JP6105379B2 - Liquid filter substrate - Google Patents
Liquid filter substrate Download PDFInfo
- Publication number
- JP6105379B2 JP6105379B2 JP2013097633A JP2013097633A JP6105379B2 JP 6105379 B2 JP6105379 B2 JP 6105379B2 JP 2013097633 A JP2013097633 A JP 2013097633A JP 2013097633 A JP2013097633 A JP 2013097633A JP 6105379 B2 JP6105379 B2 JP 6105379B2
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin microporous
- microporous membrane
- liquid
- weight
- polyethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Chemical & Material Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
Description
本発明は、液体フィルター用基材に関する。 The present invention relates to a liquid filter substrate.
近年、ますます電子機器の小型、高性能化が進んでおり、特にパーソナルコンピューター、スマートフォンを代表とするデジタル機器、携帯端末は飛躍的な進化を遂げている。それを牽引、サポートするさまざまな技術の中でも半導体産業の技術革新が大きな役割を果たしているのは周知の事実である。半導体産業において、技術ロードマップが指し示す重要特性である配線パターン寸法は20nmを下回る領域での開発競争となっており、各社最先端製造ラインの構築を急いでいる。 In recent years, electronic devices have been increasingly reduced in size and performance. In particular, personal computers, digital devices represented by smartphones, and mobile terminals have undergone dramatic evolution. It is a well-known fact that technological innovation in the semiconductor industry plays a major role among the various technologies that lead and support it. In the semiconductor industry, the wiring pattern dimension, which is an important characteristic indicated by the technology roadmap, is a development race in a region below 20 nm, and each company is rushing to build a state-of-the-art manufacturing line.
リソグラフィ工程は、半導体部品製造にてパターンを形成する工程であり、近年のパターン微細化と共に、使用する薬液そのもの性状のみならず、ウェハー上へ塗布するまでの薬液取扱いも非常に高度な技術が要求されるようになってきている。
高度に調製された薬液はウェハー上へ塗布する直前に、パターン形成、歩留りに大きな影響を与えるパーティクルを除去されるべく、緻密なフィルターで濾過される。最先端の20nmを下回るパターン形成においては、10nm前後のパーティクルを捕集できることが要求され、フィルターメーカー各社は、精力的に開発を進めているところである。
The lithography process is a process for forming patterns in the manufacture of semiconductor components. In addition to the recent miniaturization of patterns, not only the properties of the chemicals used but also the handling of chemicals until they are applied on the wafer are required. It has come to be.
Highly prepared chemicals are filtered through a precise filter immediately before application onto a wafer in order to remove particles that greatly affect pattern formation and yield. In the pattern formation below the latest 20 nm, it is required that particles of around 10 nm can be collected, and filter manufacturers are energetically developing them.
また、これまでの先端領域である20nmを超える配線パターン寸法の領域(例えば、30nm〜100nm)においては、配線パターンを形成するために必要な薬液に対する要求として、従来の外部からの微小な混入異物の排除に加えて、薬液自体の高反応性に伴うゲル化によるゲル状物の排除や高純度に精製された薬液純度の維持、すなわち薬液の汚染防止が求められるようになってきた。このような各種配線パターン寸法の半導体の製造において、数nm〜100nmのサイズのパーティクルを除去するニーズがある。 Further, in a region having a wiring pattern dimension exceeding 20 nm (for example, 30 nm to 100 nm), which is a conventional tip region, as a request for a chemical solution necessary for forming a wiring pattern, a conventional minute foreign matter from outside In addition to the elimination of chemicals, there has been a demand for elimination of gel-like substances due to gelation accompanying the high reactivity of the chemicals themselves and maintenance of the purity of the chemicals purified to a high purity, that is, prevention of contamination of the chemicals. In the manufacture of semiconductors having such various wiring pattern dimensions, there is a need to remove particles having a size of several nm to 100 nm.
フィルターは、ポリエチレン、ポリテトラフルオロエチレン、ナイロン、ポリプロピレン等の樹脂からなる多孔質膜を基材として、カートリッジ形体に加工されて販売、使用されるのが一般的である。基材は、薬液との相性、それぞれの多孔質構造による捕集性能並びに処理能力、寿命等の観点から、半導体部品製造工場に選別使用されている。最近では特に基材由来の溶出物を低減させることが重視されており、基材の中でも最先端領域では捕集性能、低溶出の点で優れるポリエチレンフィルターの使用が増大している。 Filters are generally sold and used after being processed into a cartridge shape using a porous film made of a resin such as polyethylene, polytetrafluoroethylene, nylon, or polypropylene as a base material. Substrates are selected and used in semiconductor component manufacturing plants from the viewpoints of compatibility with chemical solutions, collection performance of each porous structure, processing capability, life, and the like. Recently, emphasis has been placed on reducing the eluate derived from the base material, and the use of polyethylene filters that are superior in terms of collection performance and low elution is increasing in the most advanced region of the base material.
ポリエチレンフィルター用の基材の代表的な製造方法は相分離法が用いられ、これは高分子溶液の相分離現象により細孔を形成する技術である。相分離が熱により誘起される熱誘起相分離や、高分子の溶媒に対する溶解度特性を利用した非溶媒誘起相分離法などがあるが、両方の技術を組み合せたり、さらには延伸により孔構造の形、大きさ等のバリエーションを増大させる技術がある。 A typical method for producing a base material for a polyethylene filter is a phase separation method, which is a technique for forming pores by a phase separation phenomenon of a polymer solution. There are heat-induced phase separation, in which phase separation is induced by heat, and non-solvent-induced phase separation using the solubility characteristics of polymers in solvents. There are techniques for increasing variations in size and the like.
熱相転換法は例えば特許文献1にあるように、良溶媒中にポリエチレンを分散させた液を、加熱し、溶媒分の加熱蒸発、貧溶媒に浸漬することで相転換させ、シート状に賦形成膜する方法である。延伸法は例えば特許文献2,3にあるように、なんらかの方法でシート状に賦形製膜されたポリエチレンシートを速度、倍率、温度等の延伸条件の組み合わせを駆使して、結晶構造中の非晶質部分を引き伸ばし、ミクロフィブリルを形成しながらラメラ層の間に微細孔を形成する方法である。 For example, as disclosed in Patent Document 1, a thermal phase inversion method is a method in which a liquid in which polyethylene is dispersed in a good solvent is heated, heated to evaporate the solvent, and immersed in a poor solvent to cause phase transformation, and applied to a sheet. This is a method of forming a film. For example, as described in Patent Documents 2 and 3, a stretching method is performed by using a combination of stretching conditions such as speed, magnification, and temperature for a polyethylene sheet formed into a sheet shape by some method. This is a method of forming micropores between lamellar layers while stretching the crystalline portion and forming microfibrils.
しかしながら、数nm〜100nm程度のパーティクルを効率的に捕集しようとすると、逆に液体透過性が悪化する傾向にある。つまり、捕集性能と液体透過性はトレードオフの関係にある。
一方で、所定の大きさのフィルターカートリッジにおいてより多くの濾過面積を得て、ポリオレフィン微多孔膜の加工時のフィルターの流量設計や構造設計の自由度を高めることも求められている。そのために、ポリオレフィン微多孔膜を薄く形成することが考えられるが、ポリオレフィン微多孔膜の膜厚は捕集性能や液体透過性にも影響を与えるため、これら各種特性とのバランスを考慮する必要がある。
However, when trying to efficiently collect particles of several nm to 100 nm, the liquid permeability tends to deteriorate. That is, the collection performance and liquid permeability are in a trade-off relationship.
On the other hand, it is also required to obtain a larger filtration area in a filter cartridge of a predetermined size and to increase the degree of freedom in designing the flow rate and structure of the filter when processing the polyolefin microporous membrane. For this purpose, it is conceivable to form a thin polyolefin microporous membrane. However, since the thickness of the polyolefin microporous membrane also affects the collection performance and liquid permeability, it is necessary to consider the balance with these various characteristics. is there.
しかしながら、特許文献1〜3のような従来技術においては、約5nm〜100nm程度のパーティクルに対する捕集性能および液体透過性を優れたものにし、さらに高いフィルター設計の自由度も実現させた提案はなされていない。
そこで、本発明では、上述した課題を解決すべく、優れた捕集性能と液体透過性を兼ね備え、かつ、フィルター設計の自由度が高い液体フィルター用基材として好適なポリオレフィン微多孔膜を提供することを目的とする。
However, in the conventional techniques such as Patent Documents 1 to 3, a proposal has been made to improve the collection performance and liquid permeability with respect to particles of about 5 nm to 100 nm, and also realize a high degree of freedom in filter design. Not.
Therefore, in the present invention, in order to solve the above-described problems, a polyolefin microporous membrane suitable for a liquid filter substrate having both excellent collection performance and liquid permeability and having a high degree of freedom in filter design is provided. For the purpose.
本発明は、上記課題を解決するために、以下の構成を採用する。
1.ポリオレフィン微多孔膜からなる液体フィルター用基材であって、前記ポリオレフィン微多孔膜の厚さが4〜16μmであり、前記ポリオレフィン微多孔膜のバブルポイントが0.40MPa以上0.80MPa以下である、液体フィルター用基材。
2.前記ポリオレフィン微多孔膜は、130℃で1時間熱処理を行った後の幅方向の熱収縮率が20%以上である、上記1に記載の液体フィルター用基材。
3.前記ポリオレフィン微多孔膜は、孔閉塞温度が140℃よりも高いものである、上記1または2に記載の液体フィルター用基材。
4.前記ポリオレフィン微多孔膜の圧縮率が15%未満である、上記1〜3のいずれかに記載の液体フィルター用基材。
5.前記ポリオレフィン微多孔膜の空孔率が46〜60%である、上記1〜4のいずれかに記載の液体フィルター用基材。
6.前記ポリオレフィン微多孔膜の透水性能が0.10〜2.90ml/min・cm2である、上記1〜5のいずれかに記載の液体フィルター用基材
The present invention adopts the following configuration in order to solve the above problems.
1. A substrate for a liquid filter comprising a polyolefin microporous membrane, wherein the polyolefin microporous membrane has a thickness of 4 to 16 μm, and a bubble point of the polyolefin microporous membrane is 0.40 MPa or more and 0.80 MPa or less, Base material for liquid filters.
2. 2. The liquid filter substrate according to 1 above, wherein the polyolefin microporous membrane has a heat shrinkage in the width direction of 20% or more after heat treatment at 130 ° C. for 1 hour.
3. 3. The liquid filter substrate according to 1 or 2 above, wherein the polyolefin microporous membrane has a pore closing temperature higher than 140 ° C.
4). 4. The liquid filter substrate according to any one of 1 to 3 above, wherein the polyolefin microporous membrane has a compressibility of less than 15%.
