JP5005387B2 - Method for producing polyolefin microporous membrane - Google Patents

Method for producing polyolefin microporous membrane Download PDF

Info

Publication number
JP5005387B2
JP5005387B2 JP2007051342A JP2007051342A JP5005387B2 JP 5005387 B2 JP5005387 B2 JP 5005387B2 JP 2007051342 A JP2007051342 A JP 2007051342A JP 2007051342 A JP2007051342 A JP 2007051342A JP 5005387 B2 JP5005387 B2 JP 5005387B2
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin resin
melting point
polyolefin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007051342A
Other languages
Japanese (ja)
Other versions
JP2008214425A (en
Inventor
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2007051342A priority Critical patent/JP5005387B2/en
Publication of JP2008214425A publication Critical patent/JP2008214425A/en
Application granted granted Critical
Publication of JP5005387B2 publication Critical patent/JP5005387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ポリオレフィン微多孔膜の製造方法及びそれによって得られるポリオレフィン微多孔膜に関する。   The present invention relates to a method for producing a polyolefin microporous membrane and a polyolefin microporous membrane obtained thereby.

微多孔膜は、様々な孔径、孔形状、孔数を有し、その特異な構造により発現され得る特性から幅広い分野に利用されている。例えば、孔径の違いによるふるい効果を利用した水処理や濃縮などに用いられる分離膜、微多孔化による大表面積と多孔空間を利用した吸水、吸油、脱臭用材に用いられる吸着シート、分子サイズの違いにより空気や水蒸気などは通すが水は通さないという特徴を利用した透湿防水シート、多孔空間に各種材料を充填することで多機能化し、燃料電池などに有用な高分子電解質膜や加湿膜、さらには液晶材料、電池材料として用いられている。
分離膜分野では、選択透過性の確保と初期透過量の維持は常々要求される課題である。そのため孔形状の最適化や、膜基材とろ過液との親和性制御が過去検討されているが、ろ過液、ろ過方法の多様化に伴い、膜基材には更なる改良が求められている。
近年では、省エネルギー化や省資源化の観点から、特にリチウムイオン二次電池(LIB)やリチウムイオンキャパシター(LIC)、電気二重層キャパシター(EDLC)などの蓄電デバイスの研究開発、及び、用途展開の検討が積極的に行われている。これら蓄電デバイスには、正負極間の接触を防ぎ、イオンを透過させる機能を有するセパレータと呼ばれる電解液を保持した多孔膜が正負極間に設けられている。蓄電デバイスの使用用途に応じ、各様な性能が要求されている。
Microporous membranes have various pore diameters, pore shapes, and numbers of pores, and are used in a wide range of fields because of their characteristics that can be manifested by their unique structures. For example, separation membranes used for water treatment and concentration utilizing the sieving effect due to the difference in pore diameter, adsorption sheets used for water absorption, oil absorption, deodorizing materials utilizing large surface area and porous space due to microporosity, difference in molecular size Moisture permeable waterproof sheet using the feature that allows air and water vapor to pass through but not water, multi-functionalized by filling various materials in the porous space, polymer electrolyte membrane and humidifying membrane useful for fuel cells, etc. Furthermore, they are used as liquid crystal materials and battery materials.
In the separation membrane field, ensuring selective permeability and maintaining the initial permeation amount are always required issues. For this reason, optimization of the pore shape and affinity control between the membrane substrate and the filtrate have been studied in the past, but with the diversification of the filtrate and filtration method, further improvements have been required for the membrane substrate. Yes.
In recent years, research and development of energy storage devices such as lithium ion secondary battery (LIB), lithium ion capacitor (LIC), electric double layer capacitor (EDLC), and application development have been promoted from the viewpoint of energy saving and resource saving. Consideration is being actively conducted. In these electricity storage devices, a porous film holding an electrolytic solution called a separator having a function of preventing contact between positive and negative electrodes and transmitting ions is provided between the positive and negative electrodes. Various performances are required depending on the intended use of the electricity storage device.

例えば、自動車用途等への展開としては高出力特性、高安全性が、パソコンや携帯電話用途等への展開としては更なる高容量化、高エネルギー密度化が、無停電電源装置(UPS)や電力貯蔵システム用途等への展開としては、高容量化、高信頼性などが、蓄電デバイスには求められている。デバイス構成部材の一つであるセパレータにも電気特性の向上と安全・信頼性の両立が強く求められているが、トレードオフな関係であり必ずしも十分に満足しうるものではなかった。また、他の構成材料(正極活物質、負極活物質、電解液等)との適合性も電池性能を決定する上で重要な因子である。例えばLIBにおいて、正極活物質では、Li(NiCoMn)O2やLi(NiCoAl)O2等の複合酸化物、LiMPO4(M=Fe、Mn、Co、Ni等)のオリビン型結晶化合物などが、負極活物質では、Sn、Siとの合金化合物などが精力的に検討されており、必要に応じ、孔形状をフレキシブルに制御できる生産性の高い多孔膜の製造方法が求められている。 For example, high output characteristics and high safety for automotive applications, etc., and higher capacity and higher energy density for applications such as personal computers and mobile phones, uninterruptible power supply (UPS) and As development for power storage system applications and the like, high capacity and high reliability are required for power storage devices. The separator, which is one of the device constituent members, is strongly required to achieve both improved electrical characteristics and safety / reliability. However, this is a trade-off relationship and is not always satisfactory. In addition, compatibility with other constituent materials (positive electrode active material, negative electrode active material, electrolytic solution, etc.) is also an important factor in determining battery performance. For example, in LIB, in the positive electrode active material, composite oxides such as Li (NiCoMn) O 2 and Li (NiCoAl) O 2 , olivine type crystal compounds of LiMPO 4 (M = Fe, Mn, Co, Ni, etc.), etc. With regard to the negative electrode active material, alloy compounds with Sn, Si, and the like have been energetically studied, and a highly productive method for producing a porous film capable of flexibly controlling the pore shape is required as needed.

これら多様な要求に応じ得る微多孔膜の製造方法が提案されている。
特許文献1では、ポリオレフィン樹脂、無機粒子、可塑剤を溶融混練し、シート状に成形したものを高倍率に二軸延伸し、可塑剤を抽出する微多孔膜の製造方法が開示されている。本技術より開示されている微多孔膜は、高突刺強度と高温での耐短絡性を有し、電解液含浸性に優れることから蓄電池用セパレータとして適しているとしている。
特許文献2では、ポリオレフィン樹脂と無機粉体とで構成される多孔膜からなる非水電池用セパレータの製造方法が開示されている。本技術ではポリオレフィンの融点以上の温度下で延伸方向に5〜50%の緩和率にて熱処理することで低収縮を達成している。
A method of manufacturing a microporous membrane that can meet these various requirements has been proposed.
Patent Document 1 discloses a method for producing a microporous membrane in which a polyolefin resin, inorganic particles, and a plasticizer are melt-kneaded and formed into a sheet shape, biaxially stretched at a high magnification, and the plasticizer is extracted. The microporous membrane disclosed in the present technology is said to be suitable as a separator for a storage battery because it has a high puncture strength and a short circuit resistance at high temperatures and is excellent in electrolyte impregnation.
Patent Document 2 discloses a method for producing a separator for a non-aqueous battery comprising a porous film composed of a polyolefin resin and an inorganic powder. In this technique, low shrinkage is achieved by heat treatment at a relaxation rate of 5 to 50% in the stretching direction at a temperature equal to or higher than the melting point of polyolefin.

特許文献3では、ポリオレフィンと溶媒からなるゲル状組成物を融点+10℃以下で延伸し、しかる後残存溶媒を除去する高強度の微多孔膜の製造方法が開示されている。
特許文献4では、ポリエチレンの粉体焼結シートを融点以上の温度で溶融延伸を施す高温寸法安定性に優れた微多孔膜の製造方法が開示されている。
WO2006−25323号公報 特開2001−266831号公報 特許第3549311号公報 WO2004−24809号公報
Patent Document 3 discloses a method for producing a high-strength microporous membrane in which a gel composition comprising a polyolefin and a solvent is stretched at a melting point + 10 ° C. or less, and then the residual solvent is removed.
Patent Document 4 discloses a method for producing a microporous film excellent in high-temperature dimensional stability, in which a polyethylene powder sintered sheet is melt-drawn at a temperature equal to or higher than the melting point.
WO2006-25323 JP 2001-266831 A Japanese Patent No. 3549311 WO2004-24809

しかしながら、上記従来技術では孔形状をフレキシブルに制御することは難しく、得られる膜も透過性の点で十分ではなかった。上記特許文献1の実施例では、延伸温度は基材のポリエチレンの融点以下であるために、延伸によって孔形状をフレキシビルに制御することは容易ではなく、また透過性の点で必ずしも十分とはいえなかった。上記特許文献2の条件、すなわち、融点以上かつ5〜50%の緩和率での熱処理で得られる膜は、透過性が低減し、蓄電用セパレータとして使用した場合に、例えば出力特性等の電気特性に不安が残る膜となる。上記特許文献3では、溶剤を含む非多孔シートであるゲル状組成物を延伸しているために、孔形状の制御は困難である。また溶剤除去後の融点以上の延伸に関しての記述はない。上記特許文献4は、溶融延伸で多孔化を達成しているのではなく、溶融延伸後に別途多孔化手段(例えば可塑剤で膨潤させた後、可塑剤を抽出除去する工程)を施すことにより、高温寸法安定性に優れた微多孔膜を得る方法であり、得られた膜は、高透過性の点で十分とはいえない。
本発明は、高透過性を有する微多孔膜を提供できる方法であって、孔形状をフレキシブルに制御できる生産性の高い微多孔膜の製造方法を提供することを目的とする。
However, in the above prior art, it is difficult to control the hole shape in a flexible manner, and the resulting membrane is not sufficient in terms of permeability. In the examples of Patent Document 1, since the stretching temperature is not higher than the melting point of the base polyethylene, it is not easy to control the hole shape to flexivir by stretching, and it is not always sufficient in terms of permeability. I couldn't. The film obtained by the heat treatment at the above-mentioned Patent Document 2, that is, the melting point or higher and the relaxation rate of 5 to 50% has reduced permeability, and when used as a power storage separator, for example, electrical characteristics such as output characteristics It becomes a film that remains uneasy. In Patent Document 3, since the gel-like composition, which is a non-porous sheet containing a solvent, is stretched, it is difficult to control the pore shape. Moreover, there is no description about extending | stretching more than melting | fusing point after solvent removal. The above-mentioned patent document 4 does not achieve porosity by melt stretching, but by applying a separate porous means after melt stretching (for example, a step of extracting and removing the plasticizer after swelling with a plasticizer), This is a method for obtaining a microporous membrane excellent in high-temperature dimensional stability, and the obtained membrane is not sufficient in terms of high permeability.
An object of the present invention is to provide a method for producing a highly porous microporous membrane, which is capable of providing a highly permeable microporous membrane and can control the pore shape flexibly.

