microporous membrane, it is preferable to constrain the end of the microporous membrane during a series of steps of immersion and drying. Further, the residual amount of plasticizer in the microporous membrane after extraction is preferably less than 1% by mass.
It is desirable that the extraction solvent is a poor solvent for the polyolefin resin and fine particles and a good solvent for the plasticizer, and has a boiling point lower than the melting point of the polyolefin microporous membrane. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, and non-chlorine-based solvents such as hydrofluoroether and hydrofluorocarbon. Examples thereof include halogenated solvents, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, and ketones such as acetone and methyl ethyl ketone.

(4)の延伸工程では、少なくとも一軸延伸を行う。二軸方向に高倍率延伸した場合、面方向に分子配向するため裂けにくく安定な構造となり高い突刺強度が得られる。延伸方法は同時二軸延伸、逐次二軸延、多段延伸、多数回延伸等のいずれの方法を単独もしくは併用することも構わないが、延伸方法が同時二軸延伸であることが突刺強度の増加や膜厚均一化の観点から最も好ましい。ここでいう同時二軸延伸とはMD方向の延伸とTD方向の延伸が同時に施される手法であり、各方向の変形率は異なっても良い。逐次二軸延伸とは、MD方向、またはTD方向の延伸が独立して施される手法であり、MD方向、またはTD方向に延伸がなされている際は、他方向が非拘束状態、または定長に固定されている状態にある。延伸工程は、(3)の可塑剤を抽出する工程よりも前工程で行っても、後工程で行っても、または前後、複数回行っても構わない。(3)の抽出工程の前工程及び後工程で複数回延伸を実施する工程が好ましい。   In the stretching step (4), at least uniaxial stretching is performed. When the film is stretched at a high magnification in the biaxial direction, it has a stable structure that is difficult to tear because of molecular orientation in the plane direction, and a high puncture strength is obtained. The stretching method may be simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, multiple stretching, etc., either alone or in combination, but if the stretching method is simultaneous biaxial stretching, the piercing strength is increased. And from the viewpoint of uniform film thickness. Here, the simultaneous biaxial stretching is a method in which stretching in the MD direction and stretching in the TD direction are performed simultaneously, and the deformation rate in each direction may be different. Sequential biaxial stretching is a technique in which stretching in the MD direction or TD direction is performed independently. When stretching is performed in the MD direction or TD direction, the other direction is unconstrained or fixed. It is in a state of being fixed to the length. The stretching step may be performed in a step before the step of extracting the plasticizer in (3), in a subsequent step, or may be performed a plurality of times before and after. A step of performing stretching a plurality of times in the pre-step and the post-step of the extraction step (3) is preferable.

延伸温度(T[℃])は延伸が可能な温度であれば何度であっても構わない。好ましい延伸条件としては、(I)多孔シート中のポリオレフィンの融点(Tm[℃])より高温、かつ、融解吸熱ピークのエンドセット温度(Tme[℃])よりも5℃低い温度(Tme−5℃)以上の温度での延伸(T[℃]>Tm[℃]、かつ、T[℃]≧Tme[℃]−5℃)、が挙げられる。さらに、(II)多孔シート中のポリオレフィンの融点以下の温度での延伸(T[℃]≦Tm[℃])、とを併用することがより好ましく、(3)の可塑剤を抽出する工程よりも前工程で(II)の延伸工程を含み、かつ、(3)の可塑剤を抽出する工程よりも後工程で(I)の延伸工程を含むことが最も好ましい。ここで言う融点(Tm[℃])とは、示差走査熱量計(DSC)にて測定した融解吸熱曲線のピークトップ温度のことである。単独のポリオレフィン樹脂、または2種類以上のポリオレフィン樹脂を用い、融解吸熱ピークが2つ以上ある場合は、その融解吸熱量が最も大きいピークトップ温度を本発明で言う融点とみなす。融解吸熱ピークのエンドセット温度(Tme[℃])とは、融解吸熱ピークの終止温度を言う。融解吸熱ピークが2つ以上ある場合は、最も高温にある融解吸熱ピークの終止温度を本発明で言うエンドセット温度とみなす。エンドセット温度は、融解吸熱ピークの接線とベースラインの接線の交点より求められる。   The stretching temperature (T [° C.]) may be any number as long as the stretching is possible. As preferred stretching conditions, (I) a temperature (Tme-5) higher than the melting point (Tm [° C]) of the polyolefin in the porous sheet and 5 ° C lower than the end-set temperature (Tme [° C]) of the melting endothermic peak. (° C.) or higher (T [° C.]> Tm [° C.] and T [° C.] ≧ Tme [° C.] − 5 ° C.). Furthermore, it is more preferable to use (II) stretching at a temperature not higher than the melting point of the polyolefin in the porous sheet (T [° C.] ≦ Tm [° C.]), and (3) from the step of extracting the plasticizer. It is most preferable that the stretching step of (II) is included in the previous step and the stretching step of (I) is included in the subsequent step rather than the step of extracting the plasticizer of (3). The melting point (Tm [° C.]) referred to here is the peak top temperature of the melting endothermic curve measured with a differential scanning calorimeter (DSC). When a single polyolefin resin or two or more types of polyolefin resins are used and there are two or more melting endothermic peaks, the peak top temperature having the largest melting endotherm is regarded as the melting point in the present invention. The end set temperature (Tme [° C.]) of the melting endothermic peak refers to the end temperature of the melting endothermic peak. When there are two or more melting endothermic peaks, the end temperature of the melting endothermic peak at the highest temperature is regarded as the end-set temperature in the present invention. The end set temperature is obtained from the intersection of the tangent line of the melting endothermic peak and the tangent line of the baseline.