5. 5. The liquid filter substrate according to any one of 1 to 4 above, wherein the porosity of the polyolefin microporous membrane is 46 to 60%.
6). The liquid filter substrate according to any one of 1 to 5 above, wherein the water permeability of the polyolefin microporous membrane is 0.10 to 2.90 ml / min · cm 2.
本発明によれば、優れた捕集性能と液体透過性を兼ね備え、かつ、フィルター設計の自由度が高い液体フィルター用基材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the base material for liquid filters which has the outstanding collection performance and liquid permeability, and has a high freedom degree of filter design can be provided.
以下に、本発明の実施の形態について順次説明するが、これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。なお、本明細書全体において、数値範囲で「〜」を用いた場合、各数値範囲にはその上限値と下限値を含むものとする。また、ポリオレフィン微多孔膜に関し、「長手方向」とは、長尺状に製造されるポリオレフィン微多孔膜の長尺方向を意味し、「幅方向」とは、ポリオレフィン微多孔膜の長手方向に直交する方向を意味する。以下、「幅方向」を「TD」とも称し、「長手方向」を「MD」とも称する。 Embodiments of the present invention will be sequentially described below. However, these descriptions and examples illustrate the present invention and do not limit the scope of the present invention. In addition, in the whole specification, when “to” is used in a numerical range, each numerical range includes an upper limit value and a lower limit value. Regarding the polyolefin microporous membrane, the “longitudinal direction” means the longitudinal direction of the polyolefin microporous membrane produced in a long shape, and the “width direction” is orthogonal to the longitudinal direction of the polyolefin microporous membrane. It means the direction to do. Hereinafter, the “width direction” is also referred to as “TD”, and the “longitudinal direction” is also referred to as “MD”.
[液体フィルター用基材]
本発明の液体フィルター用基材は、ポリオレフィン微多孔膜からなる液体フィルター用基材であって、前記ポリオレフィン微多孔膜の厚さが4〜16μmであり、前記ポリオレフィン微多孔膜のバブルポイントが0.40MPa以上0.80MPa以下である。
このような本発明によれば、優れた捕集性能と液体透過性を兼ね備え、かつ、フィルター設計の自由度が高い液体フィルター用基材を提供することができる。以下、各構成の詳細について説明する。
[Substrate for liquid filter]
The substrate for a liquid filter of the present invention is a substrate for a liquid filter comprising a polyolefin microporous membrane, the polyolefin microporous membrane has a thickness of 4 to 16 μm, and the bubble point of the polyolefin microporous membrane is 0. It is 40 MPa or more and 0.80 MPa or less.
According to the present invention as described above, it is possible to provide a liquid filter substrate having both excellent collection performance and liquid permeability and having a high degree of freedom in filter design. Details of each component will be described below.
(バブルポイント)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、微小な粒子を高度に捕集することを特徴とする。当該ポリオレフィン微多孔膜のバブルポイントは0.40MPa以上であり、かつ0.80MPa以下であるが、0.40〜0.75MPaであることがさらに好ましく、0.42〜0.75MPaであることがさらに好ましい。本発明において、ポリオレフィン微多孔膜のバブルポイントが0.40MPaより低いと、上述したような微小な粒子を十分に捕集できず、十分な捕集性能を発現しない。一方、ポリオレフィン微多孔膜のバブルポイントが0.80MPaより高いと、非常に優れた捕集性能を発現するものの、透液性能が著しく不足してしまい、例えば、該ポリオレフィン微多孔膜を基材とするフィルターを介した送液が不安定になる等の問題が生じ得る。この通液性能を改善する方法として、例えば、送液圧力を高めることができるが、これだとフィルター寿命の低減や、濾過物の漏れ出し等の問題を生じ得る。
(Bubble point)
The polyolefin microporous membrane that is the substrate for a liquid filter of the present invention is characterized by highly collecting fine particles. The bubble point of the polyolefin microporous membrane is 0.40 MPa or more and 0.80 MPa or less, more preferably 0.40 to 0.75 MPa, and 0.42 to 0.75 MPa. Further preferred. In the present invention, when the bubble point of the polyolefin microporous membrane is lower than 0.40 MPa, the fine particles as described above cannot be sufficiently collected and sufficient collection performance is not exhibited. On the other hand, when the bubble point of the polyolefin microporous membrane is higher than 0.80 MPa, the liquid permeation performance is remarkably insufficient although the very excellent collection performance is exhibited. For example, the polyolefin microporous membrane is used as a base material. Problems such as instable liquid feeding through the filter. As a method for improving the liquid passing performance, for example, the liquid feeding pressure can be increased. However, this may cause problems such as a reduction in filter life and leakage of filtrate.
(厚み)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、捕集性能と液体透過性を損ねることなく、フィルター設計の自由度を高めていることが特徴である。ポリオレフィン微多孔膜の厚みは、4〜16μmであり、より好ましくは5〜15μmである。ポリオレフィン微多孔膜の膜厚が4μm未満である場合、上述したような微小な粒子を十分に捕集できず、力学強度が低く、ポリオレフィン微多孔膜の加工時等におけるハンドリングに問題が生じたり、フィルターカートリッジの長期使用における耐久性が不足する問題を生じ得る。一方、厚みが16μmを超えると、高い力学強度を得られるが、透液性能(透液量)が低下し、透液性能が不足する問題を生じ得る。
(Thickness)
The polyolefin microporous membrane, which is the substrate for a liquid filter of the present invention, is characterized in that the degree of freedom in filter design is increased without impairing the collection performance and liquid permeability. The thickness of the polyolefin microporous membrane is 4 to 16 μm, more preferably 5 to 15 μm. When the film thickness of the polyolefin microporous membrane is less than 4 μm, the fine particles as described above cannot be sufficiently collected, the mechanical strength is low, and there is a problem in handling during processing of the polyolefin microporous membrane, This may cause a problem that the durability of the filter cartridge is insufficient during long-term use. On the other hand, when the thickness exceeds 16 μm, high mechanical strength can be obtained, but the liquid permeation performance (liquid permeation amount) is lowered, and the liquid permeation performance may be insufficient.
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、膜厚が薄いことに特徴があり、所定の大きさのフィルターカートリッジにおいて、より多くの濾過面積を得られやすくなり、ポリオレフィン微多孔膜の加工時のフィルターの流量設計や構造設計が容易である。 The polyolefin microporous membrane that is the substrate for a liquid filter of the present invention is characterized in that the film thickness is thin, and it becomes easier to obtain a larger filtration area in a filter cartridge of a predetermined size. It is easy to design the flow rate and structure of the filter during machining.
例えば、同じ大きさのハウジングにフィルターカートリッジを収めることを想定した場合、濾材(フィルター用基材を含む構成材全体)の厚みが薄いほど、濾材面積を大きくすることができるため、液体フィルターとして好ましい高流量・低ろ過圧力の設計が可能になる。すなわち、液体フィルターとして、同じ流量を維持したい場合にはろ過圧力が低くなり、同じろ過圧力を維持したい場合には流量が高くなるように設計することが可能になる。特に、ろ過圧力が低くなることによって、一旦捕集された異物が、濾材内部でろ過圧力に継続して曝されることにより、時間の経過とともに濾材内部からろ過液とともに押し出されて漏れ出す確率が著しく低下することや、ろ過する液体中に溶存するガスが、ろ過前後での圧力差(ろ過後の圧力低下)によって微小な気泡となって現れる確率が著しく低下すること等の好ましい効果が期待でき、薬液等のろ過対象物のろ過歩留が向上することや、それらの品質を長時間に渡って高度に維持する効果が期待できる。 For example, when it is assumed that the filter cartridge is housed in a housing of the same size, the filter medium area can be increased as the thickness of the filter medium (the entire constituent material including the filter base material) is thinner, which is preferable as a liquid filter. High flow and low filtration pressure can be designed. That is, the liquid filter can be designed such that the filtration pressure is low when the same flow rate is desired to be maintained, and the flow rate is high when the same filtration pressure is desired. In particular, there is a probability that the foreign matter once collected by the filtration pressure is lowered and continuously exposed to the filtration pressure inside the filter medium, so that it is pushed out together with the filtrate from the inside of the filter medium and leaks over time. It is possible to expect favorable effects such as a significant decrease in the probability that the gas dissolved in the liquid to be filtered will appear as fine bubbles due to the pressure difference before and after filtration (pressure drop after filtration). It can be expected that the filtration yield of the filtration object such as a chemical solution is improved and that the quality of the product is maintained at a high level for a long time.
その一方で、濾材の厚みが薄いほど、設計の自由度が高まるものの、濾材の強度や耐久性能が低下する。例えば、フィルター設計において可能であれば、粗目の高強度支持体と複合化する(例えば、重ね合せて折込む等の加工を行う)ことで補強しながら、耐久性と流量の設計を調整することも可能である。 On the other hand, the thinner the filter media, the greater the degree of freedom in design, but the strength and durability of the filter media decrease. For example, if possible in the filter design, adjust the durability and flow rate design while reinforcing by combining with a coarse high-strength support (for example, by superimposing and folding) Is also possible.
なお、本発明においては、上述した膜厚みおよびバブルポイントを適正な範囲に調整することが必要である。これらの物性を制御する手法としては特に限定されるものではないが、例えばポリオレフィン樹脂の平均分子量、複数のポリオレフィン樹脂を混合して使用する場合はその混合比率、原料中のポリオレフィン樹脂濃度、原料中に複数の溶剤を混合して使用する場合はその混合比率、押出シート状物内部の溶剤を絞り出すための加熱温度、押し圧力、延伸倍率や延伸後の熱処理(熱固定)温度、抽出溶媒への浸漬時間等の製造条件を調整すること等が挙げられる。 In the present invention, it is necessary to adjust the above-described film thickness and bubble point to appropriate ranges. The method for controlling these physical properties is not particularly limited. For example, the average molecular weight of the polyolefin resin, when a mixture of a plurality of polyolefin resins is used, the mixing ratio, the concentration of the polyolefin resin in the raw material, When mixing a plurality of solvents, the mixing ratio, the heating temperature for squeezing out the solvent inside the extruded sheet, the pressing force, the stretching ratio, the heat treatment (heat setting) temperature after stretching, the extraction solvent For example, adjustment of production conditions such as immersion time may be mentioned.