本発明者は、ポリオレフィン樹脂及び微細粒子から形成された三次元網目構造の多孔シートをポリオレフィン樹脂の融点よりも高温で延伸することにより、高透過性と孔形状をフレキシブルに制御できることを見出し、本発明を為すに至った。
すなわち、本発明は下記の通りである。
(1)ポリオレフィン樹脂と微細粒子を含有する三次元網目構造の多孔シートを該ポリオレフィン樹脂の融点よりも高温で延伸するポリオレフィン微多孔膜の製造方法。
(2)微細粒子が無機粒子前記ポリオレフィン樹脂の融点よりも高い融点を有する有機粒子、又は融点を有さず、前記ポリオレフィン樹脂よりも高いガラス転移点を有する有機粒子である上記(1)のポリオレフィン微多孔膜の製造方法。
(3)微細粒子の一次粒径が1nm以上1μm未満である上記(1)または(2)のポリオレフィン微多孔膜の製造方法。
(4)ポリオレフィン微多孔膜の突刺強度が3N/20μm以上である上記(1)〜(3)いずれかのポリオレフィン微多孔膜の製造方法。
(5)多孔シートの空孔率が25%以上である上記(1)〜(4)いずれかのポリオレフィン微多孔膜の製造方法。
(6)ポリオレフィン樹脂の融点より高温で延伸する前にポリオレフィン樹脂の融点以下の温度で少なくとも一回以上延伸する上記(1)〜(5)いずれかのポリオレフィン微多孔膜の製造方法。
(7)(a)ポリオレフィン樹脂、無機粒子及び可塑剤を溶融混練して溶融物を得る工程、
(b)該溶融物をシート状に成形し、シート状成形体を得る工程、(c)該シート状成形体をポリオレフィン樹脂の融点以下の温度で延伸して延伸シートを得る工程、(d)該延伸シートから可塑剤を抽出して多孔シートを得る工程、(e)該多孔シートをポリオレフィン樹脂の融点より高温で延伸する工程、を含むポリオレフィン微多孔膜の製造方法。
(8)ポリオレフィン微多孔膜が蓄電池セパレータ用である上記(1)〜(7)のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。
(9)上記(1)〜(7)いずれかの製造方法によって得られるポリオレフィン微多孔膜。
The present inventor has found that high permeability and pore shape can be flexibly controlled by stretching a porous sheet having a three-dimensional network structure formed from a polyolefin resin and fine particles at a temperature higher than the melting point of the polyolefin resin. Invented the invention.
That is, the present invention is as follows.
(1) A method for producing a polyolefin microporous membrane comprising stretching a porous sheet having a three-dimensional network structure containing a polyolefin resin and fine particles at a temperature higher than the melting point of the polyolefin resin.
(2) The polyolefin according to (1), wherein the fine particles are inorganic particles, organic particles having a melting point higher than the melting point of the polyolefin resin, or organic particles having no melting point and a glass transition point higher than that of the polyolefin resin. A method for producing a microporous membrane.
(3) The method for producing a polyolefin microporous membrane according to (1) or (2), wherein the primary particle size of the fine particles is 1 nm or more and less than 1 μm.
(4) The method for producing a polyolefin microporous membrane according to any one of the above (1) to (3), wherein the puncture strength of the polyolefin microporous membrane is 3 N / 20 μm or more.
(5) The method for producing a polyolefin microporous film according to any one of (1) to (4), wherein the porosity of the porous sheet is 25% or more.
(6) The method for producing a polyolefin microporous membrane according to any one of the above (1) to (5), wherein the film is stretched at least once at a temperature not higher than the melting point of the polyolefin resin before being stretched at a temperature higher than the melting point of the polyolefin resin.
(7) (a) a step in which a polyolefin resin, inorganic particles and a plasticizer are melt-kneaded to obtain a melt,
(B) a step of forming the melt into a sheet to obtain a sheet-like molded product, (c) a step of drawing the sheet-like molded product at a temperature below the melting point of the polyolefin resin to obtain a stretched sheet, (d) A method for producing a polyolefin microporous membrane comprising: a step of obtaining a porous sheet by extracting a plasticizer from the stretched sheet; and (e) a step of stretching the porous sheet at a temperature higher than the melting point of the polyolefin resin.
(8) The method for producing a polyolefin microporous membrane according to any one of (1) to (7), wherein the polyolefin microporous membrane is for a storage battery separator.
(9) A polyolefin microporous membrane obtained by the production method of any one of (1) to (7) above.

本発明によれば、高透過性を有する微多孔膜を提供できる。また孔形状をフレキシブルに制御できる生産性の高い微多孔膜の製造方法を提供できる。   According to the present invention, a microporous membrane having high permeability can be provided. In addition, it is possible to provide a method for producing a highly productive microporous membrane capable of flexibly controlling the pore shape.

本発明の微多孔膜の製造方法について、特にその好ましい形態を中心に、以下詳細に説明する。
本発明の製造方法は、ポリオレフィン樹脂と微細粒子を含有する三次元網目構造の多孔シートを該ポリオレフィン樹脂の融点よりも高温で延伸することを特徴とする。
ポリオレフィン樹脂は、通常の押出、射出、インフレーション、及びブロー成形等に使用可能なポリオレフィン樹脂を包含し、例えばエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテン等のホモ重合体及び共重合体、多段重合体等を使用することができる。また、これらのホモ重合体及び共重合体、多段重合体の群から選んだポリオレフィンを単独、もしくは混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の微多孔膜を電池セパレータとして使用する場合、低融点樹脂であり、かつ高強度の要求性能から、高密度ポリエチレンを主成分(例えば、ポリオレフィン樹脂100質量部中に10質量部以上)とする樹脂を使用することが好ましい。耐熱性の観点から、高密度ポリエチレンとポリプロピレンを混合して用いることがさらに好ましい。具体的にはポリオレフィン樹脂100質量部中にポリプロピレンを16質量部以上80質量部以下、より好ましくは20質量部以上60質量部以下の範囲で混合することが好ましい。ポリプロピレンが16質量部以上であると、耐熱性が飛躍的に向上する。80質量部以下であれば、高密度ポリエチレンと微細粒子を含有する組成物における延伸性は一層良好となり好ましい。
The method for producing a microporous membrane of the present invention will be described in detail below, particularly focusing on its preferred form.
The production method of the present invention is characterized in that a three-dimensional network structure porous sheet containing a polyolefin resin and fine particles is stretched at a temperature higher than the melting point of the polyolefin resin.
Polyolefin resins include polyolefin resins that can be used for normal extrusion, injection, inflation, blow molding, and the like, such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-hexene. Homopolymers and copolymers such as octene, multistage polymers and the like can be used. In addition, polyolefins selected from the group of these homopolymers, copolymers, and multistage polymers can be used alone or in combination. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, and ethylene propylene rubber. . When the microporous membrane of the present invention is used as a battery separator, it is a low melting point resin and has high strength required performance, so that high density polyethylene is the main component (for example, 10 parts by mass or more in 100 parts by mass of polyolefin resin). It is preferable to use a resin to be used. From the viewpoint of heat resistance, it is more preferable to use a mixture of high density polyethylene and polypropylene. Specifically, it is preferable to mix polypropylene in a range of 16 to 80 parts by mass, more preferably 20 to 60 parts by mass in 100 parts by mass of the polyolefin resin. When the polypropylene is 16 parts by mass or more, the heat resistance is drastically improved. If it is 80 mass parts or less, the drawability in the composition containing a high density polyethylene and a fine particle becomes still better, and it is preferable.

本発明において使用するポリオレフィン樹脂または本発明の製造方法により得られた微多孔膜のマトリックスポリマーの粘度平均分子量は、5万以上1000万未満が好ましく、より好ましくは20万以上300万未満、さらに好ましくは40万以上100万未満である。粘度平均分子量が5万以上であれば、溶融成形の際のメルトテンションが大きくなり成形性が向上しやすい上に、十分な絡み合いを付与しやすく高強度となりやすいので好ましい。粘度平均分子量が1000万以下であれば、均一な溶融混練を得やすい傾向があり、シートの成形性、特に厚み安定性に優れる傾向があるので好ましい。
ポリオレフィン樹脂には、本発明の利点を損なわない範囲で必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の添加剤を混合して使用できる。
The viscosity average molecular weight of the polyolefin resin used in the present invention or the matrix polymer of the microporous membrane obtained by the production method of the present invention is preferably 50,000 or more and less than 10 million, more preferably 200,000 or more and less than 3 million, more preferably Is between 400,000 and less than 1 million. A viscosity average molecular weight of 50,000 or more is preferable because the melt tension at the time of melt molding is increased and the moldability is easily improved, and sufficient entanglement is easily imparted and the strength is easily increased. If the viscosity average molecular weight is 10 million or less, it tends to be easy to obtain uniform melt kneading, and it is preferable because it tends to be excellent in sheet formability, particularly thickness stability.
Polyolefin resins include phenolic, phosphorus and sulfur-based antioxidants, metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light as necessary, as long as the advantages of the present invention are not impaired. Additives such as stabilizers, antistatic agents, antifogging agents, and coloring pigments can be mixed and used.

本発明の製造方法は、ポリオレフィン樹脂及び微細粒子を含有する三次元網目構造の多孔シートを延伸する。微細粒子を含まないポリオレフィン樹脂単独の三次元網目構造の多孔シートをポリオレフィン樹脂の融点より高温で延伸する場合は、三次元網目構造を形成しているフィブリルが融解し、容易に流動するために無孔状のシート、または極めて透過性が低いシートとなる。これに対して、本発明のように、ポリオレフィン樹脂と微細粒子を含有する三次元網目構造の多孔シートをポリオレフィン樹脂の融点より高温で延伸する場合は、ポリオレフィン樹脂へ微細粒子が分散していることで、フィブリルが融解する温度以上であってもポリオレフィン樹脂へ分散した微細粒子による増粘効果により、フィブリルは形状を保持し、三次元網目構造を無孔化することなく、延伸による変形が可能となると考えられる。   The production method of the present invention stretches a porous sheet having a three-dimensional network structure containing a polyolefin resin and fine particles. When a porous sheet of a three-dimensional network structure made of a single polyolefin resin that does not contain fine particles is stretched at a temperature higher than the melting point of the polyolefin resin, the fibrils forming the three-dimensional network structure melt and flow easily. It becomes a hole-like sheet or a sheet with extremely low permeability. On the other hand, when a three-dimensional network structure porous sheet containing a polyolefin resin and fine particles is stretched at a temperature higher than the melting point of the polyolefin resin as in the present invention, the fine particles are dispersed in the polyolefin resin. Even if the temperature is higher than the temperature at which the fibrils melt, the thickening effect by the fine particles dispersed in the polyolefin resin allows the fibrils to retain their shape and be deformed by stretching without making the three-dimensional network structure nonporous. It is considered to be.