(I)の延伸工程を含むことは、島状構造間をつなぐフィブリルを形成しやすいために好ましい。(II)の延伸工程は、高強度が達成しやすいために好ましい。(I)の延伸工程に用いる多孔シートの空孔率は25%以上90%以下が好ましく、30%以上70%以下がより好ましく、35%以上60%以下がさらに好ましい。25%以上であれば、延伸時にポリオレフィン樹脂との界面剥離が起こりにくく孔形状をフレキシブルに制御出来やすい。90%以下であれば延伸によりいたずらに気孔率が増加する懸念が少なく、得られた微多孔膜は高強度となりやすい。
延伸倍率は、総面倍率で20倍以上200倍未満の範囲が好ましく、さらには20倍以上100倍以下が、25倍以上50倍以下の範囲がさらに好ましい。総面倍率が20倍以上の場合は、膜に十分な強度を付与でき、200倍未満では膜破断を防ぎ、高い生産性が得られるので好ましい。
It is preferable to include the stretching step (I) because it is easy to form fibrils that connect the island structures. The stretching step (II) is preferable because high strength is easily achieved. The porosity of the porous sheet used in the stretching step (I) is preferably 25% or more and 90% or less, more preferably 30% or more and 70% or less, and further preferably 35% or more and 60% or less. If it is 25% or more, interfacial peeling from the polyolefin resin hardly occurs during stretching, and the hole shape can be easily controlled. If it is 90% or less, there is little concern that the porosity will unnecessarily increase due to stretching, and the obtained microporous film tends to have high strength.
The stretching ratio is preferably in the range of 20 times to less than 200 times in terms of total surface magnification, more preferably in the range of 20 times to 100 times, and further preferably in the range of 25 times to 50 times. When the total surface magnification is 20 times or more, sufficient strength can be imparted to the film, and when it is less than 200 times, film breakage is prevented and high productivity is obtained, which is preferable.

本発明は、上記の好ましい製造方法、すなわち、ポリオレフィン樹脂及び微細粒子を含有する多孔シートを、下記式(a)及び(b)を満たす延伸温度で、少なくとも一軸方向に、少なくとも一回延伸するポリオレフィン微多孔膜の製造方法をも包含する。
(a)延伸温度≧Tme−5℃
(b)延伸温度>Tm
(但し、上記式(a)中のTmeは、示差走査熱量計にて測定される、多孔シート中のポリオレフィン樹脂のエンドセット温度を、同(b)中のTmは、示差走査熱量計にて測定される、多孔シート中のポリオレフィン樹脂の融点を各々示す。)
本発明の製造方法は、各延伸過程に引き続いて、または後に熱固定及び熱緩和等の熱処理工程を設けても良く、このような態様は微多孔膜の収縮をさらに抑制する効果があり好ましい。
The present invention provides the above-mentioned preferred production method, that is, a polyolefin in which a porous sheet containing a polyolefin resin and fine particles is stretched at least once in a uniaxial direction at a stretching temperature satisfying the following formulas (a) and (b): A method for producing a microporous membrane is also included.
(A) Stretching temperature ≧ Tme−5 ° C.
(B) Stretching temperature> Tm
(However, Tme in the above formula (a) is the end-set temperature of the polyolefin resin in the porous sheet measured with a differential scanning calorimeter, and Tm in (b) is with a differential scanning calorimeter. Each of the melting points of the polyolefin resin in the porous sheet to be measured is shown.)
In the production method of the present invention, a heat treatment step such as heat fixation and heat relaxation may be provided subsequent to or after each stretching process, and such an embodiment is preferable because it further suppresses shrinkage of the microporous membrane.

本発明の微多孔膜同士または他の基材と多層化して利用しても構わない。
本発明の製造方法は、後処理工程を含んでもよい。後処理としては、例えば、界面活性剤等による親水化処理、及び電離性放射線等による架橋処理、熱可塑性樹脂や無機粒子等を片面もしくは両面に塗工する等が挙げられる。
本発明は、上記微多孔膜を用いた蓄電デバイス用セパレータを包含する。蓄電デバイスとは、例えばリチウムイオン二次電池(LIB)やリチウムイオンキャパシター(LIC)、電気二重層キャパシター(EDLC)などである。
The microporous membranes of the present invention may be used in layers with other base materials.
The manufacturing method of the present invention may include a post-processing step. Examples of the post-treatment include hydrophilization treatment with a surfactant and the like, cross-linking treatment with ionizing radiation, and the like, coating a thermoplastic resin, inorganic particles, and the like on one side or both sides.
This invention includes the separator for electrical storage devices using the said microporous film. Examples of the electricity storage device include a lithium ion secondary battery (LIB), a lithium ion capacitor (LIC), and an electric double layer capacitor (EDLC).

次に、実施例によって本発明をさらに詳細に説明するが、これらは本発明の範囲を制限するものではない。実施例における試験方法は次の通りである。
<微多孔膜の評価>
(1)粘度平均分子量
デカヒドロナフタリンへ試料の劣化防止のため2,6−ジ−t−ブチル−4−メチルフェノールを0.1w%の濃度となるように溶解させ、これ(以下DHNと略す)を試料溶媒として用いる。微多孔膜をDHNへ0.1w%の濃度となるように150℃で溶解させる。その溶液をろ過し、微細粒子を除去し試料溶液とする。もしくは、微細粒子は溶解するがポリオレフィン樹脂は溶解または反応しない溶液に微多孔膜を浸漬することで、微細粒子を先に抽出除去した微多孔膜を用いても良い。作成した試料溶液を10ml採取し、キャノンフェンスケ粘度計(SO100)により135℃での標線間通過秒数(t)を計測する。また、DHNを150℃に加熱した後、10ml採取し、同様の方法により粘度計の標線間を通過する秒数(t)を計測する。得られた通過秒数t、tBを用いて次の換算式により極限粘度[η]を算出した。
[η]=((1.651t/tB−0.651)0.5−1)/0.0834
求められた[η]より、次式により粘度平均分子量(Mv)を算出した。
[η]=6.77×10−4Mv0.67
EXAMPLES Next, although an Example demonstrates this invention further in detail, these do not restrict | limit the scope of the present invention. The test methods in the examples are as follows.
<Evaluation of microporous membrane>
(1) Viscosity average molecular weight 2,6-di-tert-butyl-4-methylphenol was dissolved in decahydronaphthalene to prevent deterioration of the sample to a concentration of 0.1 w%, and this (hereinafter abbreviated as DHN) ) As a sample solvent. The microporous membrane is dissolved in DHN at 150 ° C. to a concentration of 0.1 w%. The solution is filtered, fine particles are removed and used as a sample solution. Alternatively, a microporous film in which the fine particles are extracted and removed first by immersing the microporous film in a solution in which the fine particles dissolve but the polyolefin resin does not dissolve or react may be used. 10 ml of the prepared sample solution is sampled, and the number of seconds passing through the marked line (t) at 135 ° C. is measured with a Canon Fenceke viscometer (SO100). Further, after heating the DHN to 0.99 ° C., and 10ml collected to measure the number of seconds passing between marked lines of the viscometer in the same manner (t B). The intrinsic viscosity [η] was calculated by the following conversion formula using the obtained passing seconds t and t B.
[Η] = ((1.651 t / t B −0.651) 0.5 −1) /0.0834
From the obtained [η], the viscosity average molecular weight (Mv) was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67