(熱収縮率)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、130℃の温度下で1時間放置した後の幅方向(TD)の収縮率が20%以上であることが好ましく、さらに好ましくは20〜35%であり、22〜32%であることが特に好ましい。ポリオレフィン微多孔膜の熱収縮率が20%以上である場合、ポリオレフィン微多孔膜の加工での熱処理を受ける状況下の搬送において、弛みが発生することなく良好な搬送性を得られやすくなるため好ましい。一方、ポリオレフィン微多孔膜の熱収縮率が35%以下である場合、ポリオレフィン微多孔膜の加工時に熱処理を受ける状況下の搬送において、蛇行やシワが発生することなく良好な搬送性を得られやすくなるため好ましい。
(Heat shrinkage)
The polyolefin microporous membrane that is the substrate for a liquid filter of the present invention preferably has a shrinkage ratio in the width direction (TD) of 20% or more after standing at a temperature of 130 ° C. for 1 hour, more preferably 20%. ˜35%, particularly preferably 22˜32%. When the thermal shrinkage of the polyolefin microporous membrane is 20% or more, it is preferable because good transportability can be easily obtained without occurrence of slack in the conveyance under the condition of undergoing a heat treatment in the processing of the polyolefin microporous membrane. . On the other hand, when the polyolefin microporous membrane has a heat shrinkage rate of 35% or less, it is easy to obtain good transportability without causing meandering and wrinkles in transport under the condition of being subjected to heat treatment during processing of the polyolefin microporous membrane. Therefore, it is preferable.
(孔閉塞温度)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、孔閉塞温度が140℃よりも高いことが好ましい。ポリオレフィン微多孔膜の孔閉塞温度が140℃よりも高い場合、ポリオレフィン微多孔膜の加工時の熱接着工程の高温処理部付近もしくは高温体接触部の付近において、ポリオレフィン微多孔膜の多孔性が失われることなく、透水性能が維持され、加工後においても予定したろ過面積を得られやすくなるため好ましい。
(Hole closing temperature)
The polyolefin microporous membrane that is the substrate for a liquid filter of the present invention preferably has a pore closing temperature higher than 140 ° C. When the pore closing temperature of the polyolefin microporous membrane is higher than 140 ° C., the porosity of the polyolefin microporous membrane is lost in the vicinity of the high temperature treatment part or in the vicinity of the hot body contact part in the thermal bonding process when processing the polyolefin microporous film. Therefore, the water permeation performance is maintained, and a planned filtration area can be easily obtained even after processing.
(圧縮率)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜を70℃の温度下において、2MPaで30秒間プレスした際の圧縮率は15%未満であることが好ましく、より好ましくは12%以下である。該ポリオレフィン微多孔膜の圧縮率が15%未満である場合、フィルターに加工する際の加熱プレス(接着)等の工程において、ポリオレフィン微多孔膜が必要以上に潰れずに、本来の多孔質構造を維持できる点で好ましい。
(Compression rate)
The compression ratio when the polyolefin microporous membrane, which is the substrate for a liquid filter of the present invention, is pressed at 2 MPa for 30 seconds at a temperature of 70 ° C. is preferably less than 15%, more preferably 12% or less. . When the compression ratio of the polyolefin microporous film is less than 15%, the polyolefin porous film is not crushed more than necessary in the process of heating press (adhesion) when processing into a filter, and the original porous structure is obtained. It is preferable in that it can be maintained.
(空孔率)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜の空孔率は46〜60%であることが好ましく、より好ましくは47%〜58%である。該ポリオレフィン微多孔膜の空孔率が46%以上である場合、透液性能が良好なものとなる点で好ましい。一方、空孔率が60%以下である場合、ポリオレフィン微多孔膜の力学強度が良好なものとなりハンドリング性も向上する点で好ましい。ここで、ポリオレフィン微多孔膜の空孔率(ε)は、下記式により算出する。
ε(%)={1−Ws/(ds・t)}×100
Ws:ポリオレフィン微多孔膜の目付け(g/m2)
ds:ポリオレフィンの真密度(g/cm3)
t:ポリオレフィン微多孔膜の膜厚(μm)
(Porosity)
The porosity of the polyolefin microporous membrane that is the substrate for a liquid filter of the present invention is preferably 46 to 60%, more preferably 47% to 58%. When the porosity of the polyolefin microporous membrane is 46% or more, it is preferable in that the liquid permeation performance is good. On the other hand, when the porosity is 60% or less, the mechanical strength of the polyolefin microporous membrane is good, and this is preferable in terms of improving handling properties. Here, the porosity (ε) of the polyolefin microporous membrane is calculated by the following formula.
ε (%) = {1−Ws / (ds · t)} × 100
Ws: basis weight of polyolefin microporous membrane (g / m 2 )
ds: true density of polyolefin (g / cm 3 )
t: Film thickness of microporous polyolefin membrane (μm)
(透水性能(水流量))
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、90kPaの差圧下における透水性能が0.10〜2.90ml/min・cm2であることが好ましく、0.10〜2.40ml/min・cm2であることがさらに好ましい。ポリオレフィン微多孔膜の透水性能が0.10ml/min・cm2以上である場合、液体フィルターとしての十分な透水性能を得られるだけでなく、例えば、約5nmまたはそれ以上の大きさのパーティクルを高度に捕集しやくなるため好ましい。一方、ポリオレフィン微多孔膜の透水性能が2.90ml/min・cm2以下である場合、例えば、約100nmまたはそれ以下のパーティクルを高度に捕集しやすくなるため、さらには、液体フィルターとしての透水性能を十分に得られやすくなるばかりでなく、フィルターを介した送液の安定性(例えば、一定の送液量を維持するための動力負荷の安定性や一定の送液圧力(一定の動力負荷)下での送液量の安定性)が長期に渡って得られやすくなるため好ましい。
(Permeability (water flow rate))
The polyolefin microporous membrane, which is the substrate for a liquid filter of the present invention, preferably has a water permeability of 0.10 to 2.90 ml / min · cm 2 under a differential pressure of 90 kPa, and is preferably 0.10 to 2.40 ml / More preferably, it is min · cm 2 . When the water permeability of the polyolefin microporous membrane is 0.10 ml / min · cm 2 or more, not only can a sufficient water permeability be obtained as a liquid filter, but, for example, particles with a size of about 5 nm or more can be advanced. It is preferable because it is easy to collect. On the other hand, when the water permeability of the polyolefin microporous membrane is 2.90 ml / min · cm 2 or less, for example, particles of about 100 nm or less can be highly easily collected. Not only is it easy to obtain sufficient performance, but also the stability of liquid feeding through the filter (for example, the stability of the power load to maintain a constant liquid feeding amount and the constant liquid feeding pressure (constant power load) ), Which is easy to obtain over the long term.
(ポリオレフィン)
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、ポリオレフィンを含んで構成された微多孔膜である。ここで、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。ポリオレフィン微多孔膜において、ポリオレフィンは90重量部以上含まれていることが好ましく、残部として本発明の効果に影響を与えない範囲で有機または無機のフィラーや界面活性剤等の添加剤を含ませてもよい。
(Polyolefin)
The polyolefin microporous membrane that is the substrate for a liquid filter of the present invention is a microporous membrane configured to contain polyolefin. Here, the microporous membrane has a structure in which a large number of micropores are connected and these micropores are connected, and gas or liquid can pass from one surface to the other. Means a membrane. In the polyolefin microporous membrane, it is preferable that the polyolefin is contained in an amount of 90 parts by weight or more, and an additive such as an organic or inorganic filler or a surfactant is included as the balance so long as the effect of the present invention is not affected. Also good.
ポリオレフィンとしては、例えばポリエチレンやポリプロピレン、ポリブチレン、ポリメチルペンテン等の単独重合体あるいは共重合体、またはこれらの1種以上の混合体が挙げられる。この中でも、ポリエチレンが好ましい。ポリエチレンとしては、高密度ポリエチレンや、高密度ポリエチレンと超高分子量ポリエチレンの混合物等が好適である。また、ポリエチレンとそれ以外の成分を組み合わせて用いてもよい。ポリエチレン以外の成分としては、例えばポリプロピレン、ポリブチレン、ポリメチルペンテン、ポリプロピレンとポリエチレンとの共重合体などが挙げられる。また、ポリオレフィンとして性質の相互に異なるポリオレフィンを用いる、すなわち相互に相溶性の乏しい重合度や分岐性の異なる、換言すれば結晶性や延伸性・分子配向性を異にするポリオレフィンを組み合わせて用いてもよい。 Examples of the polyolefin include homopolymers or copolymers such as polyethylene, polypropylene, polybutylene, and polymethylpentene, or a mixture of one or more of these. Among these, polyethylene is preferable. As the polyethylene, high-density polyethylene, a mixture of high-density polyethylene and ultrahigh molecular weight polyethylene, and the like are suitable. Further, polyethylene and other components may be used in combination. Examples of components other than polyethylene include polypropylene, polybutylene, polymethylpentene, and a copolymer of polypropylene and polyethylene. Also, polyolefins having mutually different properties are used as polyolefins, that is, they are used in combination with polyolefins having poor compatibility and different degree of branching, in other words, different crystallinity, stretchability and molecular orientation. Also good.
本発明に用いるポリオレフィンの中では、特にポリエチレンを好ましく用いることができ、重量平均分子量が90万以上である超高分子量ポリエチレンを5重量%以上含むポリエチレン組成物を用いることが好ましく、超高分子量ポリエチレンを7重量%以上含む組成物であることがさらに好ましく、特に超高分子量ポリエチレンを13〜80重量%含む組成物であることがさらに好ましい。また、2種以上のポリエチレンを適量配合することによって、延伸時のフィブリル化に伴うネットワーク網状構造を形成させ、空孔発生率を増加させる効用がある。2種以上のポリエチレンを配合した後の重量平均分子量は35万〜450万であることが好ましい。特に、上述した重量平均分子量が90万以上である超高分子量ポリエチレンと、重量平均分子量が20万〜80万で密度が0.92〜0.96g/cm3である高密度ポリエチレンとを混合させたポリエチレン組成物が好ましく、その場合、該高密度ポリエチレンのポリエチレン組成物中の割合は95重量%以下であることが好ましく、93重量%以下であることがさらに好ましく、87〜20重量%であることが特に好ましい。 Among the polyolefins used in the present invention, polyethylene can be particularly preferably used, and a polyethylene composition containing 5% by weight or more of ultrahigh molecular weight polyethylene having a weight average molecular weight of 900,000 or more is preferably used. Is more preferably 7% by weight or more, and particularly preferably a composition containing 13 to 80% by weight of ultrahigh molecular weight polyethylene. Further, by blending an appropriate amount of two or more kinds of polyethylene, there is an effect of forming a network network structure accompanying fibrillation at the time of stretching and increasing the generation rate of pores. The weight average molecular weight after blending two or more kinds of polyethylene is preferably 350,000 to 4.5 million. In particular, the ultra high molecular weight polyethylene having a weight average molecular weight of 900,000 or more and the high density polyethylene having a weight average molecular weight of 200,000 to 800,000 and a density of 0.92 to 0.96 g / cm 3 are mixed. In that case, the proportion of the high-density polyethylene in the polyethylene composition is preferably 95% by weight or less, more preferably 93% by weight or less, and 87 to 20% by weight. It is particularly preferred.