三次元網目構造の多孔シートは、例えばポリオレフィン樹脂と可塑剤とを溶融混練した後、冷却し、可塑剤を抽出して多孔化する方法(いわゆる湿式相分離法)や、ポリオレフィン樹脂と無機充填材とを溶融混練してシート上に成形後、延伸によってポリオレフィン樹脂と無機充填材との界面を剥離させることで多孔化させる方法、ポリオレフィン樹脂を溶解後、ポリオレフィン樹脂に対する貧溶媒に浸漬させポリオレフィン樹脂を凝固させると同時に溶剤を除去することで多孔化させる方法などにより製造できる。好適には湿式相分離法により得られる。
多孔シートにおける微細粒子の含有量は、ポリオレフィン樹脂と微細粒子の合計質量に対して20質量%以上80質量%以下であることが望ましい。より好ましくは20質量%以上60質量%以下であり、さらに好ましくは40質量%以上60質量%以下である。20質量%以上の場合は、溶融時の増粘効果が十分に大きく、ポリオレフィン樹脂の融点より高温で延伸しても、良好な透過性を有する微多孔膜が得られやすい。80質量%以下であれば、高延伸倍率が可能であり、孔形状をよりフレキシブルに制御できるので好ましい。
A porous sheet having a three-dimensional network structure is, for example, a method in which a polyolefin resin and a plasticizer are melt-kneaded and then cooled, and the plasticizer is extracted to make it porous (so-called wet phase separation method), or a polyolefin resin and an inorganic filler. After melt-kneading and molding on a sheet, a method of making the porous structure by peeling the interface between the polyolefin resin and the inorganic filler by stretching, the polyolefin resin is dissolved and then immersed in a poor solvent for the polyolefin resin. It can be produced by a method of making it porous by removing the solvent simultaneously with solidification. It is preferably obtained by a wet phase separation method.
The content of fine particles in the porous sheet is desirably 20% by mass or more and 80% by mass or less with respect to the total mass of the polyolefin resin and the fine particles. More preferably, it is 20 mass% or more and 60 mass% or less, More preferably, it is 40 mass% or more and 60 mass% or less. When the content is 20% by mass or more, the effect of thickening at the time of melting is sufficiently large, and even when stretched at a temperature higher than the melting point of the polyolefin resin, a microporous film having good permeability is easily obtained. If it is 80 mass% or less, since a high draw ratio is possible and a hole shape can be controlled more flexibly, it is preferable.

微細粒子は、ポリオレフィン樹脂への分散性の点から、粒径が1nm以上であることが好ましい。上記微細粒子による増粘効果がより一層向上する点、延伸時において、ポリオレフィン樹脂と微細粒子間の界面剥離が起こりにくく孔形状をフレキシブルに制御出来やすい点から1μm未満であることが好ましい。微細粒子は、より好ましくは1nm以上100nm未満である。粒径は走査型電子顕微鏡や透過型電子顕微鏡にて計測できる。
微細粒子は、一次粒子内部に内部表面積を実質的に有さない、すなわち、一次粒子自身に微細な細孔を実質的に有さないことが好ましい。このような微細粒子を用いると例えば非水電解液電池用セパレータとして用いた場合に容量低下等の性能劣化を起こし難い傾向がある。理由は定かではないが、一次粒子内部に微細な細孔を実質的に有していなければ、通常の乾燥工程において容易に吸着水等を除去できるために、水分混在による容量低下を引き起こし難いと推測される。
The fine particles preferably have a particle size of 1 nm or more from the viewpoint of dispersibility in the polyolefin resin. The thickness is preferably less than 1 μm from the viewpoint that the thickening effect by the fine particles is further improved, and that the interfacial peeling between the polyolefin resin and the fine particles hardly occurs at the time of stretching, and the hole shape can be flexibly controlled. The fine particles are more preferably 1 nm or more and less than 100 nm. The particle size can be measured with a scanning electron microscope or a transmission electron microscope.
It is preferable that the fine particles have substantially no internal surface area inside the primary particles, that is, the primary particles themselves have substantially no fine pores. When such fine particles are used, for example, when used as a separator for a non-aqueous electrolyte battery, there is a tendency that performance deterioration such as capacity reduction is difficult to occur. The reason is not clear, but if it does not substantially have fine pores inside the primary particles, it is easy to remove adsorbed water etc. in the normal drying process, so it is difficult to cause capacity reduction due to moisture mixing. Guessed.

微細粒子は、多孔シートの延伸温度以下の温度で、ポリオレフィン樹脂、及び可塑剤や添加剤等と不活性であり、かつ融解しないものが好ましい。具体的には、無機粒子、ポリオレフィン樹脂の融点よりも高い融点を有する有機粒子、又は融点を有さず、前記ポリオレフィン樹脂よりも高いガラス転移点を有する有機粒子であることが好ましい。有機粒子が融点を有さない場合は、そのガラス転移点がポリオレフィン樹脂の融点よりも高温であれば構わない。無機粒子としては、具体的には珪素、アルミニウム、チタン、マグネシウムなどの酸化物や窒化物、カルシウム、バリウムなどの炭酸塩や硫酸塩が好ましい。また、適宜、表面処理を施した無機粒子を用いることが出来る。例えば、水系溶媒を使用したろ過用途向け微多孔膜や水系電解液蓄電デバイス用セパレータを製造する場合は、親水性処理を施した無機粒子が好適であり、非水系電解液蓄電デバイス用セパレータを製造する場合は、疎水処理を施した無機粒子が好適である。有機粒子としては、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリロニトリル、スチレン等の単独重合体、2種類以上のモノマーから選択された共重合体、その架橋体などの粒子が好ましい。   The fine particles are preferably those which are inactive with the polyolefin resin, the plasticizer, the additive and the like at a temperature not higher than the stretching temperature of the porous sheet and do not melt. Specifically, inorganic particles, organic particles having a melting point higher than that of the polyolefin resin, or organic particles having no melting point and a glass transition point higher than that of the polyolefin resin are preferable. When the organic particles do not have a melting point, the glass transition point may be higher than the melting point of the polyolefin resin. Specifically, the inorganic particles are preferably oxides and nitrides such as silicon, aluminum, titanium and magnesium, and carbonates and sulfates such as calcium and barium. Moreover, the inorganic particle which performed the surface treatment suitably can be used. For example, when producing microporous membranes for filtration applications using aqueous solvents and separators for aqueous electrolyte storage devices, hydrophilic particles are suitable, and separators for nonaqueous electrolyte storage devices are manufactured. In this case, inorganic particles that have been subjected to hydrophobic treatment are suitable. As the organic particles, particles such as homopolymers such as methyl methacrylate, ethyl methacrylate, methyl acrylate, acrylonitrile, styrene and the like, copolymers selected from two or more types of monomers, and crosslinked products thereof are preferable.

本発明の製造方法では、三次元網目構造の多孔シートをポリオレフィンの融点よりも高い温度で延伸する。三次元網目構造とは、繊維状のフィブリルが三次元方向にランダムに網目状に広がった構造である。フィブリル間にはポリオレフィンと微細粒子からなる凝集体が含まれていても構わない。例えば、フィブリルを有さない樹脂粉末の焼結シート等を延伸した場合には、焼結の接面にあるポリオレフィン分子鎖の絡み合い点が引き伸ばされるために、孔形状をフレキシブルに制御することは出来ない。また無孔シートを延伸した場合には、孔形状をフレキシブルに制御することは出来ないばかりか、透過性も低い。
多孔シートの気孔率は25%以上90%以下が好ましく、30%以上70%以下がより好ましく、35%以上60%以下がさらに好ましい。25%以上であれば、延伸時にポリオレフィン樹脂との界面剥離が起こりにくく孔形状をよりフレキシブルに制御出来やすい。90%以下であれば延伸によりいたずらに気孔率が増加する懸念が少なく、得られた微多孔膜はより高強度となりやすいので好ましい。
In the production method of the present invention, a porous sheet having a three-dimensional network structure is stretched at a temperature higher than the melting point of polyolefin. The three-dimensional network structure is a structure in which fibrous fibrils are randomly spread in a three-dimensional direction. Aggregates made of polyolefin and fine particles may be contained between the fibrils. For example, when a sintered sheet of resin powder that does not have fibrils is stretched, the entanglement points of the polyolefin molecular chains on the contact surface of the sintering are stretched, so the hole shape can be controlled flexibly. Absent. When a non-porous sheet is stretched, the shape of the hole cannot be controlled flexibly, and the permeability is low.
The porosity of the porous sheet is preferably from 25% to 90%, more preferably from 30% to 70%, and even more preferably from 35% to 60%. If it is 25% or more, interfacial peeling from the polyolefin resin hardly occurs at the time of stretching, and the hole shape can be controlled more flexibly. If it is 90% or less, there is little concern that the porosity will unnecessarily increase due to stretching, and the obtained microporous film is preferable because it tends to have higher strength.

本発明では、多孔シートをポリオレフィンの融点より高温で延伸する。融点より高温で延伸することにより、孔形状をフレキシブルに制御することが出来、著しく透過性の優れた微多孔膜の製造方法を提案できる。また、延伸基材が、先に述べた通り、ポリオレフィン樹脂及び微細粒子を含有する三次元網目状多孔シートであることが、ポリオレフィンの融点よりも高温で延伸を施しても、透過性の優れた微多孔膜を製造できる必要条件である。好ましくは融点よりも50℃高い温度(融点+50℃)以下、より好ましくは融点よりも20℃高い温度(融点+20℃)以下で延伸する。融点+50℃以下であれば十分な膜強度を得られやすいために好ましい。本発明で言う融点とは、示差走査熱量計(DSC)にて測定した融解吸熱曲線のピークトップ温度のことである。単独のポリオレフィン樹脂、または2種類以上のポリオレフィン樹脂を用い、融解吸熱ピークが2つ以上ある場合は、その融解吸熱量が最も大きいピークトップ温度を本発明で言う融点とみなす。延伸とは面倍率を1倍以上に変形させる工程であり、延伸倍率は面倍率で1.01倍以上50倍以下が好ましく、1.1倍以上10倍以下がより好ましい。1.01倍以上では良好な透過性が得られる。50倍以下ではフィブリルの耐久性に優れる。   In the present invention, the porous sheet is stretched at a temperature higher than the melting point of the polyolefin. By stretching at a temperature higher than the melting point, the pore shape can be controlled flexibly, and a method for producing a microporous membrane with remarkably excellent permeability can be proposed. In addition, as described above, the stretched base material is a three-dimensional network porous sheet containing a polyolefin resin and fine particles, and has excellent permeability even when stretched at a temperature higher than the melting point of polyolefin. This is a necessary condition for producing a microporous membrane. The film is preferably stretched at a temperature 50 ° C. higher than the melting point (melting point + 50 ° C.) or lower, more preferably 20 ° C. higher than the melting point (melting point + 20 ° C.) or lower. A melting point of + 50 ° C. or lower is preferable because sufficient film strength can be easily obtained. The melting point referred to in the present invention is a peak top temperature of a melting endothermic curve measured with a differential scanning calorimeter (DSC). When a single polyolefin resin or two or more types of polyolefin resins are used and there are two or more melting endothermic peaks, the peak top temperature having the largest melting endotherm is regarded as the melting point in the present invention. Stretching is a step of changing the surface magnification to 1 times or more, and the stretching magnification is preferably 1.01 to 50 times, more preferably 1.1 to 10 times in terms of surface magnification. If it is 1.01 times or more, good permeability can be obtained. If it is 50 times or less, the durability of the fibril is excellent.