(2)一次粒径
走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用いて測定した。試料はオスミウム蒸着したものを用い、加速電圧1.0kVで観察した。
(3)膜厚
微小測厚器(東洋精機製 タイプKBM)を用いて室温23℃で測定した。
(4)気孔率
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
体積(cm)=10×10×膜厚(μm)/10000
気孔率(%)=(体積−質量/混合組成物の密度)/体積×100
なお、混合組成物の密度は、用いたポリオレフィン樹脂と微細粒子の各々の密度と混合比より算出した値を用いた。
(5)透気度
JIS P−8117準拠のガーレー式透気度計(東洋精機製)にて測定した。
(2) Primary particle diameter It measured using the scanning electron microscope (SEM) "model S-4800, the product made by HITACHI." The sample used was osmium-deposited and observed at an acceleration voltage of 1.0 kV.
(3) Film thickness It measured at room temperature 23 degreeC using the micro thickness measuring device (type KBM by Toyo Seiki).
(4) Porosity A sample of 10 cm × 10 cm square was cut out from the microporous membrane, its volume (cm 3 ) and mass (g) were obtained, and calculated from these and the film density (g / cm 3 ) using the following formula: did.
Volume (cm 3 ) = 10 × 10 × film thickness (μm) / 10000
Porosity (%) = (volume-mass / density of mixed composition) / volume × 100
As the density of the mixed composition, a value calculated from the density and mixing ratio of each of the used polyolefin resin and fine particles was used.
(5) Air permeability It measured with the Gurley type air permeability meter (made by Toyo Seiki) based on JIS P-8117.

(6)収縮率
MD120mm×TD120mm角の試料を微多孔膜から切り出し、TD100mm間隔で3箇所、油性ペンで印をつけた。A4サイズ、目付け64g/m、紙厚0.092mmのコピー用紙(KOKUYO製)で微多孔膜を挟み、コピー用紙の側辺をホッチキスで綴じた。150℃下のオーブン中に水平に置き1時間放置した。その後、空冷し、印間のTD長さ(mm)を測定した。3箇所の平均値より収縮率を算出した。
収縮率(%)=(1−TD長さ(mm)/100)×100
(7)フィブリル密度
微多孔膜のフィブリル密度は走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用いて測定した。試料はオスミウム蒸着したものを用い、加速電圧1.0kVで観察した。フィブリルの配列方向が縦方向になるように観察し、その表面像を印刷した。海部(フィブリル領域およびフィブリル間隙より形成される孔領域)において横方向に線を引き、その線と交差するフィブリル数を測定した。線の長さは、そのSEM観察像において0.5μmから50μmに該当する長さとする。異なる3視野における計3箇所の平均値よりフィブリル密度を算出した。本実施例1では20000倍の倍率で観察し測定した。
フィブリル密度(本/10μm)=交差したフィブリル本数(本)/SEM観察像に該当する線の長さ(μm)×10
(6) Shrinkage A sample of MD120 mm × TD120 mm square was cut out from the microporous membrane and marked with an oil-based pen at three locations at intervals of TD100 mm. The microporous film was sandwiched between copy paper (manufactured by KOKYUYO) having an A4 size, a basis weight of 64 g / m 2 , and a paper thickness of 0.092 mm, and the sides of the copy paper were stapled. It was placed horizontally in an oven at 150 ° C. and left for 1 hour. Then, it air-cooled and measured TD length (mm) between marks. The shrinkage rate was calculated from the average value at three locations.
Shrinkage rate (%) = (1-TD length (mm) / 100) × 100
(7) Fibril density The fibril density of the microporous membrane was measured using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. The sample used was osmium-deposited and observed at an acceleration voltage of 1.0 kV. The surface image was printed by observing the fibril array in the vertical direction. A line was drawn in the horizontal direction in the sea (hole region formed by the fibril region and the fibril gap), and the number of fibrils crossing the line was measured. The length of the line is a length corresponding to 0.5 μm to 50 μm in the SEM observation image. The fibril density was calculated from the average value of a total of three places in three different visual fields. In Example 1, it was observed and measured at a magnification of 20000 times.
Fibril density (line / 10 μm) = number of crossed fibrils (line) / line length corresponding to SEM observation image (μm) × 10

(8)フィブリル長さ
微多孔膜のフィブリル長さは走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用いて測定した。試料はオスミウム蒸着したものを用い、加速電圧1.0kVで観察した。フィブリルの配列方向が縦方向になるように観察し、その表面像を印刷した。任意に20本のフィブリルを選択し、そのフィブリル長さを測定し平均値を算出した。同様の作業を計3視野について実施し、3視野の平均値をフィブリル長さとした。本実施例1では3000倍の倍率で観察し測定した。
(9)島比率
微多孔膜の島比率は走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用いて測定した。試料はオスミウム蒸着したものを用い、加速電圧1.0kVで観察した。表面写真10cm×10cmに島状構造体が3〜100個程度存在する倍率で観察、印刷し、その表面写真より島状構造体を切り出した。あらかじめ計測した表面写真10cm×10cmの重量と表面写真10cm×10cmより切り出した島状構造体の重量との比率より島状構造体の割合を算出し島比率とした。本実施例1では3000倍の倍率で観察し測定した。
島比率(%)=切り出した島状構造体の重量(g)/表面写真重量(g)×100
(8) Fibril length The fibril length of the microporous membrane was measured using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. The sample used was osmium-deposited and observed at an acceleration voltage of 1.0 kV. The surface image was printed by observing the fibril array in the vertical direction. Twenty fibrils were arbitrarily selected, the fibril length was measured, and the average value was calculated. The same operation was performed for a total of three fields, and the average value of the three fields was the fibril length. In Example 1, it was observed and measured at a magnification of 3000 times.
(9) Island Ratio The island ratio of the microporous membrane was measured using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. The sample used was osmium-deposited and observed at an acceleration voltage of 1.0 kV. Observation and printing were performed at a magnification such that about 3 to 100 island-shaped structures existed on a surface photograph 10 cm × 10 cm, and island structures were cut out from the surface photograph. The ratio of the island structure was calculated from the ratio of the weight of the surface photograph 10 cm × 10 cm measured in advance and the weight of the island structure cut out from the surface photograph 10 cm × 10 cm to obtain the island ratio. In Example 1, it was observed and measured at a magnification of 3000 times.
Island ratio (%) = weight of cut-out island structure (g) / surface photograph weight (g) × 100