なお、重量平均分子量は、ポリオレフィン微多孔膜の試料をo-ジクロロベンゼン中に加熱溶解し、GPC(Waters社製 Alliance GPC 2000型、カラム;GMH6−HTおよびGMH6−HTL)により、カラム温度135℃、流速1.0mL/分の条件にて測定を行うことで得られる。 The weight average molecular weight is determined by dissolving a sample of a polyolefin microporous membrane in o-dichlorobenzene by heating and using GPC (Waters Alliance GPC 2000 type, column; GMH6-HT and GMH6-HTL), column temperature of 135 ° C. It can be obtained by measuring under the condition of a flow rate of 1.0 mL / min.
[液体フィルター]
上述した本発明の液体フィルター用基材は、薬液との親和性付与加工が適宜行われた上で、カートリッジ形体に加工され、液体フィルターとして用いることができる。液体フィルターは、有機物および/または無機物からなる粒子を含む、もしくは、含んでいる可能性がある被処理液から、当該粒子を除去するための器具である。粒子は被処理液中において固体状あるいはゲル状で存在する。本発明は、粒径が数nm程度の非常に微細な粒子から約100nm前後の微粒子を除去する場合に好適である。また、液体フィルターは半導体の製造工程のみならず、例えばディスプレイ製造や研磨等の他の製造工程においても用いることができる。
[Liquid filter]
The above-described substrate for a liquid filter of the present invention can be used as a liquid filter after being processed into a cartridge shape after appropriately applying affinity treatment with a chemical solution. The liquid filter is an instrument for removing particles from a liquid to be treated that contains or may contain particles composed of organic substances and / or inorganic substances. The particles exist in a solid state or a gel state in the liquid to be treated. The present invention is suitable for removing fine particles of about 100 nm from very fine particles having a particle size of about several nm. The liquid filter can be used not only in the semiconductor manufacturing process but also in other manufacturing processes such as display manufacturing and polishing.
液体フィルター用基材としては、例えば、ポリテトラフルオロエチレン等の多孔質基材が良く知られている。上述した本発明のポリオレフィン微多孔膜からなる基材を液体フィルター用基材として用いた場合、ポリテトラフルオロエチレン多孔質基材と比べると、薬液との親和性が良いために、例えば、フィルターの薬液との親和性付与加工が容易になることや、フィルターハウジング内にフィルターカートリッジを装填して薬液のろ過を開始する際のフィルター内への薬液充填の際に、フィルターカートリッジ内に空気溜りが出来にくく、薬液のろ過歩留りが良くなる等の効果が発現する他、ポリエチレン樹脂そのものがハロゲン元素を含まないため、使用済みのフィルターカートリッジの取扱いが容易であり、環境負荷を低減できる等の効果がある。 As a substrate for a liquid filter, for example, a porous substrate such as polytetrafluoroethylene is well known. When the above-mentioned base material comprising the polyolefin microporous membrane of the present invention is used as a base material for a liquid filter, it has a good affinity for a chemical solution compared to a polytetrafluoroethylene porous base material. The process of imparting affinity to the chemical solution is easy, and when the filter cartridge is loaded in the filter housing and the chemical solution is filled in the filter, air can be trapped in the filter cartridge. In addition to the effect of improving the filtration yield of chemicals, the polyethylene resin itself does not contain halogen elements, so it is easy to handle used filter cartridges and reduce the environmental impact. .
[ポリオレフィン微多孔膜の製造方法]
本発明の液体フィルター用基材であるポリオレフィン微多孔膜は、下記に示す方法で好ましく製造することができる。即ち、
(I)ポリエチレン組成物と溶剤とを含む溶液において、少なくとも大気圧における沸点が210℃未満の揮発性の溶剤を含む溶液を調整する工程、
(II)これを溶融混練し、得られた溶融混練物をダイより押出し、冷却固化してゲル状成形物を得る工程、
(III)ゲル状成形物を少なくとも一方向に延伸する前に、ゲル状成形物から予め一部の溶剤を絞り出す工程、
(IV)ゲル状成形物を少なくとも一方向に延伸する工程、
(V)延伸した中間成形物の内部から溶剤を抽出洗浄する工程、を順次実施することにより、好ましく製造することができる。
[Production method of polyolefin microporous membrane]
The polyolefin microporous membrane which is the substrate for a liquid filter of the present invention can be preferably produced by the method shown below. That is,
(I) a step of preparing a solution containing a volatile solvent having a boiling point of less than 210 ° C. at least at atmospheric pressure in a solution containing a polyethylene composition and a solvent;
(II) melt-kneading this, extruding the resulting melt-kneaded product from a die, cooling and solidifying to obtain a gel-like molded product,
(III) a step of squeezing a part of the solvent from the gel-shaped molding in advance before stretching the gel-shaped molding in at least one direction;
(IV) a step of stretching the gel-like molded article in at least one direction;
(V) It can manufacture preferably by performing sequentially the process of extracting and washing a solvent from the inside of the stretched intermediate molded product.
工程(I)ではポリオレフィン組成物と溶剤とを含む溶液を調整するが、少なくとも大気圧における沸点が210℃未満の揮発性の溶剤を含む溶液を調整する。ここで溶液は好ましくは熱可逆的ゾル・ゲル溶液であり、すなわち該ポリオレフィンを該溶剤に加熱溶解させることによりゾル化させ、熱可逆的ゾル・ゲル溶液を調整する。工程(I)における大気圧における沸点が210℃未満の揮発性の溶剤としてはポリオレフィンを十分に膨潤できるもの、もしくは溶解できるものであれば特に限定されないが、テトラリン、エチレングリコール、デカリン、トルエン、キシレン、ジエチルトリアミン、エチレンジアミン、ジメチルスルホキシド、ヘキサン等の液体溶剤が好ましく挙げられ、これらは単独でも2種以上を組み合わせて用いても良い。なかでもデカリン、キシレンが好ましい。
また、本溶液の調整においては、上記の大気圧における沸点が210℃未満の揮発性の溶剤以外に、流動パラフィン、パラフィン油、鉱油、ひまし油などの沸点が210℃以上の不揮発性の溶剤を含ませることもできる。
In step (I), a solution containing a polyolefin composition and a solvent is prepared, but at least a solution containing a volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure is prepared. Here, the solution is preferably a thermoreversible sol-gel solution, that is, the polyolefin is dissolved in the solvent by heating to prepare a thermoreversible sol-gel solution. The volatile solvent having a boiling point of less than 210 ° C. at atmospheric pressure in step (I) is not particularly limited as long as it can sufficiently swell or dissolve polyolefin, but tetralin, ethylene glycol, decalin, toluene, xylene Liquid solvents such as diethyltriamine, ethylenediamine, dimethylsulfoxide, hexane and the like are preferable, and these may be used alone or in combination of two or more. Of these, decalin and xylene are preferred.
In addition, in the preparation of this solution, in addition to the volatile solvent having a boiling point of less than 210 ° C. at the atmospheric pressure, a non-volatile solvent having a boiling point of 210 ° C. or more such as liquid paraffin, paraffin oil, mineral oil, castor oil is included. It can also be made.
工程(I)の溶液においては、ポリオレフィン微多孔膜の液体透過性能と濾材としての除去性能を制御する観点から、ポリオレフィン組成物の濃度を10〜45重量%とすることが好ましく、さらには12〜40重量%が好ましい。ポリオレフィン組成物の濃度を低くすると、力学強度が低くなる傾向にあるためハンドリング性が悪くなり、さらには、ポリオレフィン微多孔膜の製膜において切断の発生頻度が増加する傾向にある。また、ポリオレフィン組成物の濃度を高くすると空孔が形成され難くなる傾向がある。 In the solution of the step (I), from the viewpoint of controlling the liquid permeation performance of the polyolefin microporous membrane and the removal performance as a filter medium, the concentration of the polyolefin composition is preferably 10 to 45% by weight, more preferably 12 to 40% by weight is preferred. When the concentration of the polyolefin composition is lowered, the mechanical strength tends to be lowered, so that the handling property is deteriorated, and further, the frequency of occurrence of cutting in the production of the polyolefin microporous membrane tends to increase. Moreover, when the concentration of the polyolefin composition is increased, pores tend not to be formed.
工程(II)は、工程(I)で調整した溶液を溶融混練し、得られた溶融混練物をダイより押出し、冷却固化してゲル状成形物を得る。好ましくはポリオレフィン組成物の融点乃至融点+65℃の温度範囲においてダイより押出して押出物を得、ついで前記押出物を冷却してゲル状成形物を得る。 In step (II), the solution prepared in step (I) is melt-kneaded, and the obtained melt-kneaded product is extruded from a die and cooled and solidified to obtain a gel-like molded product. Preferably, an extrudate is obtained by extrusion from a die in a temperature range of the melting point of the polyolefin composition to the melting point + 65 ° C., and then the extrudate is cooled to obtain a gel-like molded product.
成形物としてはシート状に賦形することが好ましい。冷却は水溶液または有機溶媒へのクエンチでもよいし、冷却された金属ロールへのキャスティングでもどちらでもよいが、一般的には水またはゾル・ゲル溶液時に使用した揮発性溶媒へのクエンチによる方法が使用される。冷却温度は10〜40℃が好ましい。なお、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながらゲル状シートを作製することが好ましい。 The molded product is preferably shaped into a sheet. Cooling may be quenching to an aqueous solution or an organic solvent, or casting to a cooled metal roll, but generally a method by quenching to a volatile solvent used during water or sol-gel solution is used. Is done. The cooling temperature is preferably 10 to 40 ° C. In addition, it is preferable to prepare a gel-like sheet | seat, providing a water flow in the surface layer of a water bath, and preventing the mixed solvent which is discharge | released from the sheet | seat gelatinized in the water bath and floats on the water surface from adhering to a sheet | seat again.