本発明の製造方法は、以下の(A)〜(E)工程を含む方法であることが好ましい。
(A)ポリオレフィン樹脂、微細粒子及び可塑剤を溶融混練する工程
(B)溶融物をシート状に成形する工程
(C)ポリオレフィン樹脂の融点以下で延伸する工程
(D)可塑剤を抽出する工程
(E)ポリオレフィン樹脂の融点より高温で延伸する工程
これら工程の順序、回数については特に制限はないが、好ましくは、(E)工程より前の工程で、(C)工程を施すことが好ましい。最も好ましい形態は、(A)→(B)→(C)→(D)→(E)の順で行う製造方法である。すなわち、
(a)ポリオレフィン樹脂、無機粒子及び可塑剤を溶融混練して溶融物を得る工程、
(b)該溶融物をシート状に成形し、シート状成形体を得る工程、
(c)該シート状成形体をポリオレフィン樹脂の融点以下の温度で延伸して延伸シートを得る工程、
(d)該延伸シートから可塑剤を抽出して多孔シートを得る工程、
(e)該多孔シートをポリオレフィン樹脂の融点より高温で延伸する工程
を含むポリオレフィン微多孔膜の製造方法が好ましい。本順序であれば、孔形状をフレキシブルに制御出来る上に、高透過性に加えて低収縮や高強度も兼ね備えた微多孔膜を得られるために好ましい。
The production method of the present invention is preferably a method including the following steps (A) to (E).
(A) Step of melt-kneading polyolefin resin, fine particles and plasticizer (B) Step of forming melt into sheet (C) Step of drawing below melting point of polyolefin resin (D) Step of extracting plasticizer ( E) Step of stretching at a temperature higher than the melting point of the polyolefin resin There is no particular limitation on the order and number of times of these steps, but it is preferable to perform step (C) in a step prior to step (E). The most preferable form is a manufacturing method performed in the order of (A) → (B) → (C) → (D) → (E). That is,
(A) a step of melt-kneading a polyolefin resin, inorganic particles and a plasticizer to obtain a melt,
(B) forming the melt into a sheet and obtaining a sheet-like molded body,
(C) a step of stretching the sheet-like molded body at a temperature below the melting point of the polyolefin resin to obtain a stretched sheet;
(D) extracting a plasticizer from the stretched sheet to obtain a porous sheet;
(E) A method for producing a polyolefin microporous membrane comprising a step of stretching the porous sheet at a temperature higher than the melting point of the polyolefin resin is preferred. This order is preferable because the pore shape can be controlled flexibly and a microporous membrane having low shrinkage and high strength in addition to high permeability can be obtained.

(a)工程(又は(A)工程)で添加する可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒が好ましい。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコール等が挙げられる。特にポリオレフィン樹脂がポリエチレンの場合、流動パラフィンは、ポリエチレンとの相溶性が高く、延伸時に樹脂と可塑剤の界面剥離が起こりにくいために均一な延伸を実施しやすいので好ましい。   The plasticizer added in the step (a) (or step (A)) is preferably a non-volatile solvent capable of forming a uniform solution at a temperature equal to or higher than the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol. In particular, when the polyolefin resin is polyethylene, liquid paraffin is preferable because it has high compatibility with polyethylene and is less likely to cause interfacial peeling between the resin and the plasticizer during stretching, so that uniform stretching can be easily performed.

微細粒子の量比は、ポリオレフィン樹脂と微細粒子の合計質量に対して、微細粒子が20質量%以上80質量%以下であることが望ましい。より好ましくは20質量%以上60質量%以下であり、さらに好ましくは40質量%以上60質量%以下である。20質量%以上の場合は、溶融時の増粘効果が十分に大きく、ポリオレフィン樹脂の融点より高温で延伸しても、良好な透過性を有する微多孔膜が得られやすい。80質量%以下であれば、高延伸倍率が可能であり、孔形状をよりフレキシブルに制御できるので好ましい。
ポリオレフィン樹脂と微細粒子と可塑剤の比率については、均一な溶融混練が可能な比率であり、シート状の微多孔膜前駆体を成形しうるのに充分な比率であり、かつ生産性を損なわない程度であれば良い。具体的には、ポリオレフィン樹脂と微細粒子と可塑剤からなる組成物中に占める可塑剤の質量分率は、好ましくは30〜80質量%、更に好ましくは40〜70質量%である。可塑剤の質量分率が80質量%以下の場合、溶融成形時のメルトテンションが不足しにくく成形性が向上する傾向があるので好ましい。一方、質量分率が30質量%以上の場合は、延伸倍率の増大に伴い厚み方向に薄くなり、薄膜を得ることが容易となるので好ましい。また可塑化効果が十分なために結晶状の折り畳まれたラメラ晶を効率よく引き伸ばすことができ、高倍率の延伸ではポリオレフィン鎖の切断が起こらず均一かつ微細な孔構造となり強度も増加しやすい。
The amount ratio of the fine particles is preferably 20% by mass to 80% by mass with respect to the total mass of the polyolefin resin and the fine particles. More preferably, it is 20 mass% or more and 60 mass% or less, More preferably, it is 40 mass% or more and 60 mass% or less. When the content is 20% by mass or more, the effect of thickening at the time of melting is sufficiently large, and even when stretched at a temperature higher than the melting point of the polyolefin resin, a microporous film having good permeability is easily obtained. If it is 80 mass% or less, since a high draw ratio is possible and a hole shape can be controlled more flexibly, it is preferable.
The ratio of the polyolefin resin, fine particles, and plasticizer is a ratio that enables uniform melt-kneading, is a ratio that is sufficient to form a sheet-like microporous membrane precursor, and does not impair productivity. It ’s fine. Specifically, the mass fraction of the plasticizer in the composition comprising the polyolefin resin, fine particles, and the plasticizer is preferably 30 to 80 mass%, more preferably 40 to 70 mass%. When the plasticizer has a mass fraction of 80% by mass or less, the melt tension at the time of melt molding is hardly insufficient and the moldability tends to be improved, which is preferable. On the other hand, a mass fraction of 30% by mass or more is preferable because it becomes thinner in the thickness direction as the draw ratio increases and it becomes easier to obtain a thin film. In addition, since the plasticizing effect is sufficient, the crystalline folded lamellar crystal can be efficiently stretched, and when stretched at a high magnification, the polyolefin chain is not broken and a uniform and fine pore structure is obtained and the strength is easily increased.

ポリオレフィン樹脂と微細粒子と可塑剤を溶融混練する方法は、ポリオレフィン樹脂と微細粒子を押出機、ニーダー等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と微細粒子と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法が好ましい。さらに好ましい方法としては予めポリオレフィン樹脂と微細粒子と可塑剤をヘンシェルミキサー等を用い所定の割合で事前混練する工程を経て、該混練物を押出機に投入し、加熱溶融させながら任意の比率で可塑剤を導入し更に混練することが挙げられる。   The method of melt-kneading polyolefin resin, fine particles and plasticizer is to introduce polyolefin resin and fine particles into a resin kneading apparatus such as an extruder or kneader, and introduce a plasticizer at an arbitrary ratio while heating and melting the resin, Furthermore, a method of obtaining a uniform solution by kneading a composition comprising a resin, fine particles and a plasticizer is preferred. As a more preferable method, a polyolefin resin, fine particles, and a plasticizer are previously kneaded at a predetermined ratio using a Henschel mixer or the like, and the kneaded product is put into an extruder and plasticized at an arbitrary ratio while being heated and melted. Introducing an agent and further kneading.

(b)工程(又は(B)工程)では、溶融物を押し出して冷却固化させシート状の微多孔膜前駆体(シート状成形体)を製造する。シート化は、ポリオレフィン樹脂と微細粒子と可塑剤の均一溶液を、Tダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行うことが好ましい。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身等が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込むと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するためより好ましい。Tダイよりシート状に押出す際のダイリップ間隔は400μm以上3000μm以下が好ましく、500μm以上2500μmがさらに好ましい。ダイリップ間隔が400μm以上の場合には、メヤニ等が低減され、スジや欠点など膜品位への影響が少なく、その後の延伸工程に於いて膜破断などを防げるので好ましい。3000μm以下の場合は、冷却速度が速く冷却ムラを防げるほか、厚みの安定性を維持できるので好ましい。   In the step (b) (or (B) step), the melt is extruded and cooled and solidified to produce a sheet-like microporous membrane precursor (sheet-like molded body). Sheeting is performed by extruding a uniform solution of polyolefin resin, fine particles, and plasticizer into a sheet shape via a T-die, etc., and contacting a heat conductor to cool it to a temperature sufficiently lower than the crystallization temperature of the resin. Preferably it is done. As the heat conductor used for cooling and solidification, metal, water, air, plasticizer itself, or the like can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Further, it is more preferable that the metal roll is sandwiched between the rolls because the heat conduction efficiency is further increased, the sheet is oriented and the film strength is increased, and the surface smoothness of the sheet is also improved. The die lip interval when extruding into a sheet form from a T die is preferably 400 μm or more and 3000 μm or less, and more preferably 500 μm or more and 2500 μm. A die lip spacing of 400 μm or more is preferable because it reduces the meander and the like, has less influence on the film quality such as streaks and defects, and prevents film breakage in the subsequent stretching process. A thickness of 3000 μm or less is preferable because the cooling rate is high and uneven cooling can be prevented and the thickness stability can be maintained.