(10)融点およびエンドセット温度
示差走査型熱量計「DSC60」(島津製作所社製、商標)を使用し測定した。多孔シートを直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとしたものを測定サンプルとして用いた。これを直径5mmのアルミ製オープンサンプルパンに敷き詰め、クランピングカバーを乗せサンプルシーラーでアルミパン内に固定した。窒素雰囲気下、昇温速度10℃/minで30℃から200℃までを測定し、融解吸熱曲線を得た。得られた融解吸熱曲線のピークトップ温度を融点(Tm[℃])とし、ピークの終止温度をエンドセット温度(Tme[℃])とした。融点及びエンドセット温度は熱分析ワークステーション(島津製作所製、TA-60WS)を用いて融解吸熱曲線より読み取った。
(10) Melting point and end set temperature Measurement was performed using a differential scanning calorimeter “DSC60” (trademark, manufactured by Shimadzu Corporation). A perforated sheet was punched into a circle with a diameter of 5 mm, and several sheets were stacked to give 3 mg, which was used as a measurement sample. This was spread on an aluminum open sample pan having a diameter of 5 mm, and a clamping cover was placed thereon and fixed in the aluminum pan with a sample sealer. Under a nitrogen atmosphere, the temperature was increased from 30 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min to obtain a melting endothermic curve. The peak top temperature of the obtained melting endothermic curve was defined as the melting point (Tm [° C.]), and the peak end temperature was defined as the end set temperature (Tme [° C.]). The melting point and end set temperature were read from the melting endothermic curve using a thermal analysis workstation (Shimadzu, TA-60WS).

(11)レート特性評価
a.正極作成
正極活物質としてリチウムコバルト複合酸化物(LiCoO)を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製する。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形する。この時、正極の活物質塗布量は250g/m、活物質嵩密度は3.00g/cmになるようにする。
b.負極作成
負極活物質として人造グラファイト96.6質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製する。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形する。この時、負極の活物質塗布量は106g/m、活物質嵩密度は1.35g/cmになるようにする。
(11) Rate characteristic evaluation a. Preparation of positive electrode 92.2% by mass of lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 2.3% by mass of flake graphite and acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder A slurry is prepared by dispersing 2% by mass in N-methylpyrrolidone (NMP). This slurry is applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 , and the active material bulk density is 3.00 g / cm 3 .
b. Preparation of negative electrode A slurry is prepared by dispersing 96.6% by mass of artificial graphite as a negative electrode active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose and 1.7% by mass of styrene-butadiene copolymer latex as binders in purified water. . This slurry is applied to one side of a 12 μm-thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode is set to 106 g / m 2 , and the active material bulk density is set to 1.35 g / cm 3 .

c.非水電解液の調整
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/Lとなるように溶解させて調整する。
d.セル組立
セパレータを30mmφ、正極及び負極を16mmφの円形に切り出し、正極と負極の活物質面が対向するよう、負極、セパレータ、正極の順に重ね、蓋付きステンレス金属製容器に収納する。容器と蓋は絶縁されており、容器は負極の銅箔と、蓋は正極のアルミニウム箔と接している。この容器内に前記した非水電解液を注入して密閉する。室温にて一日放置した後、25℃雰囲気下、2.0mA(0.33C)の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を2.0mAから絞り始めるという方法で、合計8時間電池作成後の最初の充電を行う。続いて2.0mA(0.33C)の電流値で電池電圧3.0Vまで放電する。
c. Preparation of non-aqueous electrolyte solution It is adjusted by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / L.
d. Cell assembly A separator is cut into a circle of 30 mmφ, and a positive electrode and a negative electrode are cut into a circle of 16 mmφ, and the negative electrode, the separator, and the positive electrode are stacked in this order so that the active material surfaces of the positive electrode and the negative electrode face each other. The container and the lid are insulated, the container is in contact with the negative copper foil, and the lid is in contact with the positive aluminum foil. The non-aqueous electrolyte described above is injected into this container and sealed. After standing at room temperature for a day, the battery was charged to a battery voltage of 4.2 V at a current value of 2.0 mA (0.33 C) in a 25 ° C. atmosphere, and the current value was set to 2 to maintain 4.2 V after reaching the battery voltage. The first charge after making the battery for a total of 8 hours is performed by starting the squeezing from 0.0 mA. Subsequently, the battery is discharged to a battery voltage of 3.0 V at a current value of 2.0 mA (0.33 C).