工程(III)はゲル状成形物を少なくとも一方向に延伸する前にゲル状成形物内の溶媒の一部を予め絞り出す工程である。工程(III)の工程では、例えば、上下2つのベルトやローラーの間隙を通過させる等の方法により、ゲル状成形物の面に圧力をかけることにより、好適に実施することが可能である。絞り出す溶媒の量は、ポリオレフィン微多孔膜に要求される液体透過性能や濾過対象物の除去性能により、調整する必要があるが、その調整は上下のベルトやローラー間の押し圧力や絞り出し工程の温度、押し回数により適正な範囲に調整することができる。なお、ゲル状成形物が受ける圧力が、ベルト等の面状体で行う場合は0.1〜2.0MPaとなるように調整することが好ましく、ローラー等で行う場合は、2〜45kgf/mで実施することが好ましい。絞り出し温度は40〜100℃であることが好ましい。また、押し回数は、設備の許容スペースによるため、特に制限なく実施することは可能である。なお、必要に応じて、溶媒の絞り出し前に一段または複数段の予備加熱を行い、一部の揮発性溶媒をシート内から除去してもよい。その場合、予備加熱温度は50〜100℃が好ましい。 Step (III) is a step of pre-squeezing a part of the solvent in the gel-shaped molding before stretching the gel-shaped molding in at least one direction. The step (III) can be suitably carried out by applying pressure to the surface of the gel-like molded product by, for example, passing the gap between the upper and lower two belts or rollers. The amount of solvent to be squeezed out needs to be adjusted depending on the liquid permeation performance required for the polyolefin microporous membrane and the removal performance of the filtration target, but the adjustment is done by the pressing pressure between the upper and lower belts and rollers and the temperature of the squeezing process. , It can be adjusted to an appropriate range depending on the number of times of pressing. In addition, it is preferable to adjust so that the pressure which a gel-shaped molding receives may be 0.1-2.0 MPa when performing with planar objects, such as a belt, and when performing with a roller etc., 2-45 kgf / m. It is preferable to carry out. The squeezing temperature is preferably 40 to 100 ° C. Moreover, since the number of times of pressing depends on the allowable space of the equipment, it can be implemented without any particular limitation. If necessary, one or more stages of preheating may be performed before squeezing out the solvent to remove a part of the volatile solvent from the sheet. In that case, the preheating temperature is preferably 50 to 100 ° C.
工程(IV)は、ゲル状成形物を少なくとも一方向に延伸する工程である。ここで工程(IV)の延伸は、二軸延伸が好ましく、縦延伸、横延伸を別々に実施する逐次二軸延伸、縦延伸、横延伸を同時に実施する同時二軸延伸、いずれの方法も好適に用いることが可能である。また縦方向に複数回延伸した後に横方向に延伸する方法、縦方向に延伸し横方向に複数回延伸する方法、逐次二軸延伸した後にさらに、縦方向および/または横方向に1回もしくは複数回延伸する方法も好ましい。 Step (IV) is a step of stretching the gel-like molded product in at least one direction. Here, the stretching in step (IV) is preferably biaxial stretching, and sequential biaxial stretching in which longitudinal stretching and lateral stretching are separately performed, and simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed are suitable. Can be used. Also, a method of stretching a plurality of times in the longitudinal direction and then stretching in the transverse direction, a method of stretching in the longitudinal direction and stretching a plurality of times in the transverse direction, and further sequentially or biaxially stretching once or a plurality of times in the longitudinal direction and / or the transverse direction. A method of stretching is also preferred.
延伸倍率(縦延伸倍率と横延伸倍率の積)は、ポリオレフィン微多孔膜の液体透過性能と濾過対象物の除去性能を制御する観点から、好ましくは40〜120倍であり、より好ましくは50〜100倍である。延伸倍率を大きくすると、ポリオレフィン微多孔膜の製膜において切断の発生頻度が増加する傾向がある。また、延伸倍率を低くすると厚み斑が大きくなる傾向がある。延伸は、溶媒を好適な状態に残存させた状態で行うことが前述したように好ましい。延伸温度は80〜125℃が好ましい。 The draw ratio (the product of the longitudinal draw ratio and the transverse draw ratio) is preferably 40 to 120 times, more preferably 50 to, from the viewpoint of controlling the liquid permeation performance of the polyolefin microporous membrane and the removal performance of the filtration target. 100 times. Increasing the draw ratio tends to increase the frequency of cutting in the production of a polyolefin microporous membrane. Moreover, when the draw ratio is lowered, the thickness unevenness tends to increase. As described above, the stretching is preferably carried out with the solvent remaining in a suitable state. The stretching temperature is preferably 80 to 125 ° C.
また(IV)の延伸工程に次いで熱固定処理を行っても良い。熱固定温度は、ポリオレフィン微多孔膜の液体透過性能と濾過対象物の除去性能を制御する観点から、110〜143℃であることが好ましい。熱固定温度を高くすると、ポリオレフィン微多孔膜の濾過対象物の除去性能が顕著に悪化する傾向があり、熱固定温度を低くすると液体透過性能が顕著に小さくなる傾向がある。 Further, a heat setting treatment may be performed after the stretching step (IV). The heat setting temperature is preferably 110 to 143 ° C. from the viewpoint of controlling the liquid permeation performance of the polyolefin microporous membrane and the removal performance of the filtration target. When the heat setting temperature is increased, the removal performance of the filtration object of the polyolefin microporous membrane tends to be remarkably deteriorated, and when the heat setting temperature is lowered, the liquid permeation performance tends to be remarkably reduced.
工程(V)は延伸した中間成形物の内部から溶媒を抽出洗浄する工程である。ここで、工程(V)は、延伸した中間成形物(延伸フィルム)の内部から溶媒を抽出するために、塩化メチレン等のハロゲン化炭化水素やヘキサン等の炭化水素の溶媒で洗浄することが好ましい。溶媒を溜めた槽内に浸漬して洗浄する場合は、20〜150秒の時間を掛けることが、溶出分が少ないポリオレフィン微多孔膜を得るために好ましく、より好ましくは30〜150秒であり、特に好ましくは30〜120秒である。さらに、より洗浄の効果を高めるためには、槽を数段に分け、ポリオレフィン微多孔膜の搬送工程の下流側から、洗浄溶媒を注ぎ入れ、工程搬送の上流側に向けて洗浄溶媒を流し、下流槽における洗浄溶媒の純度を上流層のものよりも高くすることが好ましい。また、ポリオレフィン微多孔膜への要求性能によっては、アニール処理により熱セットを行っても良い。なお、アニール処理は、工程での搬送性等の観点から50〜150℃で実施することが好ましく、50〜140℃がさらに好ましい。
この製法により、優れた液体透過性能と優れた濾過対象物の除去性能を併せ持ち、かつ、低溶出のポリオレフィン微多孔膜を提供することが可能になる。
Step (V) is a step of extracting and washing the solvent from the inside of the stretched intermediate molded product. Here, in order to extract the solvent from the inside of the stretched intermediate molded product (stretched film), the step (V) is preferably washed with a halogenated hydrocarbon such as methylene chloride or a hydrocarbon solvent such as hexane. . In the case of washing by immersing in a tank in which a solvent is stored, it is preferable to take 20 to 150 seconds to obtain a polyolefin microporous membrane with a small amount of elution, more preferably 30 to 150 seconds. Especially preferably, it is 30 to 120 seconds. Furthermore, in order to further increase the effect of washing, the tank is divided into several stages, the washing solvent is poured from the downstream side of the polyolefin microporous film conveyance process, and the washing solvent is flowed toward the upstream side of the process conveyance, It is preferable that the purity of the cleaning solvent in the downstream tank is higher than that in the upstream layer. Further, depending on the required performance of the polyolefin microporous film, heat setting may be performed by annealing. In addition, it is preferable to implement annealing processing at 50-150 degreeC from viewpoints, such as the conveyance property in a process, and 50-140 degreeC is further more preferable.
By this production method, it is possible to provide a polyolefin microporous membrane having both excellent liquid permeation performance and excellent filtration target removal performance and low elution.
以下、本発明の実施例、比較例および各種測定方法について説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Examples of the present invention, comparative examples, and various measurement methods will be described below, but the present invention is not limited to these examples.
[測定方法]
(厚さ)
接触式の膜厚計(ミツトヨ社製)にてポリオレフィン微多孔膜の膜厚を20点測定し、これらを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。測定圧は0.1Nとした。
[Measuring method]
(thickness)
The film thickness of the polyolefin microporous film was measured at 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Corporation), and the average value was obtained. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter. The measurement pressure was 0.1N.
(バブルポイント)
ポリオレフィン微多孔膜のバブルポイントは、ASTM E−128−61に準拠し、測定溶媒にエタノールを用いて測定した。
(Bubble point)
The bubble point of the polyolefin microporous membrane was measured using ethanol as a measurement solvent in accordance with ASTM E-128-61.
(熱収縮率)
ポリオレフィン微多孔膜を各辺が長手方向(MD)と幅方向(TD)に平行になるように100mm四方の大きさに切出し、温度を130℃に調節したオーブン内に1時間放置した後の幅方向(TD)の収縮率(寸法変化率)を下記式により算出した。
熱収縮率(%)=(|熱処理前寸法−熱処理後寸法|/熱処理前寸法)×100
(Heat shrinkage)
The width after the polyolefin microporous membrane is cut into a size of 100 mm square so that each side is parallel to the longitudinal direction (MD) and the width direction (TD) and left in an oven adjusted to a temperature of 130 ° C. for 1 hour. The shrinkage rate (dimensional change rate) in the direction (TD) was calculated by the following formula.
Thermal shrinkage (%) = (| Dimension before heat treatment−Dimension after heat treatment | / Dimension before heat treatment) × 100
(孔閉塞温度)
非イオン性界面活性剤(花王社製;エマルゲン210P)を3重量%溶解したメタノール溶液に切り出したポリオレフィン微多孔膜基材を浸漬し、風乾した。風乾したサンプルを所定の大きさのSUS板に挟み、電解液である1MのLiBF4 プロピレンカーボネート/エチレンカーボネート(1/1重量比)を含浸させた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れ、昇温速度1.6℃/分で昇温させながら、交流インピーダンス法で振幅10mV、周波数100kHzにて、該セルの抵抗を測定した。抵抗値が1000Ω・cm2に達した時点の温度を孔閉塞温度とした。
(Hole closing temperature)
The polyolefin microporous membrane substrate cut out in a methanol solution in which 3% by weight of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P) was dissolved was immersed and air-dried. The air-dried sample was sandwiched between SUS plates of a predetermined size and impregnated with 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) as an electrolyte. This was enclosed in a 2032 type coin cell. Take the lead from the coin cell, put it in an oven with a thermocouple, and increase the resistance of the cell at an amplitude of 10 mV and a frequency of 100 kHz by the AC impedance method while raising the temperature at a rate of temperature rise of 1.6 ° C / min. It was measured. The temperature when the resistance value reached 1000 Ω · cm 2 was defined as the hole closing temperature.