(c)工程(又は(C)工程)における延伸温度は融点以下である。延伸温度が融点以下であれば、十分な配向を付与でき、高強度な微多孔膜が得られやすい。延伸方向は少なくとも一軸延伸である。二軸方向に高倍率延伸した場合、面方向に分子配向するため裂けにくく安定な構造となり高い突刺強度が得られる。延伸方法は同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等のいずれの方法を単独もしくは併用することも構わないが、延伸方法が同時二軸延伸であることが突刺強度の増加や膜厚均一化の観点から最も好ましい。ここでいう同時二軸延伸とはMD方向の延伸とTD方向の延伸が同時に施される手法であり、各方向の変形率は異なっても良い。逐次二軸延伸とは、MD方向、またはTD方向の延伸が独立して施される手法であり、MD方向、またはTD方向に延伸がなされている際は、他方向が非拘束状態、または定長に固定されている状態にある。延伸倍率は、面倍率で20倍以上200倍未満の範囲が好ましく、さらには20倍以上100倍以下が、25倍以上50倍以下の範囲がさらに好ましい。各軸方向の延伸倍率はMD方向に4倍以上10倍以下、TD方向に4倍以上10倍以下の範囲が好ましく、MD方向に5倍以上8倍以下、TD方向に5倍以上8倍以下の範囲がさらに好ましい。総面積倍率が20倍以上の場合は、膜に十分な強度を付与でき、200倍未満では膜破断を防ぎ、高い生産性が得られるので好ましい。MD方向に4倍以上およびTD方向に4倍以上延伸した場合は、MD方向、TD方向共に膜厚ムラが小さい製品が得られやすいために好ましい。   (C) The extending | stretching temperature in a process (or (C) process) is below melting | fusing point. When the stretching temperature is not higher than the melting point, sufficient orientation can be imparted and a high-strength microporous film can be easily obtained. The stretching direction is at least uniaxial stretching. When the film is stretched at a high magnification in the biaxial direction, it has a stable structure that is difficult to tear because of molecular orientation in the plane direction, and a high puncture strength is obtained. The stretching method may be simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, multi-stretching, etc., either alone or in combination, but if the stretching method is simultaneous biaxial stretching, the piercing strength is increased. And from the viewpoint of uniform film thickness. Here, the simultaneous biaxial stretching is a method in which stretching in the MD direction and stretching in the TD direction are performed simultaneously, and the deformation rate in each direction may be different. Sequential biaxial stretching is a technique in which stretching in the MD direction or TD direction is performed independently. When stretching is performed in the MD direction or TD direction, the other direction is unconstrained or fixed. It is in a state of being fixed to the length. The draw ratio is preferably in the range of 20 times to less than 200 times, more preferably in the range of 20 times to 100 times, and more preferably in the range of 25 times to 50 times. The stretching ratio in each axial direction is preferably 4 to 10 times in the MD direction, preferably 4 to 10 times in the TD direction, 5 to 8 times in the MD direction, and 5 to 8 times in the TD direction. The range of is more preferable. When the total area magnification is 20 times or more, sufficient strength can be imparted to the film, and when it is less than 200 times, film breakage is prevented and high productivity is obtained, which is preferable. When the film is stretched 4 times or more in the MD direction and 4 times or more in the TD direction, it is preferable because a product with small film thickness unevenness is easily obtained in both the MD direction and the TD direction.

(d)工程(又は(D)工程)ではシート状成形体から可塑剤を抽出する。可塑剤を抽出する方法はバッチ式、連続式のいずれでもよいが、抽出溶剤に微多孔膜を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を微多孔膜から実質的に除去することが好ましい。微多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に微多孔膜の端部を拘束することは好ましい。また、抽出後の微多孔膜中の可塑剤残存量は1質量%未満にすることが好ましい。
抽出溶剤は、ポリオレフィン樹脂かつ微細粒子に対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、 例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、ハイドロフロロエーテルやハイドロフロロカーボン等の非塩素系ハロゲン化溶剤、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンやメチルエチルケトン等のケトン類が挙げられる。
In step (d) (or step (D)), a plasticizer is extracted from the sheet-like molded body. The method of extracting the plasticizer may be either a batch type or a continuous type. However, the plasticizer is extracted by immersing the microporous membrane in an extraction solvent and sufficiently dried, so that the plasticizer is substantially removed from the microporous membrane. It is preferable to remove. In order to suppress the shrinkage of the microporous membrane, it is preferable to constrain the end of the microporous membrane during a series of steps of immersion and drying. Further, the residual amount of plasticizer in the microporous membrane after extraction is preferably less than 1% by mass.
It is desirable that the extraction solvent is a poor solvent for the polyolefin resin and fine particles and a good solvent for the plasticizer, and has a boiling point lower than the melting point of the polyolefin microporous membrane. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, and non-chlorine-based solvents such as hydrofluoroether and hydrofluorocarbon. Examples thereof include halogenated solvents, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, and ketones such as acetone and methyl ethyl ketone.

(e)工程(又は(E)工程)では、多孔シートをポリオレフィン樹脂の融点より高温で延伸する。これにより、孔形状をフレキシブルに制御することが出来、著しく透過性の優れた微多孔膜の製造方法を提案できる。延伸方向は、孔形状に応じ適宜選択し行うことができる。延伸方法は同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等のいずれの方法を単独もしくは併用することも構わない。
本発明の利点を損なわない範囲で各延伸過程に引き続いて、または後に熱固定及び熱緩和等の熱処理工程を加えることは、微多孔膜の収縮をさらに抑制する効果があり好ましい。
In step (e) (or step (E)), the porous sheet is stretched at a temperature higher than the melting point of the polyolefin resin. Thereby, the pore shape can be controlled flexibly, and a method for producing a microporous membrane with extremely excellent permeability can be proposed. The stretching direction can be appropriately selected according to the hole shape. As the stretching method, any method such as simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, and multiple stretching may be used alone or in combination.
It is preferable to add a heat treatment step such as heat fixation and heat relaxation after each stretching step within a range not impairing the advantages of the present invention, since it further has an effect of further suppressing the shrinkage of the microporous membrane.

本発明の利点を損なわない範囲で、複数層からなる多孔シートを用いて実施することや、本発明で得られた微多孔膜を多層化しても構わない。
本発明の利点を損なわない範囲で後処理を行っても良い。後処理としては、例えば、界面活性剤等による親水化処理、及び電離性放射線等による架橋処理、熱可塑性樹脂や無機粒子等を片面もしくは両面に塗工する等が挙げられる。
次に、本発明の製造方法において製造される微多孔膜の好ましい形態について述べる。
微多孔膜における微細粒子の含有量は、ポリオレフィン樹脂と微細粒子の合計質量に対して、20質量%以上80質量%以下が望ましい。より好ましくは20質量%以上60質量%以下であり、さらに好ましくは40質量%以上60質量%以下である。20質量%以上の場合は、溶融時の増粘効果が十分に大きく、ポリオレフィン樹脂の融点より高温で延伸しても、良好な透過性を有する微多孔膜が得られやすい。80質量%以下であれば、高延伸倍率が可能であり、孔形状をよりフレキシブルに制御できるので好ましい。
As long as the advantages of the present invention are not impaired, the present invention may be carried out using a multi-layer porous sheet, or the microporous film obtained in the present invention may be multilayered.
You may post-process in the range which does not impair the advantage of this invention. Examples of the post-treatment include hydrophilization treatment with a surfactant and the like, cross-linking treatment with ionizing radiation, and the like, coating a thermoplastic resin, inorganic particles, and the like on one side or both sides.
Next, the preferable form of the microporous film manufactured in the manufacturing method of this invention is described.
The content of fine particles in the microporous membrane is preferably 20% by mass or more and 80% by mass or less with respect to the total mass of the polyolefin resin and the fine particles. More preferably, it is 20 mass% or more and 60 mass% or less, More preferably, it is 40 mass% or more and 60 mass% or less. When the content is 20% by mass or more, the effect of thickening at the time of melting is sufficiently large, and even when stretched at a temperature higher than the melting point of the polyolefin resin, a microporous film having good permeability is easily obtained. If it is 80 mass% or less, since a high draw ratio is possible and a hole shape can be controlled more flexibly, it is preferable.

微多孔膜の最終的な膜厚は2μm以上100μm以下の範囲が好ましく、5μm以上40μm以下の範囲がより好ましく、5μm以上35μm以下の範囲がさらに好ましい。膜厚が2μm以上であれば機械強度が十分であり、また、100μm以下であればセパレータの占有体積が減るため、電池の高容量化の点において有利となる傾向があるので好ましい。
気孔率は、好ましくは25%以上90%以下、より好ましくは40%以上80%以下、さらに好ましくは50%以上80%以下の範囲である。気孔率が25%以上では、透過性が低下しにくく、一方90%以下では電池セパレータとして使用した場合に自己放電の可能性が少なく信頼性があるので好ましい。
The final film thickness of the microporous membrane is preferably in the range of 2 μm to 100 μm, more preferably in the range of 5 μm to 40 μm, and still more preferably in the range of 5 μm to 35 μm. When the film thickness is 2 μm or more, the mechanical strength is sufficient, and when the film thickness is 100 μm or less, the occupied volume of the separator is reduced, which tends to be advantageous in terms of increasing the capacity of the battery.
The porosity is preferably in the range of 25% to 90%, more preferably 40% to 80%, and still more preferably 50% to 80%. When the porosity is 25% or more, the permeability is hardly lowered, while when the porosity is 90% or less, there is little possibility of self-discharge when used as a battery separator, which is preferable.

透気度は、1秒以上500秒以下、より好ましくは5秒以上200秒以下、さらに好ましくは10秒以上100秒以下の範囲である。透気度が1秒以上では電池用セパレータとして使用した際に自己放電が少なく、500秒以下では良好な出力特性が得られるので好ましい。
突刺し強度は3N/20μm以上好ましい。3N/20μm以上では、電池捲回時における脱落した活物質等による破膜を抑制出来る。また充放電に伴う電極の膨張収縮により短絡する懸念が少ない。上限は特に制限されないが、加熱時の配向緩和による幅収縮を低減できる点から、20N/20μm以下が好ましい。より好ましくは4N/20μm以上20N/20μm以下、より好ましくは5N/20μm以上10N/20μmである。
The air permeability ranges from 1 second to 500 seconds, more preferably from 5 seconds to 200 seconds, still more preferably from 10 seconds to 100 seconds. When the air permeability is 1 second or more, self-discharge is small when used as a battery separator, and when it is 500 seconds or less, good output characteristics are obtained, which is preferable.
The puncture strength is preferably 3 N / 20 μm or more. When the thickness is 3N / 20 μm or more, film breakage due to the dropped active material or the like during battery winding can be suppressed. In addition, there is little fear of short-circuiting due to the expansion and contraction of the electrode accompanying charging and discharging. The upper limit is not particularly limited, but is preferably 20 N / 20 μm or less from the viewpoint that width shrinkage due to orientation relaxation during heating can be reduced. More preferably, they are 4N / 20micrometer or more and 20N / 20micrometer or less, More preferably, they are 5N / 20micrometer or more and 10N / 20micrometer.