e.レート特性評価
各セルにおける6.0mA(1C)放電時の放電容量を100%とし、12.0mA(2C)放電容量及び18mA(3C)放電容量を比較した。充放電は充放電装置(型式HJ−201BS、北斗電工社製)を用いて以下の順序で実施した。
(CH1)6.0mA充電、(DC1)6.0mA放電、(CH2)6.0mA充電、(DC2)6.0mA放電、(CH3)6.0mA充電、(DC3)12.0mA放電、(CH4)6.0mA充電、(DC4)6.0mA放電、(CH5)6.0mA充電、(DC5)18.0mA放電。
充電は指定値の電流値で電池電圧4.2Vまで充電し、到達後4.2Vを保持するようにして電流値を指定値から絞り始めるという方法で、合計3時間充電した。放電は指定値の電流値で電池電圧3.0Vまで放電した。各セルにおける2C放電時、3C放電時の放電容量を比較した。
2C放電容量(%)=(DC3)放電容量/(DC2)放電容量×100
3C放電容量(%)=(DC5)放電容量/(DC2)放電容量×100
e. Rate characteristic evaluation The discharge capacity at the time of 6.0 mA (1C) discharge in each cell was taken as 100%, and the 12.0 mA (2C) discharge capacity and the 18 mA (3C) discharge capacity were compared. Charging / discharging was performed in the following order using a charging / discharging device (model HJ-201BS, manufactured by Hokuto Denko).
(CH1) 6.0 mA charge, (DC1) 6.0 mA discharge, (CH2) 6.0 mA charge, (DC2) 6.0 mA discharge, (CH3) 6.0 mA charge, (DC3) 12.0 mA discharge, (CH4 ) 6.0 mA charge, (DC4) 6.0 mA discharge, (CH5) 6.0 mA charge, (DC5) 18.0 mA discharge.
Charging was performed for a total of 3 hours by charging to a battery voltage of 4.2 V at a specified current value and starting to narrow the current value from the specified value so as to hold 4.2 V after reaching the specified voltage value. The battery was discharged at a specified current value to a battery voltage of 3.0V. The discharge capacities during 2C discharge and 3C discharge in each cell were compared.
2C discharge capacity (%) = (DC3) discharge capacity / (DC2) discharge capacity × 100
3C discharge capacity (%) = (DC5) discharge capacity / (DC2) discharge capacity × 100

(12)耐熱性評価
a.セル作成
正極75mm×25mm、負極75mm×25mm、微多孔膜50mm×50mm、PETフィルム75mm×75mmを切り出す。正極及び負極は、レート特性評価で作成した正極、負極と同様のものを用いた。SUS板70×70mmとダブルクリップ(KOKUYO製、仕様小、口幅19mm)を用い、SUS板、PETフィルム、負極、微多孔膜、正極、PETフィルム、SUS板の順に重ねた後、ダブルクリップで4隅を挟み、固定する。正極及び負極の活物質面同士が互いに向かい合うように、正極と負極が互いに交差するように、正極及び負極の片端がPETフィルムよりはみ出すように設置する。正極と負極が重なる部分に微多孔膜を配置し、正極と負極が直接接しないように重ね合わせる。テスター(HIOKI製、HIOKI3560 AC ミリオーム ハイテスター)を用い、PETフィルムよりはみ出した正極と負極に端子をつなぎ、正負極間の抵抗値を測定し、10Ω以上であることを確認する。セル外観図を図1、図2に示す。
b.評価
セルを所定温度に設定したオーブン中に静置し、所定時間後に取り出し、セルが十分に冷却した後、正負極間の抵抗を測定した。抵抗値が1000Ω以上であれば合格(○)、1000Ω未満の場合は不合格(×)と判定した。オーブンの温度及び時間は(1)180℃/30分、(2)200℃/10分、の2条件で実施した。
(12) Evaluation of heat resistance a. Cell preparation A positive electrode 75 mm × 25 mm, a negative electrode 75 mm × 25 mm, a microporous membrane 50 mm × 50 mm, and a PET film 75 mm × 75 mm are cut out. As the positive electrode and the negative electrode, the same positive electrode and negative electrode prepared by rate characteristic evaluation were used. Using a SUS plate 70 x 70 mm and a double clip (manufactured by KOKYUYO, small specification, mouth width 19 mm), the SUS plate, PET film, negative electrode, microporous membrane, positive electrode, PET film, SUS plate are stacked in this order, and then with a double clip Hold the four corners and fix. The positive electrode and the negative electrode are placed so that one end of the positive electrode and the negative electrode protrudes from the PET film so that the active material surfaces of the positive electrode and the negative electrode face each other. A microporous film is disposed in a portion where the positive electrode and the negative electrode overlap each other, and is superposed so that the positive electrode and the negative electrode are not in direct contact with each other. Using a tester (manufactured by HIOKI, HIOKI3560 AC Milliome High Tester), connect the terminal to the positive and negative electrodes protruding from the PET film, measure the resistance value between the positive and negative electrodes, and confirm that it is 10 6 Ω or more. The appearance of the cell is shown in FIGS.
b. Evaluation The cell was placed in an oven set at a predetermined temperature, taken out after a predetermined time, and after the cell was sufficiently cooled, the resistance between the positive and negative electrodes was measured. When the resistance value was 1000Ω or more, it was judged as acceptable (◯), and when it was less than 1000Ω, it was judged as unacceptable (x). The oven temperature and time were implemented under two conditions: (1) 180 ° C./30 minutes, and (2) 200 ° C./10 minutes.

[実施例1]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を22.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を15質量部、一次粒径が15nmであるシリカ「DM10C」(商標、(株)トクヤマ製)を25質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を37.5質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物中に占める全流動パラフィン量が60質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み1480μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は121℃とした。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行い、多孔シートを得た。得られた多孔シートの融解吸熱曲線を図3に示す。図3に示すとおり、融点は137℃、エンドセット温度は151℃であった。さらに多孔シートを、ロール延伸機を用いてロール温度150℃でMD延伸した後巻取り、微多孔膜を得た。MD延伸における巻取速度/繰出速度比は2.0倍と設定した。得られた微多孔膜の表面SEM像を図4、図5に示す。微多孔膜の島比率及びフィブリル長さは、各々図4、図5より測定した。フィブリル密度は図5より求めた。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Example 1]
22.5 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with Mv of 2 million 15 parts by mass, silica “DM10C” (trademark, manufactured by Tokuyama Co., Ltd.) having a primary particle diameter of 15 nm, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Co., Ltd.) as a plasticizer. 37.5 parts by mass of Petroleum Research Institute Co., Ltd. and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant This was premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture melt-kneaded and extruded was 60 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1480 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter was 121 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried to obtain a porous sheet. The melting endothermic curve of the obtained porous sheet is shown in FIG. As shown in FIG. 3, the melting point was 137 ° C., and the end set temperature was 151 ° C. Further, the porous sheet was MD-stretched at a roll temperature of 150 ° C. using a roll stretching machine and then wound to obtain a microporous film. The winding speed / feeding speed ratio in MD stretching was set to 2.0 times. Surface SEM images of the obtained microporous membrane are shown in FIGS. The island ratio and fibril length of the microporous membrane were measured from FIGS. 4 and 5, respectively. The fibril density was determined from FIG. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[実施例2]
多孔シートのMD延伸時の巻取速度/繰出速度比を3.0倍に変更した以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜の表面SEM像を図6、図7に示す。微多孔膜の島比率及びフィブリル長さは、各々図6、図7より測定した。フィブリル密度は図7より求めた。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Example 2]
A microporous membrane was obtained in the same manner as in Example 1 except that the winding speed / feeding speed ratio during MD stretching of the porous sheet was changed to 3.0 times. Surface SEM images of the obtained microporous membrane are shown in FIGS. The island ratio and fibril length of the microporous membrane were measured from FIGS. 6 and 7, respectively. The fibril density was determined from FIG. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[実施例3]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を17.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を12.5質量部、一次粒径が13nmであるアルミナ「AluC」(商標、Degussa製)を37質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を33質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物中に占める全流動パラフィン量が60質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み2200μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は124℃である。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行った後、更に出口倍率を0.96倍に設定した横テンターに導きTD方向に熱緩和し、巻取り、多孔シートを得た。このとき、TD緩和部の設定温度は150℃とした。得られた多孔シートの融解吸熱曲線は2つのピークトップを示した(130℃、150℃)。融解吸熱量が最も大きいピークより求めた融点は130℃、最も高温のピークより求めたエンドセット温度は154℃であった。次に多孔シートを、ロール延伸機を用いて、ロール温度150℃でMD延伸をして微多孔膜を得た。MD延伸における巻取速度/繰出速度比は2.5倍に設定した。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Example 3]
17.5 parts by weight of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with an Mv of 2 million 12.5 parts by mass, alumina “AluC” (trademark, manufactured by Degussa) having a primary particle size of 13 nm is 37 parts by mass, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Oil Co., Ltd.) as a plasticizer. Made by adding 33 parts by mass of a laboratory) and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant Premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture melt-kneaded and extruded was 60 parts by mass. The melt kneading was performed at a preset temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 2200 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter is 124 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried, and further, led to a horizontal tenter with the exit magnification set to 0.96 times, heat relaxed in the TD direction, and wound to obtain a porous sheet. At this time, the set temperature of the TD relaxation part was 150 ° C. The melting endothermic curve of the obtained porous sheet showed two peak tops (130 ° C. and 150 ° C.). The melting point determined from the peak with the highest melting endotherm was 130 ° C., and the end-set temperature determined from the highest peak was 154 ° C. Next, the porous sheet was subjected to MD stretching at a roll temperature of 150 ° C. using a roll stretching machine to obtain a microporous film. The winding speed / feeding speed ratio in MD stretching was set to 2.5 times. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[実施例4]
実施例3のアルミナ「AluC」(商標、Degussa製)のかわりに、一次粒径が40nmであるチタニア「TTO−55(S)」(石原産業(株)製)を使用した以外は実施例3と同様にして微多孔膜を得た。製膜条件および膜特性を表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Example 4]
Example 3 except that titania “TTO-55 (S)” (Ishihara Sangyo Co., Ltd.) having a primary particle size of 40 nm was used instead of alumina “AluC” (trademark, manufactured by Degussa) of Example 3. In the same manner, a microporous membrane was obtained. The film forming conditions and film characteristics are shown in Table 1. The evaluation results of the obtained microporous membrane are shown in Table 2.

[実施例5]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を12.8質量部、Mv100万の超高分子量ポリエチレン「UH650」(商標、旭化成ケミカルズ(株)製)を19.2質量部、一次粒径が15nmであるシリカ「QS10」(商標、(株)トクヤマ製)を20質量部、可塑剤としてフタル酸ジオクチル(DOP)を48質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度140℃に制御されたロール間に押出し、厚み100μmのシート状のポリオレフィン組成物を得た。次に十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行い、多孔シートを得た。得られた多孔シートの融点は133℃、エンドセット温度は137℃であった。得られたシートを、岩本製作所社製二軸延伸機を用いて140℃で縦方向に2.5倍延伸し、微多孔膜を得た。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Example 5]
12.8 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH650” (trademark, Asahi Kasei Chemicals Corporation) with Mv of 1 million 19.2 parts by mass, silica "QS10" (trademark, manufactured by Tokuyama Corporation) having a primary particle size of 15 nm, 20 parts by mass, dioctyl phthalate (DOP) as a plasticizer, 48 parts by mass, antioxidant What added 0.3 mass part of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an agent was premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between rolls controlled at a surface temperature of 140 ° C. to obtain a sheet-like polyolefin composition having a thickness of 100 μm. Next, it was sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried to obtain a porous sheet. The resulting porous sheet had a melting point of 133 ° C. and an end set temperature of 137 ° C. The obtained sheet was stretched 2.5 times in the longitudinal direction at 140 ° C. using a biaxial stretching machine manufactured by Iwamoto Seisakusho to obtain a microporous film. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[比較例1]
多孔シートのMD延伸をロール温度145℃で実施した以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Comparative Example 1]
A microporous membrane was obtained in the same manner as in Example 1 except that MD stretching of the porous sheet was performed at a roll temperature of 145 ° C. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[比較例2]
多孔シートをロール延伸機でMD延伸するかわりに、横テンターでTD延伸(出口倍率を1.6倍に、TD延伸部の設定温度は130℃に設定)した以外は、実施例1と同様にして多孔膜を得た。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Comparative Example 2]
Instead of MD stretching the porous sheet with a roll stretching machine, the same procedure as in Example 1 was performed, except that the transverse tenter was TD stretched (the exit magnification was set to 1.6 times and the set temperature of the TD stretched portion was set to 130 ° C.). Thus, a porous film was obtained. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[比較例3]
多孔シートをロール延伸機でMD延伸するかわりに、横テンターでTD熱緩和(出口倍率を0.92倍に、TD緩和部の温度は150℃に設定)した以外は、実施例1と同様にして、微多孔膜を得た。得られた微多孔膜の特性を製膜条件と共に表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Comparative Example 3]
Instead of MD stretching the porous sheet with a roll stretching machine, the same procedure as in Example 1 was performed except that the TD heat relaxation was performed with a horizontal tenter (the exit magnification was set to 0.92 times and the temperature of the TD relaxation part was set to 150 ° C.). Thus, a microporous membrane was obtained. The characteristics of the obtained microporous membrane are shown in Table 1 together with the film forming conditions. The evaluation results of the obtained microporous membrane are shown in Table 2.

[比較例4]
粘度平均分子量(Mv)13万の高密度ポリエチレン「B161」(商標、旭化成ケミカルズ(株)製)に酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをヘンシェルミキサーにて混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。溶融混練条件は、設定温度180℃、スクリュー回転数100rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経てドラフト比100となるように溶融配向させながらロール表面温度を25℃に制御したロールを介しポリオレフィンフィルムを巻き取った。次に115℃で30分間熱処理を施した。得られたシートをロール延伸機を用いて25℃で縦方向に1.5倍延伸し、120℃で最終的に縦方向に2.0倍となるように延伸を施し、引続き125℃で熱処理を行い微多孔膜を得た。製膜条件および微多孔膜の特性を表1に示す。また得られた微多孔膜の評価結果を表2に示す。
[Comparative Example 4]
Pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-) as an antioxidant in high-density polyethylene “B161” (trademark, manufactured by Asahi Kasei Chemicals Corporation) having a viscosity average molecular weight (Mv) of 130,000 What added 0.3 part by mass of 4-hydroxyphenyl) propionate] was mixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. The melt-kneading conditions were set at a preset temperature of 180 ° C., a screw rotation speed of 100 rpm, and a discharge rate of 12 kg / h. Subsequently, the polyolefin film was wound up through a roll whose roll surface temperature was controlled at 25 ° C. while melt-kneading the melt-kneaded material through a T die so as to have a draft ratio of 100. Next, heat treatment was performed at 115 ° C. for 30 minutes. The obtained sheet was stretched 1.5 times in the machine direction at 25 ° C. using a roll stretching machine, and finally stretched to 120 times in the machine direction at 120 ° C., followed by heat treatment at 125 ° C. To obtain a microporous membrane. Table 1 shows the film forming conditions and the characteristics of the microporous film. The evaluation results of the obtained microporous membrane are shown in Table 2.

Figure 0005164396
Figure 0005164396

Figure 0005164396
Figure 0005164396

表1から明らかなように本発明の微多孔膜は、透気度が小さく、比較例に対し透過性が良好である。さらに収縮が小さく、島/フィブリル構造を形成している。
表2に示す通り、本発明の実施例は比較例よりも明らかに耐熱性に優れ、かつレート特性にも優れる結果が得られている。特に非水電解液電池等の蓄電池用セパレータとして出力特性と安全性に優れた微多孔膜といえる。
As is apparent from Table 1, the microporous membrane of the present invention has a low air permeability and better permeability than the comparative example. Further, the shrinkage is small and an island / fibril structure is formed.
As shown in Table 2, the results of the examples of the present invention are clearly superior in heat resistance and rate characteristics than the comparative examples. In particular, it can be said to be a microporous membrane excellent in output characteristics and safety as a separator for a storage battery such as a non-aqueous electrolyte battery.

本発明の微多孔膜は、出力特性と安全性に優れた非水電解液電池等の蓄電池用セパレータとしてや燃料電池の一構成部品、加湿膜、ろ過膜等として好適に利用できる。特に、出力特性と安全性が要求される電気自動車やハイブリッド自動車用の電池分野において有用である。
1 微多孔膜
The microporous membrane of the present invention can be suitably used as a separator for a storage battery such as a non-aqueous electrolyte battery excellent in output characteristics and safety, as a component of a fuel cell, a humidifying membrane, a filtration membrane, or the like. In particular, it is useful in the field of batteries for electric vehicles and hybrid vehicles that require output characteristics and safety.
1 Microporous membrane

耐熱性評価において使用するセルの概略図(上面図)である。It is the schematic (top view) of the cell used in heat resistance evaluation. 耐熱性評価において使用するセルの概略図(断面図)である。It is the schematic (sectional drawing) of the cell used in heat resistance evaluation. 実施例1の多孔シートのDSCによる融解吸熱曲線である。3 is a melting endothermic curve by DSC of the porous sheet of Example 1. 実施例1の微多孔膜の表面SEM像(3000倍)である。2 is a surface SEM image (3000 times) of the microporous membrane of Example 1. FIG. 実施例1の微多孔膜の表面SEM像(20000倍)である。2 is a surface SEM image (20,000 times) of the microporous membrane of Example 1. FIG. 実施例2の微多孔膜の表面SEM像(3000倍)である。4 is a surface SEM image (3000 times) of the microporous membrane of Example 2. FIG. 実施例2の微多孔膜の表面SEM像(20000倍)である。4 is a surface SEM image (20,000 times) of the microporous membrane of Example 2.

符号の説明Explanation of symbols

2 正極
3 負極
4 PETフィルム
5 SUS板
6 ダブルクリップ
2 Positive electrode 3 Negative electrode 4 PET film 5 SUS plate 6 Double clip

Claims (5)

ポリオレフィン樹脂及び微細粒子を含有する島状構造体と、該島状構造体間をつなぐフィブリルとを含み、該フィブリルがポリオレフィン樹脂を含有し、実質的に一方向に配列し、該微細粒子が、無機粒子、前記ポリオレフィン樹脂よりも高い融点を有する有機粒子、又は融点を有さず、前記ポリオレフィン樹脂よりも高いガラス転移点を有する有機粒子であるポリオレフィン微多孔膜であって、実質的に上記島状構造体と、上記一方向に配列するフィブリルとからなるポリオレフィン微多孔膜An island-like structure containing a polyolefin resin and fine particles, and a fibril connecting the island-like structures, the fibril contains a polyolefin resin and is arranged substantially in one direction. A polyolefin microporous membrane which is an inorganic particle, an organic particle having a higher melting point than the polyolefin resin, or an organic particle having no glass melting point higher than that of the polyolefin resin. A microporous polyolefin membrane comprising a structure and fibrils arranged in one direction . 微細粒子の一次粒径が、1nm以上1μm未満である請求項1に記載のポリオレフィン微多孔膜。   The polyolefin microporous film according to claim 1, wherein the primary particle diameter of the fine particles is 1 nm or more and less than 1 μm. フィブリルが実質的に長さ方向に配列している請求項1又は2に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to claim 1 or 2 , wherein the fibrils are substantially arranged in the length direction. 請求項1〜3のいずれか1項に記載のポリオレフィン微多孔膜の製造方法であって、
ポリオレフィン樹脂及び微細粒子を含有する多孔シートを、下記式(a)及び(b)を満たす延伸温度で、少なくとも一軸方向に、少なくとも一回延伸するポリオレフィン微多孔膜の製造方法であって、前記多孔シートはポリオレフィン樹脂、微細粒子及び可塑剤を溶融混錬して成形されたシートから可塑剤を抽出して得られたものであり、且つ前記多孔シートの空孔率が25%以上90%以下であるポリオレフィン微多孔膜の製造方法
(a)延伸温度Tme−5
(b)延伸温度>Tm
(但し、上記式(a)中のTmeは、示差走査熱量計にて測定される、多孔シート中のポリオレフィン樹脂のエンドセット温度を、同(b)中のTmは、示差走査熱量計にて測定される、多孔シート中のポリオレフィン樹脂の融点を各々示す。)
A method for producing a polyolefin microporous membrane according to any one of claims 1 to 3,
A method for producing a microporous polyolefin membrane, in which a porous sheet containing a polyolefin resin and fine particles is stretched at least once in a uniaxial direction at a stretching temperature satisfying the following formulas (a) and (b): The sheet is obtained by extracting a plasticizer from a sheet formed by melting and kneading a polyolefin resin, fine particles and a plasticizer, and the porosity of the porous sheet is 25% or more and 90% or less. A method for producing a polyolefin microporous membrane .
(A) Stretching temperature Tme-5
(B) Stretching temperature> Tm
(However, Tme in the above formula (a) is the end-set temperature of the polyolefin resin in the porous sheet measured with a differential scanning calorimeter, and Tm in (b) is with a differential scanning calorimeter. Each of the melting points of the polyolefin resin in the porous sheet to be measured is shown.)
請求項1〜のいずれか一項に記載のポリオレフィン微多孔膜からなる蓄電デバイス用セパレータ。 The electrical storage device separator which consists of a polyolefin microporous film as described in any one of Claims 1-3 .
JP2007051343A 2007-03-01 2007-03-01 Polyolefin microporous membrane Active JP5164396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051343A JP5164396B2 (en) 2007-03-01 2007-03-01 Polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051343A JP5164396B2 (en) 2007-03-01 2007-03-01 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2008218085A JP2008218085A (en) 2008-09-18
JP5164396B2 true JP5164396B2 (en) 2013-03-21

Family

ID=39837898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051343A Active JP5164396B2 (en) 2007-03-01 2007-03-01 Polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP5164396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502372B2 (en) 2017-03-07 2022-11-15 Samsung Sdi Co., Ltd. Porous film, separator comprising same, and electrochemical cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601681B2 (en) * 2010-05-28 2014-10-08 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP6683801B2 (en) * 2017-02-09 2020-04-22 積水化学工業株式会社 Microporous synthetic resin film and method for manufacturing the same, separator for electricity storage device, and electricity storage device
JP6626568B2 (en) * 2017-02-09 2019-12-25 積水化学工業株式会社 Synthetic resin microporous film, method for producing the same, separator for power storage device, and power storage device
EP3632972B1 (en) * 2017-05-26 2023-01-25 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane, separator for electricity storage devices, and electricity storage device
KR20220041777A (en) * 2019-07-25 2022-04-01 도레이 카부시키가이샤 Polyolefin microporous membrane and separator for non-aqueous electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328406A (en) * 1986-07-21 1988-02-06 Asahi Medical Co Ltd Network porous hollow yarn membrane
JPH0676502B2 (en) * 1988-09-26 1994-09-28 宇部興産株式会社 Microporous flat membrane and method for producing the same
JP4012822B2 (en) * 2001-03-09 2007-11-21 旭化成ケミカルズ株式会社 Microporous membrane and method for producing the same
JP5031150B2 (en) * 2001-06-08 2012-09-19 旭化成イーマテリアルズ株式会社 Polyolefin separator
JP2003238720A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Polyolefinic porous membrane
JP2005105198A (en) * 2003-10-01 2005-04-21 Teijin Ltd Porous sheet and method for manufacturing the same
TWI305215B (en) * 2004-08-30 2009-01-11 Asahi Kasei Chemicals Corp Polyolefin microporous membrane and separator for battery
JP5017841B2 (en) * 2005-10-19 2012-09-05 三菱樹脂株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
JP5005387B2 (en) * 2007-03-01 2012-08-22 旭化成イーマテリアルズ株式会社 Method for producing polyolefin microporous membrane
JP5008422B2 (en) * 2007-03-01 2012-08-22 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502372B2 (en) 2017-03-07 2022-11-15 Samsung Sdi Co., Ltd. Porous film, separator comprising same, and electrochemical cell

Also Published As

Publication number Publication date
JP2008218085A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5005387B2 (en) Method for producing polyolefin microporous membrane
JP5172683B2 (en) Polyolefin microporous membrane and non-aqueous electrolyte battery separator
JP4753446B2 (en) Polyolefin microporous membrane
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
JP4711965B2 (en) Polyolefin microporous membrane
KR102126212B1 (en) Polyolefin microporous membrane, separator for nonaqueous electrolyte based secondary battery, and nonaqueous electrolyte based secondary battery
JP5008422B2 (en) Polyolefin microporous membrane
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
KR20110114713A (en) Multi-layered porous film
WO2009136648A1 (en) Separator for high power density lithium‑ion secondary cell
JP7045862B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
JP5164396B2 (en) Polyolefin microporous membrane
JP6864762B2 (en) Polyolefin microporous membrane
JP2009242779A (en) Polyolefin fine porous membrane and separator for storage battery
JP2008186722A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP2008120930A (en) Microporous polyethylene film
JP5592745B2 (en) Polyolefin microporous membrane
CN111244369B (en) Polyolefin microporous membrane
JP5649210B2 (en) Polyolefin microporous membrane
JP5676285B2 (en) Polyolefin microporous membrane
JP2013144442A (en) Porous film including both high heat resistance and high transmittance, and method for manufacturing the same
KR101103125B1 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350