(圧縮率 (プレス前後での膜厚変化率))
サンプルのポリオレフィン微多孔膜を47mm×100mmに切り出し、70℃の温度条件下、2MPaで30秒間プレスを行った。プレス前のサンプルの膜厚(t前)を測定し、プレス後25℃にて30分間放置したサンプルの膜厚(t後)を測定し、それらの膜厚から下記の式より圧縮率を算出した。なお、サンプルの膜厚は、接触式膜厚計(ミツトヨ社製 端子径;0.5cm、端子形状;円柱、測定圧;0.1N)を用いて、雰囲気温度24±2℃で測定した。
圧縮率 = {(t前−t後)/t前}×100(%)
(Compression rate (Change rate of film thickness before and after pressing))
A sample microporous polyolefin membrane was cut into 47 mm × 100 mm and pressed at 2 MPa for 30 seconds under a temperature condition of 70 ° C. Measure the film thickness (before t) of the sample before pressing, measure the film thickness (after t) of the sample left at 25 ° C. for 30 minutes after pressing, and calculate the compression rate from the following formula from these film thicknesses did. In addition, the film thickness of the sample was measured at an ambient temperature of 24 ± 2 ° C. using a contact-type film thickness meter (Mitutoyo Corporation terminal diameter: 0.5 cm, terminal shape: cylinder, measurement pressure: 0.1 N).
Compression rate = {(before t−after t) / before t} × 100 (%)
(空孔率)
ポリオレフィン微多孔膜の空孔率(ε)は、下記式により算出した。
ε(%)={1−Ws/(ds・t)}×100
Ws:ポリオレフィン微多孔膜の目付け(g/m2)
ds:ポリオレフィンの真密度(g/cm3)
t:ポリオレフィン微多孔膜の膜厚(μm)
なお、ポリオレフィン微多孔膜の目付けは、サンプルを10cm×10cmに切り出し、その質量を測定し、質量を面積で割ることで目付を求めた。
(Porosity)
The porosity (ε) of the polyolefin microporous membrane was calculated by the following formula.
ε (%) = {1−Ws / (ds · t)} × 100
Ws: basis weight of polyolefin microporous membrane (g / m 2 )
ds: true density of polyolefin (g / cm 3 )
t: Film thickness of microporous polyolefin membrane (μm)
The basis weight of the polyolefin microporous membrane was obtained by cutting a sample into 10 cm × 10 cm, measuring its mass, and dividing the mass by the area.
(透水性能(水流量))
予めポリオレフィン微多孔膜をエタノールに浸漬し、室温下で乾燥した。このポリオレフィン微多孔膜を、直径37mmのステンレス製の透液セル(透液面積Scm2)にセットした。透液セル上の該ポリオレフィン微多孔膜を少量(0.5ml)のエタノールで湿潤させた後、90kPaの差圧で予め計量した純水V(100ml)を透過させて、純水全量が透過するのに要した時間Tl(min)を計測した。その純水の液量と純水の透過に要した時間から、90kPa差圧下における単位時間(min)・単位面積(cm2)当たりの透水量Vsを以下の式より計算し、これを透水性能(ml /min・cm2) とした。測定は室温24℃ の温度雰囲気下で行った。
Vs=V/(Tl×S)
(Permeability (water flow rate))
The polyolefin microporous membrane was previously immersed in ethanol and dried at room temperature. This polyolefin microporous membrane was set in a stainless steel liquid permeable cell (liquid permeable area Scm 2 ) having a diameter of 37 mm. After the polyolefin microporous membrane on the liquid permeable cell is wetted with a small amount (0.5 ml) of ethanol, pure water V (100 ml) preliminarily weighed at a differential pressure of 90 kPa is permeated so that the whole amount of pure water permeates. The time Tl (min) required for the measurement was measured. From the amount of pure water and the time required for permeation of pure water, the water permeability Vs per unit time (min) and unit area (cm 2 ) under a differential pressure of 90 kPa is calculated from the following formula, and this is the water permeation performance. (Ml / min · cm 2 ). The measurement was performed in a temperature atmosphere at room temperature of 24 ° C.
Vs = V / (Tl × S)
(捕集性能)
下記粒子(1)〜(3)のいずれかを含有する水溶液100mlを、差圧10kPaでポリオレフィン微多孔膜を介してろ過を行った。ろ過前の粒子を含む水溶液100mlの質量(M1)とポリオレフィン微多孔膜を通過したろ液の質量(M2)との差から、下記(式1)または(式2)により粒子の捕集率を求めた。(式1)は、粒子(1)を用いた場合の捕集率の計算式である。(式2)は、粒子(2)または粒子(3)を用いた場合の捕集率の計算式である。なお、捕集率が90%以上である場合を最良(◎)、80%以上90%未満の場合を良好(○)、80%未満の場合を不良(×)と判定した。
粒子(1)金コロイド 平均粒子径 3nm 粒子濃度0.0045質量%
粒子(2)ポリスチレン粒子 平均粒子径30nm 粒子濃度0.1質量%
粒子(3)ポリスチレン粒子 平均粒子径70nm 粒子濃度0.1質量%
捕集率(%)=((M1−M2)/(M1×45×10−6))×100 …(式1)
捕集率(%)=((M1−M2)/(M1×0.1×10−2))×100…(式2)
(Collection performance)
100 ml of an aqueous solution containing any of the following particles (1) to (3) was filtered through a polyolefin microporous membrane at a differential pressure of 10 kPa. From the difference between the mass (M1) of 100 ml of the aqueous solution containing the particles before filtration and the mass (M2) of the filtrate that passed through the polyolefin microporous membrane, the collection rate of the particles can be calculated by the following (Formula 1) or (Formula 2). Asked. (Formula 1) is a formula for calculating the collection rate when the particles (1) are used. (Formula 2) is a calculation formula for the collection rate when the particles (2) or the particles (3) are used. The case where the collection rate was 90% or more was judged as the best (最 良), the case where it was 80% or more and less than 90% was judged as good (◯), and the case where it was less than 80% was judged as bad (×).
Particle (1) Gold colloid Average particle size 3nm Particle concentration 0.0045% by mass
Particle (2) Polystyrene particle Average particle diameter 30 nm Particle concentration 0.1% by mass
Particle (3) Polystyrene particle Average particle diameter 70 nm Particle concentration 0.1% by mass
Collection rate (%) = ((M1-M2) / (M1 × 45 × 10 −6 )) × 100 (Formula 1)
Collection rate (%) = ((M1-M2) / (M1 × 0.1 × 10 −2 )) × 100 (Equation 2)
(透水量変化率(送液安定性))
予めポリオレフィン微多孔膜をエタノールに浸漬し、室温下で乾燥した。このポリオレフィン微多孔膜を、直径37mmのステンレス製の透液セル(透液面積Scm2)に0.5mm間隔に5枚を重ねてセットし、透液セル上の該ポリオレフィン微多孔膜を少量(0.5ml)のエタノールで湿潤させた後、40kPaの差圧下で純水200mlを透過させ、全量が透過するのに要した時間(T1)を計測し、その後直ちに差圧状態を開放した。引き続き同一サンプルを使って、40kPaの差圧下で純水200mlを透過させ、直ちに差圧を開放する操作を100回繰り返した。100回目の純水200mlの透過に要した時間(T100)を計測して、以下の式より計算し、透水量変化率(%)とした。なお、透水量変化率が10%以下である場合を最良(◎)、10%超15%以下の場合を良好(○)、15%超の場合を不良(×)と判定した。
透水量変化率(%)= (T100−T1)/Tl × 100
(Water permeability change rate (liquid feeding stability))
The polyolefin microporous membrane was previously immersed in ethanol and dried at room temperature. This polyolefin microporous membrane was set in a stainless steel liquid-permeable cell (liquid-permeable area Scm 2 ) having a diameter of 37 mm with 5 sheets stacked at an interval of 0.5 mm, and a small amount of the polyolefin microporous membrane on the liquid-permeable cell ( After being wetted with 0.5 ml of ethanol, 200 ml of pure water was permeated under a differential pressure of 40 kPa, and the time (T1) required for the whole amount to permeate was measured. Then, the differential pressure state was immediately released. Subsequently, using the same sample, 200 ml of pure water was permeated under a differential pressure of 40 kPa, and the differential pressure was immediately released 100 times. The time (T100) required for the permeation of 200 ml of pure water at the 100th time was measured and calculated from the following equation to obtain the rate of change in water permeability (%). In addition, the case where the water permeability change rate was 10% or less was determined to be the best (◎), the case where it was more than 10% and 15% or less was good (◯), and the case where it was more than 15% was judged as bad (×).
Permeability change rate (%) = (T100−T1) / Tl × 100
(耐溶出性)
ポリオレフィン微多孔膜を塩化メチレンに所定の時間浸漬した後に、ポリオレフィン微多孔膜を取り除き、浸漬後の塩化メチレン溶液の重量を計測した。これとは別に前述した計測した重量と継続同重量の新品の塩化メチレンを準備し、各々から塩化メチレンを蒸発させて完全に溶媒を除去した(乾固)後に、各々の重量を測定した。新品の塩化メチレンを完全に除去した後の重量増分を基準として、ポリオレフィン微多孔膜を浸漬した後の塩化メチレン溶液を乾固させた後の重量増分の比を算出し、1.05倍以下を耐溶出性が良好(ろ液汚染なし、○)と判断し、1.05倍を超える場合を耐溶出性が不良(×)と判断した。
(Elution resistance)
After the polyolefin microporous membrane was immersed in methylene chloride for a predetermined time, the polyolefin microporous membrane was removed, and the weight of the methylene chloride solution after immersion was measured. Separately, new methylene chloride having the same weight as the above-described measured weight was prepared, and after each methylene chloride was evaporated and the solvent was completely removed (dried), each weight was measured. Based on the weight increment after completely removing new methylene chloride, the ratio of the weight increment after drying the methylene chloride solution after immersing the polyolefin microporous membrane was calculated, and the ratio was less than 1.05 Elution resistance was judged to be good (no filtrate contamination, ◯), and when it exceeded 1.05 times, the elution resistance was judged to be poor (x).
(実施例1)
重量平均分子量が460万の超高分子量ポリエチレン(PE1)5重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)23重量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が28重量%となるようにして、予め準備しておいた流動パラフィン69重量部とデカリン(デカヒドロナフタレン)3重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中で25℃で冷却するとともに、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながら、ゲル状シート(ベーステープ)を作製した。該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した後、引き続き、85℃に加熱したローラー上を20kgf/mの押圧を掛けながら搬送させて、ベーステープ内から流動パラフィンの一部を除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5.8倍で延伸し、引き続いて幅方向に温度100℃にて倍率14倍で延伸し、その後直ちに118℃で熱処理(熱固定)を行った。
次にこれを2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続してベーステープを浸漬させながら、流動パラフィンを抽出した。なお、浸漬を開始する側を第1槽とし、浸漬を終了する側を第2槽とした場合の洗浄溶媒の純度は(低)第1層<第2槽(高)である。その後、45℃で塩化メチレンを乾燥除去し、110℃に加熱したローラー上を搬送させながらアニール処理をすることでポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径3nmの金コロイド粒子の捕集率が90%以上の優れた捕集性能を有し、液体透過性と送液安定性にも優れていた。
上記の製造条件を表1に示し、得られたポリオレフィン微多孔膜の物性を表2に示す。なお、以下の実施例および比較例についても同様に、表1,2にまとめて示す。
Example 1
A polyethylene composition obtained by mixing 5 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 23 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 69 parts by weight of liquid paraffin and 3 parts by weight of decalin (decahydronaphthalene) prepared in advance so that the total concentration of the polyethylene resin was 28% by weight.