高温時における熱収縮は30%以下が好ましい。MD(Machine Direction)方向、TD(Transverse Direction)方向とも小さいことが好ましいが、特に電池用セパレータとして使用した場合には、TD方向に低収縮であることが好ましい。MD方向とは、微多孔膜を製造する際の進行方向、すなわち長さ方向であり、TD方向とは、MD方向と直角をなす方向、すなわち幅方向である。高温下(例えば150℃)におけるTD方向の収縮は、電池の安全性確保の点から30%以下が好ましく、より好ましくは25%以下であり、さらに好ましくは20%以下である。下限は特に制限されないが、電極との密着性の観点から1%以上が好ましい。
微多孔膜の孔径は目的に応じてフレキシブルに制御出来る。孔径の長径/短径比は、1.01以上100以下が好ましく、より好ましくは1.5以上50以下、さらに好ましくは2以上20以下である。1.01以上であれば、ろ過膜として使用した場合には透過性の目詰りによる透過性の低減が少なく、100以下であればフィブリルの耐久性に優れる。長径、および短径の方向は、MD方向、TD方向、および任意の方向を微多孔膜の使用目的に応じて選択出来る。
The heat shrinkage at high temperature is preferably 30% or less. Both the MD (Machine Direction) direction and the TD (Transverse Direction) direction are preferably small, but when used as a battery separator, it is preferably low shrinkage in the TD direction. The MD direction is the traveling direction when manufacturing the microporous membrane, that is, the length direction, and the TD direction is the direction perpendicular to the MD direction, that is, the width direction. The shrinkage in the TD direction at a high temperature (for example, 150 ° C.) is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less from the viewpoint of ensuring the safety of the battery. Although a minimum in particular is not restrict | limited, 1% or more is preferable from an adhesive viewpoint with an electrode.
The pore diameter of the microporous membrane can be flexibly controlled according to the purpose. The major axis / minor axis ratio of the pore diameter is preferably 1.01 or more and 100 or less, more preferably 1.5 or more and 50 or less, and further preferably 2 or more and 20 or less. If it is 1.01 or more, when used as a filtration membrane, there is little reduction in permeability due to permeability clogging, and if it is 100 or less, the durability of fibrils is excellent. The direction of the major axis and the minor axis can be selected from the MD direction, the TD direction, and any direction depending on the purpose of use of the microporous membrane.

次に、実施例によって本発明をさらに詳細に説明するが、これらは本発明の範囲を制限するものではない。実施例における試験方法は次の通りである。
<微多孔膜の評価>
(1)粘度平均分子量
デカヒドロナフタリンへ試料の劣化防止のため2,6−ジ−t−ブチル−4−メチルフェノールを0.1w%の濃度となるように溶解させ、これ(以下DHNと略す)を試料溶媒として用いる。微多孔膜をDHNへ0.1w%の濃度となるように150℃で溶解させる。その溶液をろ過し、微細粒子を除去し試料溶液とする。もしくは、微細粒子は溶解するがポリオレフィン樹脂は溶解または反応しない溶液に微多孔膜を浸漬することで、微細粒子を先に抽出除去した微多孔膜を用いても良い。作成した試料溶液を10ml採取し、キャノンフェンスケ粘度計(SO100)により135℃での標線間通過秒数(t)を計測する。また、DHNを150℃に加熱した後、10ml採取し、同様の方法により粘度計の標線間を通過する秒数(t)を計測する。得られた通過秒数t、tBを用いて次の換算式により極限粘度[η]を算出した。
[η]=((1.651t/tB−0.651)0.5−1)/0.0834
求められた[η]より、次式により粘度平均分子量(Mv)を算出した。
[η]=6.77×10−4Mv0.67
EXAMPLES Next, although an Example demonstrates this invention further in detail, these do not restrict | limit the scope of the present invention. The test methods in the examples are as follows.
<Evaluation of microporous membrane>
(1) Viscosity average molecular weight 2,6-di-tert-butyl-4-methylphenol was dissolved in decahydronaphthalene to prevent deterioration of the sample to a concentration of 0.1 w%, and this (hereinafter abbreviated as DHN) ) As a sample solvent. The microporous membrane is dissolved in DHN at 150 ° C. to a concentration of 0.1 w%. The solution is filtered, fine particles are removed and used as a sample solution. Alternatively, a microporous film in which the fine particles are extracted and removed first by immersing the microporous film in a solution in which the fine particles dissolve but the polyolefin resin does not dissolve or react may be used. 10 ml of the prepared sample solution is sampled, and the number of seconds passing through the marked line (t) at 135 ° C. is measured with a Canon Fenceke viscometer (SO100). Further, after heating the DHN to 0.99 ° C., and 10ml collected to measure the number of seconds passing between marked lines of the viscometer in the same manner (t B). The intrinsic viscosity [η] was calculated by the following conversion formula using the obtained passing seconds t and t B.
[Η] = ((1.651 t / t B −0.651) 0.5 −1) /0.0834
From the obtained [η], the viscosity average molecular weight (Mv) was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67

(2)一次粒径
走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用いて測定した。試料はオスミウム蒸着したものを用い、加速電圧1.0kVで観察した。
(3)膜厚
微小測厚器(東洋精機製 タイプKBM)を用いて室温23℃で測定した。
(4)気孔率
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
体積(cm)=10×10×膜厚(μm)/10000
気孔率(%)=(体積−質量/混合組成物の密度)/体積×100
なお、混合組成物の密度は、用いたポリオレフィン樹脂と微細粒子の各々の密度と混合比より計算で求められる値を用いた。
(2) Measurement was performed using a primary particle size scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. The sample used was osmium-deposited and observed at an acceleration voltage of 1.0 kV.
(3) Film thickness It measured at room temperature 23 degreeC using the micro thickness measuring device (type KBM by Toyo Seiki).
(4) Porosity A sample of 10 cm × 10 cm square was cut out from the microporous membrane, its volume (cm 3 ) and mass (g) were obtained, and calculated from these and the film density (g / cm 3 ) using the following formula: did.
Volume (cm 3 ) = 10 × 10 × film thickness (μm) / 10000
Porosity (%) = (volume-mass / density of mixed composition) / volume × 100
In addition, the value calculated | required by calculation from the density and mixing ratio of each used polyolefin resin and a fine particle was used for the density of a mixed composition.

(5)透気度
JIS P−8117準拠のガーレー式透気度計(東洋精機製)にて測定した。
(6)突刺強度
カトーテック製のハンディー圧縮試験器KES−G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重として生の突刺強度(N)を得た。これに20(μm)/膜厚(μm)を乗じることにより20μm膜厚換算突刺強度(N/20μm)を算出した。
(7)収縮率
MD120mm×TD120mm角の試料を微多孔膜から切り出し、TD100mm間隔で3箇所、油性ペンで印をつけた。A4サイズ、目付け64g/m、紙厚0.092mmのコピー用紙(KOKUYO製)で微多孔膜を挟み、コピー用紙の側辺をホッチキスで綴じた。150℃下のオーブン中に水平に置き1時間放置した。その後、空冷し、印間のTD長さ(mm)を測定した。3箇所の平均値より収縮率を算出した。
収縮率(%)=(1−TD長さ(mm)/100)×100
(5) Air permeability It measured with the Gurley type air permeability meter (made by Toyo Seiki) based on JIS P-8117.
(6) Puncture strength Using a handy compression tester KES-G5 (trademark) manufactured by Kato Tech, a microporous membrane was fixed with a sample holder having a diameter of 11.3 mm at the opening. Next, the center of the fixed microporous membrane is subjected to a piercing test in a 25 ° C. atmosphere at a needle radius of curvature of 0.5 mm and a piercing speed of 2 mm / sec. (N) was obtained. By multiplying this by 20 (μm) / film thickness (μm), a 20 μm film thickness equivalent puncture strength (N / 20 μm) was calculated.
(7) Shrinkage rate A sample of MD120 mm × TD120 mm square was cut out from the microporous membrane and marked with an oil-based pen at three locations at intervals of TD100 mm. The microporous film was sandwiched between copy paper (manufactured by KOKYUYO) having an A4 size, a basis weight of 64 g / m 2 , and a paper thickness of 0.092 mm, and the sides of the copy paper were stapled. It was placed horizontally in an oven at 150 ° C. and left for 1 hour. Then, it air-cooled and measured TD length (mm) between marks. The shrinkage rate was calculated from the average value at three locations.
Shrinkage rate (%) = (1-TD length (mm) / 100) × 100

(8)MD/TD孔径比
微多孔膜の孔径は、走査型電子顕微鏡(SEM)「型式S−4800、HITACHI社製」を用いて測定した。試料はオスミウム蒸着したものを用い、加速電圧1.0kVで観察した。表面写真5cm×5cmあたりに10〜300個程度の孔が存在する倍率で観察、印刷し、その表面写真より存在する孔のMD径とTD径をカウントし、その平均値よりMD/TD孔径比を算出した。本実施例1では30000倍の倍率で観察し測定した。
(9)融点
島津製作所社製DSC60を使用し測定した。多孔シートを直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとしたのを測定サンプルとして用いた。これを直径5mmのアルミ製オープンサンプルパンに敷き詰め、クランピングカバーを乗せサンプルシーラーでアルミパン内に固定した。窒素雰囲気下、昇温速度10℃/minで30℃から200℃までを測定し、融解吸熱曲線を得た。得られた融解吸熱曲線のピークトップ温度を融点(Tm[℃])とした。
(8) MD / TD pore size ratio The pore size of the microporous membrane was measured using a scanning electron microscope (SEM) “Model S-4800, manufactured by HITACHI”. The sample used was osmium-deposited and observed at an acceleration voltage of 1.0 kV. Observe and print at a magnification of about 10 to 300 holes per 5 cm x 5 cm of the surface photograph, count the MD diameter and TD diameter of the holes present from the surface photograph, and calculate the MD / TD hole diameter ratio from the average value. Was calculated. In Example 1, it was observed and measured at a magnification of 30000 times.
(9) Melting point It measured using DSC60 by Shimadzu Corporation. A perforated sheet was punched into a circle with a diameter of 5 mm, and several sheets were overlapped to give 3 mg as a measurement sample. This was spread on an aluminum open sample pan having a diameter of 5 mm, and a clamping cover was placed thereon and fixed in the aluminum pan with a sample sealer. Under a nitrogen atmosphere, the temperature was increased from 30 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min to obtain a melting endothermic curve. The peak top temperature of the obtained melting endotherm curve was defined as the melting point (Tm [° C.]).

[実施例1]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を22.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を15質量部、一次粒径が15nmであるシリカ「DM10C」(商標、(株)トクヤマ製)を25質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を37.5質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物中に占める全流動パラフィン量が60質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み1480μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は121℃とした。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行い、三次元網目構造の多孔シートを得た。得られた多孔シートの融点は137℃であった。さらに多孔シートを、出口倍率を1.2倍に設定した横テンターに導きTD方向に延伸し巻取りを行い微多孔膜を得た。このときTD延伸部の設定温度は145℃とした。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 1]
22.5 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with Mv of 2 million 15 parts by mass, silica “DM10C” (trademark, manufactured by Tokuyama Co., Ltd.) having a primary particle diameter of 15 nm, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Co., Ltd.) as a plasticizer. 37.5 parts by mass of Petroleum Research Institute Co., Ltd. and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant This was premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture melt-kneaded and extruded was 60 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1480 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter was 121 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried to obtain a porous sheet having a three-dimensional network structure. The resulting porous sheet had a melting point of 137 ° C. Further, the porous sheet was guided to a transverse tenter with the exit magnification set to 1.2 times, stretched in the TD direction, and wound to obtain a microporous film. At this time, the set temperature of the TD stretched portion was 145 ° C. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例2]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を17.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を12.5質量部、一次粒径が13nmであるアルミナ「AluC」(商標、Degussa製)を37質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を33質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した以外は実施例1と同様にして微多孔膜を得た。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 2]
17.5 parts by weight of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with an Mv of 2 million 12.5 parts by mass, alumina “AluC” (trademark, manufactured by Degussa) having a primary particle size of 13 nm is 37 parts by mass, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Oil Co., Ltd.) as a plasticizer. Made by adding 33 parts by mass of a laboratory) and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant A microporous membrane was obtained in the same manner as in Example 1 except that the preliminary mixing was performed using a super mixer. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例3]
実施例2のアルミナ「AluC」(商標、Degussa製)のかわりに、一次粒径が40nmであるチタニア「TTO−55(S)」(石原産業(株)製)を使用した以外は実施例2と同様にして微多孔膜を得た。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 3]
Example 2 except that titania “TTO-55 (S)” (Ishihara Sangyo Co., Ltd.) having a primary particle size of 40 nm was used instead of alumina “AluC” (trademark, manufactured by Degussa) of Example 2. In the same manner, a microporous membrane was obtained. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例4]
多孔シートのTD延伸倍率を1.6倍に変更した以外は実施例1と同様にして微多孔膜を得た。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 4]
A microporous membrane was obtained in the same manner as in Example 1 except that the TD stretch ratio of the porous sheet was changed to 1.6 times. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例5]
実施例1の横テンターでのTD延伸のかわりに、ロール延伸機でのMD延伸を実施した。巻取速度/繰出速度比を2.0倍に設定し、ロール温度145℃でMD延伸をした以外は実施例1と同様にして微多孔膜を得た。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 5]
Instead of TD stretching with the horizontal tenter of Example 1, MD stretching with a roll stretching machine was performed. A microporous membrane was obtained in the same manner as in Example 1 except that the winding speed / feeding speed ratio was set to 2.0 times and MD stretching was performed at a roll temperature of 145 ° C. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例6]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を22.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を15質量部、一次粒径が15nmであるシリカ「DM10C」(商標、(株)トクヤマ製)を25質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を37.5質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物中に占める全流動パラフィン量が60質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み2200μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は124℃である。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行った。さらに出口倍率を0.96倍に設定した横テンターに導きTD方向に熱緩和し巻取りを行い、三次元網目構造の多孔シートを得た。このときTD緩和部の設定温度は150℃とした。得られた多孔シートの融解吸熱曲線は2つのピークトップを示した。融解吸熱量が大きい方のピークトップより求めた融点は130℃であった。次に多孔シートをロール延伸機を用いてMD延伸し、微多孔膜を得た。このとき、巻取速度/繰出速度比は2.5倍に設定し、ロール温度は145℃とした。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 6]
22.5 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with Mv of 2 million 15 parts by mass, silica “DM10C” (trademark, manufactured by Tokuyama Co., Ltd.) having a primary particle diameter of 15 nm, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Co., Ltd.) as a plasticizer. 37.5 parts by mass of Petroleum Research Institute Co., Ltd. and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant This was premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture melt-kneaded and extruded was 60 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 2200 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter is 124 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried. Furthermore, it led to the horizontal tenter which set the exit magnification | multiplying_factor to 0.96 times, and it heat-relaxed in TD direction and wound up and obtained the porous sheet of a three-dimensional network structure. At this time, the set temperature of the TD relaxation part was 150 ° C. The melting endothermic curve of the obtained porous sheet showed two peak tops. The melting point determined from the peak top with the larger melting endotherm was 130 ° C. Next, the porous sheet was MD-stretched using a roll stretching machine to obtain a microporous film. At this time, the winding speed / feeding speed ratio was set to 2.5 times, and the roll temperature was 145 ° C. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例7]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を17.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を12.5質量部、一次粒径が13nmであるアルミナ「AluC」(商標、Degussa製)を37質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を33質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した以外は実施例6と同様にして微多孔膜を得た。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 7]
17.5 parts by weight of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with an Mv of 2 million 12.5 parts by mass, alumina “AluC” (trademark, manufactured by Degussa) having a primary particle size of 13 nm is 37 parts by mass, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Oil Co., Ltd.) as a plasticizer. Made by adding 33 parts by mass of a laboratory) and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant A microporous membrane was obtained in the same manner as in Example 6 except that the preliminary mixing was performed using a super mixer. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例8]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を18質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を12質量部、Mv40万のホモポリプロピレン「H−100M」(プライムポリマー製)を7.5質量部、一次粒径が15nmであるシリカ「DM10C」(商標、(株)トクヤマ製)を25質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を37.5質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を1.0質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物中に占める全流動パラフィン量が60質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み1480μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は121℃とした。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行い、三次元網目構造の多孔シートを得た。得られた多孔シートの融解吸熱曲線は2つのピークトップを示した(137℃、163℃)。融解吸熱量が最も大きいピークより求めた融点は137℃であった。次に多孔シートをロール延伸機を用いてMD延伸し、微多孔膜を得た。このとき、巻取速度/繰出速度比は1.5倍に設定し、ロール温度は145℃とした。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 8]
18 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with an Mv of 2 million 12 parts by mass, 7.5 parts by mass of homopolypropylene “H-100M” (manufactured by Prime Polymer) having an Mv of 400,000, and 25 parts by mass of silica “DM10C” (trademark, manufactured by Tokuyama Corporation) having a primary particle size of 15 nm 37.5 parts by weight of liquid paraffin “Smoyl P-350P” (trademark, manufactured by Matsumura Oil Research Co., Ltd.) as a plasticizer and pentaerythrityl-tetrakis- [3- (3,5- What added 1.0 part by mass of [di-t-butyl-4-hydroxyphenyl) propionate] was premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture melt-kneaded and extruded was 60 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1480 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter was 121 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried to obtain a porous sheet having a three-dimensional network structure. The melting endothermic curve of the obtained porous sheet showed two peak tops (137 ° C. and 163 ° C.). The melting point determined from the peak with the largest melting endotherm was 137 ° C. Next, the porous sheet was MD-stretched using a roll stretching machine to obtain a microporous film. At this time, the winding speed / feeding speed ratio was set to 1.5 times, and the roll temperature was 145 ° C. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[実施例9]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を14.4質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を9.6質量部、Mv40万のホモポリプロピレン「H−100M」(プライムポリマー社製)を6質量部、一次粒径が13nmであるアルミナ「AluC」(商標、Degussa製)を37質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を33質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した以外は実施例8と同様にして微多孔膜を得た。製膜条件および得られた微多孔膜の特性を表1に示す。
[Example 9]
14.4 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with Mv of 2 million 9.6 parts by mass, Mv 400,000 Homopolypropylene “H-100M” (Prime Polymer Co., Ltd.) 6 parts by mass, and alumina “AluC” (trademark, manufactured by Degussa) whose primary particle size is 13 nm is 37 parts by mass. Part, 33 parts by mass of liquid paraffin “Smoyl P-350P” (trademark, manufactured by Matsumura Oil Research Co., Ltd.) as a plasticizer, and pentaerythrityl-tetrakis- [3- (3,5-di-) as an antioxidant t-butyl-4-hydroxyphenyl) propionate] was added except that 0.3 parts by mass was premixed with a super mixer. 8 and to obtain a microporous membrane in a similar manner. Table 1 shows the film forming conditions and the characteristics of the obtained microporous film.

[比較例1]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を22.5質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を15質量部、一次粒径が15nmであるシリカ「DM10C」(商標、(株)トクヤマ製)を25質量部、可塑剤として流動パラフィン「スモイル P−350P」(商標、(株)松村石油研究所製)を37.5質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加したものをスーパーミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物中に占める全流動パラフィン量が60質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み1480μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は121℃とした。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行い、微多孔膜を得た。得られた試料の融点は137℃であった。製膜条件および得られた微多孔膜の特性を表2に示す。
[Comparative Example 1]
22.5 parts by mass of high-density polyethylene “SH800” (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene “UH850” (trademark, Asahi Kasei Chemicals Corporation) with Mv of 2 million 15 parts by mass, silica “DM10C” (trademark, manufactured by Tokuyama Co., Ltd.) having a primary particle diameter of 15 nm, and liquid paraffin “Smoyl P-350P” (trademark, Matsumura Co., Ltd.) as a plasticizer. 37.5 parts by mass of Petroleum Research Institute Co., Ltd. and 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant This was premixed with a super mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture melt-kneaded and extruded was 60 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1480 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter was 121 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried to obtain a microporous membrane. The melting point of the obtained sample was 137 ° C. Table 2 shows the film forming conditions and the characteristics of the obtained microporous film.

[比較例2]
比較例1で得られた微多孔膜を出口倍率を1.6倍に設定した横テンターに導きTD方向に延伸した後、巻取り、微多孔膜を得た。TD延伸部の設定温度は130℃とした。製膜条件および得られた微多孔膜の特性を表2に示す。
[Comparative Example 2]
The microporous membrane obtained in Comparative Example 1 was guided to a horizontal tenter with the exit magnification set to 1.6 times and stretched in the TD direction, and then wound to obtain a microporous membrane. The set temperature of the TD stretch portion was 130 ° C. Table 2 shows the film forming conditions and the characteristics of the obtained microporous film.

[比較例3]
比較例1で得られた微多孔膜をロール延伸機でMD延伸した。このとき、巻取速度/繰出速度比は2.0倍に設定し、ロール温度は120℃とした。製膜条件および微多孔膜の特性を表2に示す。
[Comparative Example 3]
The microporous film obtained in Comparative Example 1 was MD stretched with a roll stretching machine. At this time, the winding speed / feeding speed ratio was set to 2.0 times, and the roll temperature was 120 ° C. Table 2 shows the film forming conditions and the characteristics of the microporous film.

[比較例4]
比較例1で得られた微多孔膜を、出口倍率を0.92倍に設定した横テンターに導きTD方向に熱緩和を行い、微多孔膜を得た。TD緩和部の設定温度は150℃とした。製膜条件および微多孔膜の特性を表2に示す。
[Comparative Example 4]
The microporous membrane obtained in Comparative Example 1 was guided to a horizontal tenter with the exit magnification set to 0.92 times and subjected to thermal relaxation in the TD direction to obtain a microporous membrane. The set temperature of the TD relaxation part was 150 ° C. Table 2 shows the film forming conditions and the characteristics of the microporous film.

[比較例5]
粘度平均分子量(Mv)27万の高密度ポリエチレン「SH800」(商標、旭化成ケミカルズ(株)製)を60質量部、Mv200万の超高分子量ポリエチレン「UH850」(商標、旭化成ケミカルズ(株)製)を40質量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3質量部添加し、タンブラーブレンダーを用いてドライブレンドし、ポリマー等混合物を得た。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し、押し出される全混合物中に占める全流動パラフィン量が65質量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度40℃に制御された冷却ロール間に押出し、厚み1480μmのシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンターへ導き、縦方向に7倍、横方向に7倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は123℃である。次に塩化メチレン槽に導き、十分に塩化メチレンに浸漬して流動パラフィンを抽出除去した。その後塩化メチレンの乾燥を行い、三次元網目構造の多孔シートを得た。得られた多孔シートの融点は137℃であった。さらに得られた多孔シートを、出口倍率を1.2倍に設定した横テンターに導きTD方向に延伸し巻取りを行い、微多孔膜を得た。このときTD延伸部の設定温度は145℃とした。製膜条件および得られた微多孔膜の特性を表2に示す。
[Comparative Example 5]
60 parts by mass of high-density polyethylene "SH800" (trademark, manufactured by Asahi Kasei Chemicals Corporation) with a viscosity average molecular weight (Mv) of 270,000, ultra high molecular weight polyethylene "UH850" (trademark, manufactured by Asahi Kasei Chemicals Corporation) with an Mv of 2 million 40 parts by mass, 0.3 parts by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added, and a tumbler blender was used. Dry blending was performed to obtain a polymer mixture. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the total amount of liquid paraffin in the entire mixture to be melt kneaded and extruded was 65 parts by mass. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 40 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1480 μm. Next, it was continuously led to a simultaneous biaxial tenter, and simultaneous biaxial stretching was performed 7 times in the longitudinal direction and 7 times in the transverse direction. At this time, the set temperature of the simultaneous biaxial tenter is 123 ° C. Next, it was led to a methylene chloride bath and sufficiently immersed in methylene chloride to extract and remove liquid paraffin. Thereafter, methylene chloride was dried to obtain a porous sheet having a three-dimensional network structure. The resulting porous sheet had a melting point of 137 ° C. Furthermore, the obtained porous sheet was led to a horizontal tenter having an exit magnification set to 1.2 times, stretched in the TD direction, and wound to obtain a microporous film. At this time, the set temperature of the TD stretched portion was 145 ° C. Table 2 shows the film forming conditions and the characteristics of the obtained microporous film.

Figure 0005005387
Figure 0005005387

Figure 0005005387
Figure 0005005387

表1、2から明らかなように実施例1〜8において、延伸方向、倍率により孔形状を容易に制御出来るのに対し、比較例1〜3では孔形状は延伸を施しているにもかかわらず、変化が小さい。また比較例4,5では、透過性が著しく劣る。本発明では、ポリオレフィン樹脂の融点より高温で延伸することにより、透過性に優れ、孔形状をフレキシブルに制御出来る微多孔膜の製造方法といえる。   As apparent from Tables 1 and 2, in Examples 1 to 8, the hole shape can be easily controlled by the stretching direction and magnification, whereas in Comparative Examples 1 to 3, the hole shape is stretched. The change is small. In Comparative Examples 4 and 5, the permeability is remarkably inferior. In this invention, it can be said that it is excellent in permeability | transmittance by extending | stretching at high temperature from melting | fusing point of polyolefin resin, and can be said to be a manufacturing method of the microporous film | membrane which can control a hole shape flexibly.

本発明によれば、高透過性を有する微多孔膜を提供できる。更に、孔形状をフレキシブルに制御出来る。そのため、透過量と選択透過性を必要とするろ過膜等に適した微多孔膜や、出力特性等の電気特性と生産性に優れた蓄電池用セパレータ等として特に好適な微多孔膜の製造方法として利用できる。   According to the present invention, a microporous membrane having high permeability can be provided. Furthermore, the hole shape can be controlled flexibly. Therefore, as a method for producing a microporous membrane particularly suitable as a microporous membrane suitable for a filtration membrane or the like that requires permeation amount and selective permeability, or a storage battery separator having excellent electrical characteristics such as output characteristics and productivity. Available.

Claims (8)

ポリオレフィン樹脂と微細粒子を含有する三次元網目構造の多孔シートを該ポリオレフィン樹脂の融点よりも高温で延伸するポリオレフィン微多孔膜の製造方法であって、該微細粒子が無機粒子前記ポリオレフィン樹脂の融点よりも高い融点を有する有機粒子、又は融点を有さず、前記ポリオレフィン樹脂よりも高いガラス転移点を有する有機粒子であるポリオレフィン微多孔膜の製造方法A method for producing a polyolefin microporous membrane in which a porous sheet having a three-dimensional network structure containing a polyolefin resin and fine particles is stretched at a temperature higher than the melting point of the polyolefin resin, wherein the fine particles are formed of inorganic particles from the melting point of the polyolefin resin. A method for producing a polyolefin microporous membrane, which is an organic particle having a high melting point, or an organic particle having no glass melting point and a glass transition point higher than that of the polyolefin resin . 微細粒子の一次粒径が、1nm以上1μm未満である請求項1記載のポリオレフィン微多孔膜の製造方法。 The method for producing a polyolefin microporous membrane according to claim 1, wherein the primary particle diameter of the fine particles is 1 nm or more and less than 1 μm. ポリオレフィン微多孔膜の突刺強度が3N/20μm以上である請求項1または2に記載のポリオレフィン微多孔膜の製造方法。 The method for producing a polyolefin microporous membrane according to claim 1 or 2 , wherein the puncture strength of the polyolefin microporous membrane is 3 N / 20 µm or more. 多孔シートの空孔率が25%以上である請求項1〜のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。 The method for producing a polyolefin microporous membrane according to any one of claims 1 to 3 , wherein the porosity of the porous sheet is 25% or more. ポリオレフィン樹脂の融点より高温で延伸する前にポリオレフィン樹脂の融点以下の温度で少なくとも一回以上延伸する請求項1〜のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。 The method for producing a polyolefin microporous membrane according to any one of claims 1 to 4 , wherein the film is stretched at least once at a temperature not higher than the melting point of the polyolefin resin before being stretched at a temperature higher than the melting point of the polyolefin resin. (a)ポリオレフィン樹脂、無機粒子及び可塑剤を溶融混練して溶融物を得る工程、
(b)該溶融物をシート状に成形し、シート状成形体を得る工程、
(c)該シート状成形体をポリオレフィン樹脂の融点以下の温度で延伸して延伸シートを得る工程、
(d)該延伸シートから可塑剤を抽出して多孔シートを得る工程、
(e)該多孔シートをポリオレフィン樹脂の融点より高温で延伸する工程、を含むポリオレフィン微多孔膜の製造方法。
(A) a step of melt-kneading a polyolefin resin, inorganic particles and a plasticizer to obtain a melt,
(B) forming the melt into a sheet and obtaining a sheet-like molded body,
(C) a step of stretching the sheet-like molded body at a temperature below the melting point of the polyolefin resin to obtain a stretched sheet;
(D) extracting a plasticizer from the stretched sheet to obtain a porous sheet;
(E) A method for producing a polyolefin microporous membrane comprising a step of stretching the porous sheet at a temperature higher than the melting point of the polyolefin resin.
ポリオレフィン微多孔膜が蓄電池セパレータ用である請求項1〜のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。 The method for producing a polyolefin microporous membrane according to any one of claims 1 to 6 , wherein the polyolefin microporous membrane is for a storage battery separator. 請求項1〜のいずれか一項に記載の製造方法によって得られるポリオレフィン微多孔膜。 The polyolefin microporous film obtained by the manufacturing method as described in any one of Claims 1-6 .
JP2007051342A 2007-03-01 2007-03-01 Method for producing polyolefin microporous membrane Active JP5005387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051342A JP5005387B2 (en) 2007-03-01 2007-03-01 Method for producing polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051342A JP5005387B2 (en) 2007-03-01 2007-03-01 Method for producing polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2008214425A JP2008214425A (en) 2008-09-18
JP5005387B2 true JP5005387B2 (en) 2012-08-22

Family

ID=39834872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051342A Active JP5005387B2 (en) 2007-03-01 2007-03-01 Method for producing polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP5005387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218085A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Polyolefin fine porous membrane

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545928B2 (en) * 2009-03-05 2014-07-09 旭化成イーマテリアルズ株式会社 Method for producing polyolefin microporous membrane
PL2708359T3 (en) 2009-03-09 2018-06-29 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane useful as separator for electricity storage device
JP5295857B2 (en) * 2009-04-30 2013-09-18 旭化成イーマテリアルズ株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5491137B2 (en) * 2009-10-15 2014-05-14 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
JP5601681B2 (en) * 2010-05-28 2014-10-08 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP5577964B2 (en) * 2010-09-01 2014-08-27 日産自動車株式会社 Lithium ion secondary battery
KR101886681B1 (en) * 2012-01-06 2018-08-08 에스케이이노베이션 주식회사 Microporous polyolefin film and preparing method thereof
US9276244B2 (en) 2012-02-08 2016-03-01 Sumitomo Chemical Company, Limited Method for producing polyolefin porous film, and laminated porous film
JP5694971B2 (en) * 2012-02-08 2015-04-01 住友化学株式会社 Method for producing polyolefin microporous film and method for producing laminated porous film
JP6105379B2 (en) * 2013-05-07 2017-03-29 帝人株式会社 Liquid filter substrate
JP6095226B2 (en) * 2013-12-06 2017-03-15 株式会社日本製鋼所 Stretching method in film stretching machine and stretching apparatus for polyolefin microporous stretched film
JP6943580B2 (en) * 2017-03-03 2021-10-06 住友化学株式会社 Non-aqueous electrolyte secondary battery separator
JP6783480B2 (en) * 2017-05-16 2020-11-11 株式会社Tbm Manufacturing method of sheet-shaped resin molded product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317721A (en) * 2003-04-15 2004-11-11 Asahi Kasei Chemicals Corp Fine porosity plastic film for liquid crystal storage and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218085A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Polyolefin fine porous membrane

Also Published As

Publication number Publication date
JP2008214425A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP5005387B2 (en) Method for producing polyolefin microporous membrane
JP5172683B2 (en) Polyolefin microporous membrane and non-aqueous electrolyte battery separator
JP5283379B2 (en) Polyolefin microporous membrane and method for producing the same
JP4397121B2 (en) Polyolefin microporous membrane
KR100885360B1 (en) Microporous polyolefin film and separator for storage cell
JP5448345B2 (en) Multilayer porous membrane and method for producing the same
KR101231752B1 (en) Method for producing polyolefin microporous film and microporous film
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JP5403932B2 (en) Polyolefin microporous membrane
US20190088917A1 (en) Polyolefin microporous membrane, method of producing polyolefin microporous membrane, battery separator, and battery
WO2006104165A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
JP2008186721A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP4234392B2 (en) Microporous membrane, production method and use thereof
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP5008422B2 (en) Polyolefin microporous membrane
JP2004161899A (en) Film with minute pore and its manufacturing method and use
JP2017088836A (en) Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP5164396B2 (en) Polyolefin microporous membrane
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
JP2008186722A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP2019196470A (en) Low heat shrinking polyolefin microporous film and its production method
JP5235487B2 (en) Method for producing inorganic particle-containing microporous membrane
JP2009242779A (en) Polyolefin fine porous membrane and separator for storage battery
JP2018076475A (en) High temperature low heat shrinkable polyolefin monolayer microporous film and method for producing the same
JP5592745B2 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5005387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350