This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C., and a water flow was provided on the surface layer of the water bath, which was discharged from the sheet gelled in the water bath. Then, a gel-like sheet (base tape) was prepared while preventing the mixed solvent floating on the water surface from adhering to the sheet again. After the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape, it was subsequently conveyed on a roller heated to 85 ° C. while applying a pressure of 20 kgf / m. Then, a part of the liquid paraffin was removed from the base tape. Thereafter, the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5.8 times, subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 14 times, and then immediately heat treated at 118 ° C. (heat setting). Went.
Next, liquid paraffin was extracted while immersing the base tape in a methylene chloride bath divided into two tanks for 30 seconds each. Note that the purity of the cleaning solvent is (low) first layer <second tank (high) when the side that starts immersion is the first tank and the side that ends immersion is the second tank. Thereafter, methylene chloride was removed by drying at 45 ° C., and a polyolefin microporous film was obtained by annealing treatment while being conveyed on a roller heated to 110 ° C.
The obtained polyolefin microporous membrane had excellent collection performance with a collection rate of colloidal gold particles having a particle size of 3 nm of 90% or more, and was excellent in liquid permeability and liquid feeding stability.
The production conditions are shown in Table 1, and the physical properties of the obtained polyolefin microporous film are shown in Table 2. The following examples and comparative examples are similarly shown in Tables 1 and 2.
(実施例2)
実施例1において、重量平均分子量が460万の超高分子量ポリエチレン(PE1)8重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)24重量部とを混合したポリエチレン組成物を用いて、ポリエチレン樹脂総量の濃度が32重量%となるようにして、予め準備しておいた流動パラフィン53重量部とデカリン(デカヒドロナフタレン)15重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製し、押出により得られたゲル状シートを長手方向に4倍、横方向に15倍で延伸した以外は同様にポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径3nmの金コロイド粒子の捕集率が90%以上の優れた捕集性能を有し、液体透過性と送液安定性にも優れていた。
(Example 2)
In Example 1, a polyethylene composition obtained by mixing 8 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 24 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 was used. The total concentration of the polyethylene resin is 32% by weight and mixed with 53 parts by weight of liquid paraffin prepared in advance and 15 parts by weight of decalin (decahydronaphthalene) to prepare a polyethylene solution and extrusion. A polyolefin microporous membrane was obtained in the same manner except that the gel-like sheet obtained by the above was stretched 4 times in the longitudinal direction and 15 times in the transverse direction.
The obtained polyolefin microporous membrane had excellent collection performance with a collection rate of colloidal gold particles having a particle size of 3 nm of 90% or more, and was excellent in liquid permeability and liquid feeding stability.
(実施例3)
重量平均分子量が460万の超高分子量ポリエチレン(PE1)14重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)6重量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が20重量%となるようにして、予め準備しておいた流動パラフィン55重量部とデカリン(デカヒドロナフタレン)25重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中で25℃で冷却するとともに、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながら、ゲル状シート(ベーステープ)を作製した。該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをベーステープ内から除去した後、引き続き、85℃に加熱したローラー上を20kgf/mの押圧を掛けながら搬送させて、ベーステープ内から流動パラフィンの一部を除去した。その後、該ベーステープを長手方向に温度100℃にて倍率5倍で延伸し、引き続いて幅方向に温度100℃にて倍率14倍で延伸し、その後直ちに128℃で熱処理(熱固定)を行った。
次にこれを2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続してベーステープを浸漬させながら、流動パラフィンを抽出した。なお、浸漬を開始する側を第1槽とし、浸漬を終了する側を第2槽とした場合の洗浄溶媒の純度は(低)第1層<第2槽(高)である。その後、45℃で塩化メチレンを乾燥除去し、110℃に加熱したローラー上を搬送させながらアニール処理をすることでポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径30nmのポリスチレン粒子の捕集率が90%以上の優れた捕集性能を有し、かつ、優れた透水性能と送液安定性(透水量変化率10%以下)を有していた。
(Example 3)
A polyethylene composition obtained by mixing 14 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 6 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 55 parts by weight of liquid paraffin and 25 parts by weight of decalin (decahydronaphthalene) prepared in advance so that the concentration of the total amount of polyethylene resin was 20% by weight.
This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C., and a water flow was provided on the surface layer of the water bath, which was discharged from the sheet gelled in the water bath. Then, a gel-like sheet (base tape) was prepared while preventing the mixed solvent floating on the water surface from adhering to the sheet again. After the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the base tape, it was subsequently conveyed on a roller heated to 85 ° C. while applying a pressure of 20 kgf / m. Then, a part of the liquid paraffin was removed from the base tape. Thereafter, the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 5 times, subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 14 times, and then immediately subjected to heat treatment (heat setting) at 128 ° C. It was.
Next, liquid paraffin was extracted while immersing the base tape in a methylene chloride bath divided into two tanks for 30 seconds each. Note that the purity of the cleaning solvent is (low) first layer <second tank (high) when the side that starts immersion is the first tank and the side that ends immersion is the second tank. Thereafter, methylene chloride was removed by drying at 45 ° C., and a polyolefin microporous film was obtained by annealing treatment while being conveyed on a roller heated to 110 ° C.
The resulting polyolefin microporous membrane has excellent collection performance with a collection rate of polystyrene particles having a particle size of 30 nm of 90% or more, and has excellent water permeability and liquid feeding stability (water permeability change rate 10). % Or less).
(実施例4)
実施例3において、重量平均分子量が460万の超高分子量ポリエチレン(PE1)20重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)5重量部とを混合したポリエチレン組成物を用いて、ポリエチレン樹脂総量の濃度が25重量%となるようにして、予め準備しておいた流動パラフィン50重量部とデカリン(デカヒドロナフタレン)25重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。このポリエチレン溶液を実施例3と同様に押出し、得られたゲル状シート(ベーステープ)を加熱乾燥した後に、引き続き95℃に加熱したローラー上を10kgf/mの押圧を掛けながら搬送させて、ゲル状シート内から流動パラフィンの一部を除去した以外は同様にしてポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径30nmのポリスチレン粒子の捕集率が90%以上の優れた捕集性能を有し、かつ優れた透水性能と送液安定性(透水量変化率10%以下)を有していた。
Example 4
In Example 3, using a polyethylene composition in which 20 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 5 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 were mixed. A polyethylene solution was prepared by mixing 50 parts by weight of liquid paraffin and 25 parts by weight of decalin (decahydronaphthalene) prepared in advance so that the concentration of the total amount of polyethylene resin was 25% by weight. This polyethylene solution was extruded in the same manner as in Example 3, and the resulting gel-like sheet (base tape) was heated and dried, and subsequently conveyed on a roller heated to 95 ° C. while applying a pressure of 10 kgf / m. A microporous polyolefin membrane was obtained in the same manner except that part of the liquid paraffin was removed from the sheet.
The obtained polyolefin microporous membrane has excellent collection performance with a collection rate of polystyrene particles having a particle size of 30 nm of 90% or more, and has excellent water permeability and liquid feeding stability (water permeability change rate 10%). Had the following):
(実施例5)
重量平均分子量が460万の超高分子量ポリエチレン(PE1)3重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)12重量部とを混合したポリエチレン組成物を用いた。ポリエチレン樹脂総量の濃度が15重量%となるようにして、予め準備しておいた流動パラフィン60重量部とデカリン(デカヒドロナフタレン)25重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。
このポリエチレン溶液を温度160℃でダイよりシート状に押出し、ついで前記押出物を水浴中で25℃で冷却するとともに、水浴の表層に水流を設け、水浴中でゲル化したシートの中から放出されて水面に浮遊する混合溶剤がシートに再び付着しないようにしながら、ゲル状シート(ベーステープ)を作製した。該ベーステープを55℃で10分、さらに、95℃で10分乾燥してデカリンをシート内から除去した後、引き続き、85℃に加熱したローラー上を20kgf/mの押圧を掛けながら搬送させて、ゲル状シート内から流動パラフィンの一部を除去した。その後、該ベーステープを長手方向に温度100℃にて倍率6倍で延伸し、引き続いて幅方向に温度100℃にて倍率12倍で延伸し、その後直ちに136℃で熱処理(熱固定)を行った。
次にこれを2槽に分かれた塩化メチレン浴にそれぞれ30秒間ずつ連続して浸漬させながら、流動パラフィンを抽出した。なお、浸漬を開始する側を第1槽とし、浸漬を終了する側を第2槽とした場合の洗浄溶媒の純度は(低)第1層<第2槽(高)である。その後、45℃で塩化メチレンを乾燥除去し、110℃に加熱したローラー上を搬送させながらアニール処理をすることでポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径70nmのポリスチレン粒子の捕集率が90%以上の優れた捕集性能を有し、かつ、優れた透水性能と送液安定性(透水量変化率10%以下)を有していた。
(Example 5)
A polyethylene composition obtained by mixing 3 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 12 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 was used. A polyethylene solution was prepared by mixing 60 parts by weight of liquid paraffin and 25 parts by weight of decalin (decahydronaphthalene) prepared in advance so that the concentration of the total amount of polyethylene resin was 15% by weight.
This polyethylene solution was extruded into a sheet form from a die at a temperature of 160 ° C., and then the extrudate was cooled in a water bath at 25 ° C., and a water flow was provided on the surface layer of the water bath, which was discharged from the sheet gelled in the water bath. Then, a gel-like sheet (base tape) was prepared while preventing the mixed solvent floating on the water surface from adhering to the sheet again. After the base tape was dried at 55 ° C. for 10 minutes and further at 95 ° C. for 10 minutes to remove decalin from the sheet, it was continuously conveyed on a roller heated to 85 ° C. while applying a pressure of 20 kgf / m. A part of the liquid paraffin was removed from the gel sheet. Thereafter, the base tape is stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 6 times, subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 12 times, and then immediately subjected to heat treatment (heat setting) at 136 ° C. It was.
Next, liquid paraffin was extracted while being continuously immersed for 30 seconds in a methylene chloride bath divided into two tanks. Note that the purity of the cleaning solvent is (low) first layer <second tank (high) when the side that starts immersion is the first tank and the side that ends immersion is the second tank. Thereafter, methylene chloride was removed by drying at 45 ° C., and a polyolefin microporous film was obtained by annealing treatment while being conveyed on a roller heated to 110 ° C.
The obtained polyolefin microporous membrane has excellent collection performance with a collection rate of polystyrene particles having a particle size of 70 nm of 90% or more, and has excellent water permeability and liquid feeding stability (water permeability change rate 10). % Or less).
(実施例6)
実施例5において、二軸延伸した後の熱処理(熱固定)温度を142℃とした以外は同様にしてポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径70nmのポリスチレン粒子の捕集率が80%以上の優れた捕集性能を有し、かつ、優れた透水性能と送液安定性(透水量変化率10%以下)を有していた。
(Example 6)
A polyolefin microporous membrane was obtained in the same manner as in Example 5 except that the heat treatment (heat setting) temperature after biaxial stretching was 142 ° C.
The obtained polyolefin microporous membrane has excellent collection performance with a collection rate of polystyrene particles having a particle size of 70 nm of 80% or more, and has excellent water permeability and liquid feeding stability (water permeability change rate 10). % Or less).
(実施例7)
実施例1において、押出工程での吐出量をおおよそ2分の1に調整し、二軸延伸した後の熱処理(熱固定)温度を124℃とした以外は同様にして厚み5μmのポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径3nmの金コロイド粒子の捕集率が80%以上の優れた捕集性能を有し、かつ優れた送液安定性を有するポリオレフィン微多孔膜であった。
(Example 7)
In Example 1, a polyolefin microporous film having a thickness of 5 μm was similarly prepared except that the discharge amount in the extrusion process was adjusted to approximately one half, and the heat treatment (heat setting) temperature after biaxial stretching was set to 124 ° C. Got.
The resulting polyolefin microporous membrane was a polyolefin microporous membrane having excellent collection performance with a collection rate of gold colloidal particles having a particle diameter of 3 nm of 80% or more and excellent liquid feeding stability. .
(比較例1)
実施例5において、重量平均分子量が460万の超高分子量ポリエチレン(PE1)0.5重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)4.5重量部とを混合したポリエチレン組成物を用いて、ポリエチレン樹脂総量の濃度が5重量%となるようにして、予め準備しておいた流動パラフィン70重量部とデカリン(デカヒドロナフタレン)25重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製した。このポリエチレン溶液を用い、熱処理(熱固定)温度を144℃にした以外は実施例5と同様にしてポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、バブルポイントが低く、透水性能が過度に高く、粒径70nmのポリスチレン粒子の捕集率が80%未満で捕集性能が不十分であった。
(Comparative Example 1)
In Example 5, a polyethylene composition obtained by mixing 0.5 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 4.5 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 Using a product, the total concentration of the polyethylene resin is adjusted to 5% by weight and mixed with 70 parts by weight of a liquid paraffin prepared in advance and 25 parts by weight of decalin (decahydronaphthalene). Prepared. Using this polyethylene solution, a polyolefin microporous membrane was obtained in the same manner as in Example 5 except that the heat treatment (heat setting) temperature was 144 ° C.
The obtained polyolefin microporous membrane had a low bubble point, an excessively high water permeability, a collection rate of polystyrene particles having a particle size of 70 nm was less than 80%, and the collection performance was insufficient.
(比較例2)
実施例1において、重量平均分子量が460万の超高分子量ポリエチレン(PE1)32重量部と、重量平均分子量が56万の高密度ポリエチレン(PE2)8重量部とを混合したポリエチレン組成物を用いて、ポリエチレン樹脂総量の濃度が40重量%となるようにして、予め準備しておいた流動パラフィン60重量部の混合溶剤と混ぜ、ポリエチレン溶液を調製し、延伸後の熱処理(熱固定)温度を105℃とした以外は、同様にポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、バブルポイントが過度に高く、かつ、送液安定性が不十分であり、液体フィルター用基材として適さなかった。
(Comparative Example 2)
In Example 1, a polyethylene composition obtained by mixing 32 parts by weight of ultrahigh molecular weight polyethylene (PE1) having a weight average molecular weight of 4.6 million and 8 parts by weight of high density polyethylene (PE2) having a weight average molecular weight of 560,000 was used. The polyethylene resin is mixed with 60 parts by weight of liquid paraffin prepared in advance so that the total concentration of the polyethylene resin is 40% by weight to prepare a polyethylene solution, and the heat treatment (heat setting) temperature after stretching is 105. A polyolefin microporous membrane was obtained in the same manner except that the temperature was changed to ° C.
The obtained polyolefin microporous membrane had an excessively high bubble point and insufficient liquid feeding stability, and was not suitable as a liquid filter substrate.
(比較例3)
実施例1において、押出工程での吐出量を、おおよそ2分の1に調整して押出したゲル状シートを長手方向に温度100℃にて倍率7倍で延伸し、引き続いて幅方向に温度100℃にて倍率20倍で延伸した以外は、実施例1と同様にして、厚み3μmのポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径70nmのポリスチレン粒子の捕集率が80%未満で捕集性能が不十分であった。また、ハンドリング性に乏しく、さらには破膜し易く、送液安定性が不十分であり、液体フィルター用基材として適さなかった。
(Comparative Example 3)
In Example 1, a gel sheet extruded by adjusting the discharge amount in the extrusion process to approximately one half was stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 7 times, and subsequently in the width direction at a temperature of 100. A polyolefin microporous film having a thickness of 3 μm was obtained in the same manner as in Example 1 except that the film was stretched at a magnification of 20 times at ° C.
The obtained polyolefin microporous membrane had a collection rate of polystyrene particles having a particle diameter of 70 nm of less than 80%, and the collection performance was insufficient. Further, the handling property was poor, the film was easily broken, the liquid feeding stability was insufficient, and it was not suitable as a liquid filter substrate.
(比較例4)
実施例1において、押出シートを長手方向に温度100℃にて倍率4倍で延伸し、引き続いて幅方向に温度100℃にて倍率8倍で延伸した以外は、実施例1と同様にして、厚み20μmのポリオレフィン微多孔膜を得た。
得られたポリオレフィン微多孔膜は、粒径70nmのポリスチレン粒子の捕集率が90%以上の優れた捕集性能を有するが、その一方で、バブルポイントが過度に高く、送液安定性が不十分であり、液体フィルター用基材として適さなかった。
(Comparative Example 4)
In Example 1, except that the extruded sheet was stretched in the longitudinal direction at a temperature of 100 ° C. at a magnification of 4 times, and subsequently stretched in the width direction at a temperature of 100 ° C. at a magnification of 8 times, as in Example 1, A polyolefin microporous film having a thickness of 20 μm was obtained.
The obtained polyolefin microporous membrane has an excellent collection performance with a collection rate of polystyrene particles having a particle size of 70 nm of 90% or more, but on the other hand, the bubble point is excessively high and the liquid feeding stability is poor. It was sufficient and was not suitable as a substrate for a liquid filter.
Claims (5)
前記ポリオレフィン微多孔膜の厚さが4〜16μmであり、
前記ポリオレフィン微多孔膜のバブルポイントが0.40MPa以上0.80MPa以下であり、
前記ポリオレフィン微多孔膜は、130℃で1時間熱処理を行った後の幅方向の熱収縮率が20%以上である、
液体フィルター用基材。 A liquid filter substrate comprising a polyolefin microporous membrane,
The polyolefin microporous membrane has a thickness of 4 to 16 μm,
The bubble point of the polyolefin microporous membrane Ri der least 0.80MPa or less 0.40 MPa,
The polyolefin microporous film has a heat shrinkage rate of 20% or more in the width direction after heat treatment at 130 ° C. for 1 hour.
Base material for liquid filters.
前記ポリオレフィン微多孔膜の厚さが4〜16μmであり、 The polyolefin microporous membrane has a thickness of 4 to 16 μm,
前記ポリオレフィン微多孔膜のバブルポイントが0.40MPa以上0.80MPa以下であり、 The polyolefin microporous membrane has a bubble point of 0.40 MPa or more and 0.80 MPa or less,
前記ポリオレフィン微多孔膜の圧縮率が15%未満である、 The polyolefin microporous membrane has a compressibility of less than 15%.
液体フィルター用基材。 Base material for liquid filters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013097633A JP6105379B2 (en) | 2013-05-07 | 2013-05-07 | Liquid filter substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013097633A JP6105379B2 (en) | 2013-05-07 | 2013-05-07 | Liquid filter substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014218563A JP2014218563A (en) | 2014-11-20 |
JP6105379B2 true JP6105379B2 (en) | 2017-03-29 |
Family
ID=51937337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013097633A Active JP6105379B2 (en) | 2013-05-07 | 2013-05-07 | Liquid filter substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6105379B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170020368A (en) * | 2014-06-25 | 2017-02-22 | 데이진 가부시키가이샤 | Base material for liquid filter and method for manufacturing said material |
WO2018020825A1 (en) * | 2016-07-25 | 2018-02-01 | 帝人株式会社 | Composite membrane substrate |
JPWO2023017781A1 (en) | 2021-08-12 | 2023-02-16 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06104736B2 (en) * | 1989-08-03 | 1994-12-21 | 東燃株式会社 | Polyolefin microporous membrane |
JPH05310989A (en) * | 1992-04-30 | 1993-11-22 | Mitsubishi Kasei Corp | Polyethylenic porous film |
JPH07246322A (en) * | 1994-03-11 | 1995-09-26 | Mitsubishi Chem Corp | Modified polyolefin porous membrane and filter using the same |
WO2008035674A1 (en) * | 2006-09-20 | 2008-03-27 | Asahi Kasei Chemicals Corporation | Polyolefin microporous membrane and separator for nonaqueous electrolyte battery |
JP5005387B2 (en) * | 2007-03-01 | 2012-08-22 | 旭化成イーマテリアルズ株式会社 | Method for producing polyolefin microporous membrane |
JP2010053245A (en) * | 2008-08-28 | 2010-03-11 | Teijin Ltd | Polyolefin microporous membrane |
-
2013
- 2013-05-07 JP JP2013097633A patent/JP6105379B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014218563A (en) | 2014-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5909031B1 (en) | Substrate for liquid filter and method for producing the same | |
JP5684951B1 (en) | Liquid filter substrate | |
JP6805371B2 (en) | Base material for liquid filter | |
TWI746827B (en) | Substrate for liquid filter | |
JP6125890B2 (en) | Liquid filter substrate | |
JP6105379B2 (en) | Liquid filter substrate | |
JP5684953B1 (en) | Liquid filter substrate | |
JP5684952B1 (en) | Liquid filter substrate | |
JP2024017923A (en) | Substrate for liquid filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161130 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170302 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6105379 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |