JP2010053245A - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP2010053245A
JP2010053245A JP2008219719A JP2008219719A JP2010053245A JP 2010053245 A JP2010053245 A JP 2010053245A JP 2008219719 A JP2008219719 A JP 2008219719A JP 2008219719 A JP2008219719 A JP 2008219719A JP 2010053245 A JP2010053245 A JP 2010053245A
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin
polyethylene
polyolefin microporous
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008219719A
Other languages
Japanese (ja)
Inventor
Satoshi Nishikawa
聡 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008219719A priority Critical patent/JP2010053245A/en
Publication of JP2010053245A publication Critical patent/JP2010053245A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin microporous membrane having both of excellent membrane strength and permeation performances. <P>SOLUTION: The polyolefin microporous membrane is composed of polyolefin fibrils and has micropores communicating in the thickness direction, wherein the average fibril diameter of the fibrils is from 40 to 80 nm and an average pore diameter of the micropores is from 15 to 50 nm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はポリオレフィン微多孔膜に関するものであり、特に電池セパレータやフィルタ等に有用なポリオレフィン微多孔膜に関するものである。   The present invention relates to a polyolefin microporous membrane, and particularly to a polyolefin microporous membrane useful for battery separators, filters and the like.

電池用セパレータやフィルタ等の用途に適するフィルムとして各種のポリオレフィン微多孔膜が種々提案されている(特許文献1参照)。特許文献1の技術は、ミクロフィブリルによって区分された微細な間隙と該ミクロフィブリルが均一に分散した網状組織とからなる表面構造を持ち、特定平均ミクロフィブリル径と、特定平均ミクロフィブリル間隙距離のポリオレフィン微多孔膜である。しかしながら、この提案のポリオレフィン微多孔膜は、高エネルギー密度化されたリチウムイオン二次電池のセパレータ用としては、膜強度や透過性能が不足する。   Various polyolefin microporous membranes have been proposed as films suitable for applications such as battery separators and filters (see Patent Document 1). The technology of Patent Document 1 is a polyolefin having a surface structure composed of fine gaps divided by microfibrils and a network in which the microfibrils are uniformly dispersed, and having a specific average microfibril diameter and a specific average microfibril gap distance. It is a microporous membrane. However, this proposed polyolefin microporous membrane is insufficient in membrane strength and permeation performance as a separator for a lithium ion secondary battery with high energy density.

非水電解液電池用セパレータの膜強度や透過性能を改良した技術として、特定の平均孔径、比表面積及び空孔率の多孔質フィルムが提案されている(特許文献2参照)。しかしながら、この提案の多孔質フィルムでも、近年の高エネルギー密度化され、肉薄化の要求のあるリチウムイオン二次電池のセパレータ用としては、膜強度や透過性能が不足する。また、これら提案のポリオレフィン微多孔膜や多孔質フィルムをフィルタに適用した場合も、膜強度や透過性能が不足する。   A porous film having a specific average pore diameter, specific surface area, and porosity has been proposed as a technique for improving the membrane strength and permeation performance of a nonaqueous electrolyte battery separator (see Patent Document 2). However, even this proposed porous film is insufficient in membrane strength and permeation performance as a separator for a lithium ion secondary battery which has recently been increased in energy density and required to be thinned. In addition, when these proposed polyolefin microporous membranes and porous films are applied to filters, membrane strength and permeation performance are insufficient.

以上のように、高エネルギー密度化、肉薄化された電池セパレータや、高強度化、肉薄化されたフィルタの要求を満たすには、従来の技術では不十分であり、その改良が望まれている。   As described above, conventional techniques are insufficient to satisfy the demands of battery separators with high energy density and thinning, and filters with high strength and thinning, and improvements are desired. .

国際公開第01/67536号公報International Publication No. 01/67536 特開2002−367590号公報JP 2002-367590 A

前述のように、優れた膜強度や透過性能を兼備した実用的なセパレータやフィルタは得られていないのが現状である。そこで本発明は、優れた膜強度や透過性能を兼備したポリオレフィン微多孔膜を提供することを目的とする。   As described above, practical separators and filters that have excellent membrane strength and permeation performance have not been obtained. Therefore, an object of the present invention is to provide a polyolefin microporous membrane having excellent membrane strength and permeability.

本発明者は、ポリオレフィン微多孔膜の多孔構造を詳細に検討したところ、ポリオレフィンのフィブリルから構成され、厚み方向に連通する細孔を有するポリオレフィン微多孔膜であって、フィブリルの平均フィブリル径と、細孔の平均孔径が特定範囲であるポリオレフィン微多孔膜であれば、上記課題を解決できることを見出し本発明に至った。すなわち本発明の要旨は以下の通りである。   The inventor has examined the porous structure of the polyolefin microporous membrane in detail, and is a polyolefin microporous membrane composed of polyolefin fibrils and having pores communicating in the thickness direction, and the average fibril diameter of the fibrils, The present inventors have found that the above-mentioned problems can be solved if the polyolefin microporous membrane has an average pore diameter within a specific range. That is, the gist of the present invention is as follows.

(1)ポリオレフィンのフィブリルから構成され、厚み方向に連通する細孔を有するポリオレフィン微多孔膜であって、該フィブリルの平均フィブリル径が40〜80nm、該細孔の平均孔径が15〜50nmであることを特徴とするポリオレフィン微多孔膜。
(2)前記ポリオレフィン微多孔膜の空孔率が30〜60%であることを特徴とする(1)記載のポリオレフィン微多孔膜。
(3)前記細孔の曲路率が1.2〜1.8であることを特徴とする(1)または(2)記載のポリオレフィン微多孔膜。
(4)前記ポリオレフィン微多孔膜の突刺強度が300g以上であることを特徴とする(1)〜(3)いずれかに記載のポリオレフィン微多孔膜。
(5)前記ポリオレフィン微多孔膜の膜厚が5〜25μmであることを特徴とする(1)〜(4)いずれかに記載のポリオレフィン微多孔膜。
(6)前記ポリオレフィンがポリエチレンであることを特徴とする(1)〜(5)いずれかに記載のポリオレフィン微多孔膜。
(1) A polyolefin microporous membrane composed of polyolefin fibrils and having pores communicating in the thickness direction, the fibrils having an average fibril diameter of 40 to 80 nm and the pores having an average pore diameter of 15 to 50 nm A polyolefin microporous membrane characterized by the above.
(2) The polyolefin microporous membrane according to (1), wherein the porosity of the polyolefin microporous membrane is 30 to 60%.
(3) The polyolefin microporous membrane according to (1) or (2), wherein the curvature of the pore is 1.2 to 1.8.
(4) The polyolefin microporous membrane according to any one of (1) to (3), wherein the piercing strength of the polyolefin microporous membrane is 300 g or more.
(5) The polyolefin microporous membrane according to any one of (1) to (4), wherein the polyolefin microporous membrane has a thickness of 5 to 25 μm.
(6) The polyolefin microporous membrane according to any one of (1) to (5), wherein the polyolefin is polyethylene.

本発明によれば、優れた膜強度や透過性能を兼備した実用的なポリオレフィン微多孔膜が得られる。かかるポリオレフィン微多孔膜を例えば電池セパレータに用いた場合、高エネルギー密度化・肉薄化の要求に十分に応え得る優れたセパレータを得ることができる。また、かかる本発明のポリオレフィン微多孔膜を例えばフィルタに用いた場合も、高強度化・肉薄化の要求に十分に応え得る優れたフィルタを得ることができる。   According to the present invention, a practical polyolefin microporous membrane having excellent membrane strength and permeability can be obtained. When such a microporous polyolefin membrane is used, for example, as a battery separator, an excellent separator that can sufficiently meet the demands for high energy density and thinning can be obtained. Moreover, even when such a polyolefin microporous membrane of the present invention is used in, for example, a filter, an excellent filter that can sufficiently meet the demands for high strength and thinning can be obtained.

本発明のポリオレフィン微多孔膜は、ポリオレフィンフィブリルの網目状構造を主構造とし、厚み方向に連通する細孔を有する。本発明では、ポリオレフィン微多孔膜の全構成が円柱状のフィブリルであると仮定し、ポリオレフィンの体積と表面積の測定結果から平均フィブリル径を算出する。また、本発明では、細孔の構造が全て円柱状であると仮定し、細孔容積と表面積の測定結果から平均孔径を算出する。   The polyolefin microporous membrane of the present invention has a polyolefin fibril network structure as a main structure and has pores communicating in the thickness direction. In the present invention, assuming that the entire structure of the polyolefin microporous membrane is a columnar fibril, the average fibril diameter is calculated from the measurement results of the volume and surface area of the polyolefin. Further, in the present invention, it is assumed that the pore structure is all cylindrical, and the average pore diameter is calculated from the measurement results of the pore volume and the surface area.

[比表面積]
本発明では、上記平均フィブリル径と上記平均孔径の算出にポリオレフィン微多孔膜の表面積を用いる。この表面積は、比表面積の測定結果から算出する。
[Specific surface area]
In the present invention, the surface area of the polyolefin microporous membrane is used to calculate the average fibril diameter and the average pore diameter. This surface area is calculated from the measurement result of the specific surface area.

比表面積は、例えば以下に示すガス吸着法で得られたN吸着量から下記のBET式を用いて求めることができる。(JIS Z 8830に準じた方法)
1/[W・{(P/P)−1}]={(C−1)/(Wm・C)}(P/P)(1/(Wm・C) … BET式
ここで、Pは吸着平衡における吸着質の気体の圧力、Pは吸着平衡における吸着質の飽和蒸気圧、Wは吸着平衡圧Pにおける吸着量、Wmは単分子吸着量、CはBET定数である。上記のガス吸着法による比表面積測定法(以下「BET法」と称することがある。)
The specific surface area can be determined, for example from the N 2 adsorption amount obtained by the gas adsorption method described below using the BET formula. (Method according to JIS Z 8830)
1 / [W · {(P 0 / P) −1}] = {(C−1) / (Wm · C)} (P / P 0 ) (1 / (Wm · C)... BET equation P is the gas pressure of the adsorbate in the adsorption equilibrium, P 0 is the saturated vapor pressure of the adsorbate in the adsorption equilibrium, W is the adsorption amount at the adsorption equilibrium pressure P, Wm is the monomolecular adsorption amount, and C is the BET constant. Specific surface area measurement method by gas adsorption method (hereinafter sometimes referred to as “BET method”)

x軸を相対圧力P/P、y軸を1/[W・{(P/P)−1}]としてプロット(BETプロット)すると線形となる。このプロットにおける傾きをA、切片をBとすると、単分子吸着量Wmは以下の式となる。
Wm=1/(A+B)
A plot (BET plot) is linear when the x-axis is relative pressure P 0 / P and the y-axis is 1 / [W · {(P 0 / P) −1}]. When the slope in this plot is A and the intercept is B, the monomolecular adsorption amount Wm is as follows.
Wm = 1 / (A + B)

次いで、比表面積Sは下記式により求まる。
Ss=(Wm・N・Acs・M)/w
ここで、Nはアボガドロ数、Mは分子量、Acsは吸着断面積、wはサンプル重量である。例えばNの場合、吸着断面積は0.16nmである。
Next, the specific surface area S s is obtained by the following formula.
Ss = (Wm · N · Acs · M) / w
Here, N is the Avogadro number, M is the molecular weight, Acs is the adsorption cross section, and w is the sample weight. For example, in the case of N 2 , the adsorption cross-sectional area is 0.16 nm 2 .

[平均フィブリル径と平均孔径]
本発明における平均フィブリル径は、ポリオレフィン微多孔膜の全構成が円柱状のフィブリルであると仮定して、また本発明における平均孔径は、細孔の構造が全て円柱状であると仮定して下記の通り算出する。
[Average fibril diameter and average pore diameter]
The average fibril diameter in the present invention is as follows assuming that the entire structure of the polyolefin microporous membrane is a cylindrical fibril, and the average pore diameter in the present invention is as follows assuming that the pore structure is all cylindrical. Calculate as follows.

フィブリル繊維質の全体積をVs1、全細孔体積をVs2とする。フィブリルの直径をRs1、円柱状孔の直径をRs2とするとし、フィブリル全長をLs1、円柱状孔全長をLs2とすると、下記式(i)〜(v)が成り立つ。
Ss・Ws=πRs1・Ls1=πRs2・Ls2 … (i)
s1=π(Rs1/2)・Ls1 … (ii)
s2=π(Rs2/2)・Ls2 … (iii)
s2=ε・(Vs1+Vs2) … (iv)
s1=Ws/ds … (v)
ここで、Ssは比表面積(m/g)、Wsは目付(g/m)、εは空孔率(%)、dsは真密度(g/cm)である。
上記(i)〜(v)の式からRs1(フィブリル径)とRs2(孔径)を求めることができる。
Let V s1 be the total volume of fibril fiber, and V s2 be the total pore volume. When the diameter of the fibril is R s1 , the diameter of the cylindrical hole is R s2 , the total length of the fibril is L s1 , and the total length of the cylindrical hole is L s2 , the following formulas (i) to (v) are established.
Ss · Ws = πR s1 · L s1 = πR s2 · L s2 (i)
V s1 = π (R s1 / 2) 2 · L s1 (ii)
V s2 = π (R s2 / 2) 2 · L s2 (iii)
V s2 = ε · (V s1 + V s2 ) (iv)
V s1 = Ws / ds … (V)
Here, Ss is a specific surface area (m 2 / g), Ws is a basis weight (g / m 2 ), ε is a porosity (%), and ds is a true density (g / cm 3 ).
R s1 (fibril diameter) and R s2 (pore diameter) can be determined from the above equations (i) to (v).

本発明のポリオレフィン微多孔膜において、平均フィブリル径が40〜80nmであることを必要とする。平均フィブリル径が40nmより小さくすることは成形上困難である。また、平均フィブリル径が80nmより大きくなると透過性が著しく低下し、膜強度も低下する。   In the polyolefin microporous membrane of the present invention, the average fibril diameter needs to be 40 to 80 nm. It is difficult to form an average fibril diameter smaller than 40 nm. Further, when the average fibril diameter is larger than 80 nm, the permeability is remarkably lowered and the film strength is also lowered.

本発明のポリオレフィン微多孔膜において、細孔の平均孔径が15〜50nmであることを必要とする。すなわち、平均孔径を15〜50nmといった極めて小さい孔径とすることにより、高い透過性を実現できる。この高い透過性は、前述の平均フィブリル径が十分に小さく、40〜80nmの範囲であることにより実現する。平均孔径が15nmより小さいと透過性が阻害され、優れた透過性が得られない。一方、平均孔径が50nmを超えると、曲路率が大きくなってしまい、電池セパレータとして用いた場合、膜抵抗が大きく、負荷特性が大きくなって、電池性能が悪化するおそれがある。また、このように平均孔径が50nmを超えた場合は、膜強度も低下する傾向にあるため好ましくない。   In the polyolefin microporous membrane of the present invention, the average pore size of the pores needs to be 15 to 50 nm. That is, high permeability can be realized by setting the average pore size to a very small pore size of 15 to 50 nm. This high permeability is realized by the aforementioned average fibril diameter being sufficiently small and in the range of 40 to 80 nm. When the average pore diameter is smaller than 15 nm, the permeability is inhibited and an excellent permeability cannot be obtained. On the other hand, when the average pore diameter exceeds 50 nm, the curvature increases, and when used as a battery separator, the membrane resistance increases, the load characteristics increase, and the battery performance may deteriorate. In addition, when the average pore diameter exceeds 50 nm as described above, the film strength tends to decrease, which is not preferable.

[空孔率]
本発明のポリオレフィン微多孔膜において、空孔率(ε)は、ポリオレフィン微多孔膜の目付(g/m)、真密度(g/cm)、膜厚(μm)より下記式により算出する。
ε={1−Ws/(ds・t)}×100
ここで、Wsは目付(g/m)、dsは真密度(g/cm)、tは膜厚(μm)である。
[Porosity]
In the polyolefin microporous membrane of the present invention, the porosity (ε) is calculated from the basis weight (g / m 2 ), true density (g / cm 3 ), and film thickness (μm) of the polyolefin microporous membrane according to the following formula. .
ε = {1-Ws / (ds · t)} × 100
Here, Ws is a basis weight (g / m 2 ), ds is a true density (g / cm 3 ), and t is a film thickness (μm).

この空孔率は30〜60%が好ましく、40%〜60%であることが更に好ましい。空孔率が30%より小さいと透過性が低下し好ましくない。一方、空孔率が60%より高いと力学強度が不十分となりハンドリング性が低下するため好ましくない。   The porosity is preferably 30 to 60%, and more preferably 40% to 60%. If the porosity is less than 30%, the permeability is undesirably lowered. On the other hand, if the porosity is higher than 60%, the mechanical strength becomes insufficient and the handling property is lowered, which is not preferable.

[曲路率]
本発明のポリオレフィン微多孔膜において、曲路率とは、任意のポリオレフィン微多孔膜中の細孔において流路長を膜厚で割った値をすべての孔で平均した値である。この曲路率は、ポリオレフィン微多孔膜に電解液を含浸させて膜抵抗を測定することで算出することができる。具体的には下記式により算出する。
τ={(Rm・ε)/(ρ・t)}(1/2)
ここで、τは曲路率、Rmは膜抵抗(ohm・cm)、εは空孔率(%)、ρは電解液の比抵抗(ohm・cm)、tは膜厚(μm)である。本発明においては電解液に1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1重量比)を20℃で用いているが、この場合のρは2.663×10−2ohm・cmである。この値は透過性の指標であり、定義から1以上であり、小さいほど透過性に優れると言える。
[Curvature]
In the polyolefin microporous membrane of the present invention, the curvature is a value obtained by averaging the value obtained by dividing the channel length by the film thickness in the pores of an arbitrary polyolefin microporous membrane. This curvature can be calculated by impregnating a microporous polyolefin membrane with an electrolyte and measuring the membrane resistance. Specifically, it is calculated by the following formula.
τ = {(Rm · ε) / (ρ · t)} (1/2)
Here, τ is the curvature, Rm is the membrane resistance (ohm · cm 2 ), ε is the porosity (%), ρ is the specific resistance of the electrolyte (ohm · cm), and t is the film thickness (μm). is there. In the present invention, 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) is used at 20 ° C. for the electrolytic solution. In this case, ρ is 2.663 × 10 −2 ohm · cm. This value is an index of permeability, which is 1 or more from the definition.

本発明のポリオレフィン微多孔膜の曲路率が1.2〜1.8であることが好ましい。尚、本発明のポリオレフィン微多孔膜は細孔の平均孔径が小さいにも関わらずこの値が1.2〜1.8と小さく透過性に優れたものである。これは平均フィブリル径が小さく、膜が均一な網目状構造になっているためである。   The curvature of the polyolefin microporous membrane of the present invention is preferably 1.2 to 1.8. The polyolefin microporous membrane of the present invention has a small value of 1.2 to 1.8 and excellent permeability even though the average pore diameter is small. This is because the average fibril diameter is small and the film has a uniform network structure.

[突刺強度]
本発明のポリオレフィン微多孔膜は力学物性も良好なものである。電池セパレータやフィルタの力学物性の指標として突刺強度がある。本発明のポリオレフィン微多孔膜は、透過性に優れ、かつ空孔率も高いにも関わらず突刺強度が300g以上となり、電池セパレータやフィルタとして充分な強度を有するものである。このように高強度であるため、本発明のポリオレフィン微多孔膜は、電池セパレータやフィルタを製造する際や、加工する際のハンドリング性が高いものである。
[Puncture strength]
The polyolefin microporous membrane of the present invention also has good mechanical properties. Puncture strength is an index of mechanical properties of battery separators and filters. The polyolefin microporous membrane of the present invention has a puncture strength of 300 g or more despite having excellent permeability and high porosity, and has sufficient strength as a battery separator or filter. Because of such high strength, the polyolefin microporous membrane of the present invention has high handling properties when manufacturing and processing battery separators and filters.

[厚み]
本発明のポリオレフィン微多孔膜は力学強度も十分であることから5〜25μmという厚みにおいても好適に用いることができ、更に5〜15μmにおいても好適に用いることができる。
[Thickness]
Since the polyolefin microporous membrane of the present invention has sufficient mechanical strength, it can be suitably used even at a thickness of 5 to 25 μm, and more preferably 5 to 15 μm.

[ポリオレフィン]
本発明におけるポリオレフィン微多孔膜は、ポリオレフィンを主成分とし、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜である。ポリオレフィンとしては、ポリエチレンやポリプロピレン、ポリメチルペンテン、これらの組合せ等が挙げられる。特に好ましいのはポリエチレンであるが、このポリエチレンとしては高密度ポリエチレンや、高密度ポリエチレンと超高分子量ポリエチレンの混合物等が好適である。
[Polyolefin]
The polyolefin microporous membrane according to the present invention has a structure in which a polyolefin is a main component and has a large number of micropores inside, and these micropores are connected to each other. Is a membrane that can pass through. Examples of the polyolefin include polyethylene, polypropylene, polymethylpentene, and combinations thereof. Polyethylene is particularly preferable, and as this polyethylene, high-density polyethylene, a mixture of high-density polyethylene and ultrahigh molecular weight polyethylene, or the like is suitable.

[ポリオレフィン微多孔膜の製造方法]
本発明のポリオレフィン微多孔膜は、例えば下記に示す方法で製造できる。即ち、(I)ポリオレフィン組成物をパラフィン、流動パラフィン、パラフィン油、鉱油、ひまし油、テトラリン、エチレングリコール、グリセリン、デカリン、トルエン、キシレン、ジエチルトリアミン、エチルジアミン、ジメチルスルホキシド、ヘキサン等の溶剤に溶解させた溶液を調整する工程、(II)前記溶液をポリオレフィン組成物の融点以上かつ融点+60℃以下の温度でダイより押出し、冷却してゲル状組成物を形成する工程、(III)前記ゲル状組成物を延伸する工程、(IV)延伸されたゲル状組成物を熱固定する工程、(V)前記溶剤を除去する工程、(VI)アニールする工程を含む一連の工程により製造される。ここで延伸工程は二軸延伸が好ましく、縦延伸、横延伸を別々に実施する逐次二軸延伸、縦延伸、横延伸を同時に実施する同時二軸延伸いずれの方法も好適に用いることが可能である。
[Production method of polyolefin microporous membrane]
The polyolefin microporous membrane of the present invention can be produced, for example, by the method shown below. That is, (I) a polyolefin composition is dissolved in a solvent such as paraffin, liquid paraffin, paraffin oil, mineral oil, castor oil, tetralin, ethylene glycol, glycerin, decalin, toluene, xylene, diethyltriamine, ethyldiamine, dimethylsulfoxide, hexane, etc. A step of preparing a solution, (II) a step of extruding the solution from a die at a temperature not lower than the melting point of the polyolefin composition and not higher than a melting point + 60 ° C., and cooling to form a gel-like composition, (III) the gel-like composition It is manufactured by a series of steps including a step of stretching a product, (IV) a step of heat-setting the stretched gel-like composition, (V) a step of removing the solvent, and (VI) a step of annealing. Here, the stretching step is preferably biaxial stretching, and any method of sequential biaxial stretching, longitudinal stretching, and transverse stretching simultaneously performing longitudinal stretching and transverse stretching separately can be suitably used. is there.

本発明のような平均フィブリル径40〜80nm、平均孔径15〜50nmのポリオレフィン微多孔膜は、例えば、該溶剤に流動パラフィンとデカリンからなる混合溶剤を用い、ポリオレフィン組成物の濃度を15〜35重量%とし、延伸倍率を50〜100倍(縦延伸倍率×横延伸倍率)とし、熱固定温度を110〜140℃とし、アニール温度を熱固定温度以下の温度とすることで得ることができる。ただし、本発明はこの製造条件に限定されるものではなく、平均フィブリル径が40〜80nmで、かつ平均孔径が15〜50nmであるポリオレフィン微多孔膜が得られるものであればいずれの条件をも採用できることは言うまでもない。   The polyolefin microporous membrane having an average fibril diameter of 40 to 80 nm and an average pore diameter of 15 to 50 nm as in the present invention uses, for example, a mixed solvent composed of liquid paraffin and decalin as the solvent, and the concentration of the polyolefin composition is 15 to 35 wt. %, The draw ratio is 50 to 100 times (longitudinal draw ratio × lateral draw ratio), the heat setting temperature is 110 to 140 ° C., and the annealing temperature is a temperature not higher than the heat setting temperature. However, the present invention is not limited to these production conditions, and any conditions can be used as long as a polyolefin microporous membrane having an average fibril diameter of 40 to 80 nm and an average pore diameter of 15 to 50 nm can be obtained. Needless to say, it can be adopted.

なお、ポリオレフィン組成物の濃度を低くしたり、延伸倍率を大きくすると、平均フィブリル径が小さくなったり、平均孔径が大きくなる傾向がある。また、ポリオレフィン組成物の濃度を高くしたり、延伸倍率を低くしたりすると平均フィブリル径が太くなったり、平均孔径が小さくなったりする傾向がある。また、熱固定温度を高くすると、平均孔径が大きくなったり、平均フィブリル径が太くなることがあり、逆に熱固定温度を低くすると平均孔径が小さくなったり、平均フィブリル径が細くなったりすることがある。アニール温度を熱固定温度より高くしたり、アニール時に大きく変形させるようなことがあると平均フィブリル径は太くなったり、平均孔径が大きくなったりすることがある。   In addition, when the density | concentration of a polyolefin composition is made low or a draw ratio is enlarged, there exists a tendency for an average fibril diameter to become small or an average pore diameter to become large. Further, when the concentration of the polyolefin composition is increased or the draw ratio is decreased, the average fibril diameter tends to increase or the average pore diameter tends to decrease. Also, when the heat setting temperature is increased, the average pore diameter may be increased or the average fibril diameter may be increased. Conversely, when the heat setting temperature is decreased, the average pore diameter may be decreased or the average fibril diameter may be decreased. There is. If the annealing temperature is set higher than the heat setting temperature, or if the annealing temperature is greatly deformed during annealing, the average fibril diameter may increase or the average pore diameter may increase.

空孔率が30〜60%のポリオレフィン微多孔膜は、例えば、ポリオレフィン組成物の濃度を15〜35重量%とし、熱固定温度を140℃以下とし、アニールを熱固定温度より低い温度とすることで得ることができる。ポリオレフィン組成物の濃度を35重量%以上としたり、熱固定温度を140℃より高くしたり、アニールを熱固定温度より高い温度で実施したりすると空孔率は30%より低くなることがある。また、アニール時に大きな変形を伴うことがあると空孔率が30%より低くなることがある。ポリオレフィン組成物の濃度を15重量%より低くすると空孔率が60%より高くなることがある。
曲路率が1.2〜1.8のポリオレフィン微多孔膜は本発明の構造であれば実現できるので前述のような方法で作製することが可能である。
For the polyolefin microporous membrane having a porosity of 30 to 60%, for example, the concentration of the polyolefin composition is 15 to 35% by weight, the heat setting temperature is 140 ° C. or less, and the annealing is set to a temperature lower than the heat setting temperature. Can be obtained at If the concentration of the polyolefin composition is 35% by weight or more, the heat setting temperature is higher than 140 ° C., or annealing is performed at a temperature higher than the heat setting temperature, the porosity may be lower than 30%. Further, if there is a large deformation during annealing, the porosity may be lower than 30%. If the concentration of the polyolefin composition is lower than 15% by weight, the porosity may be higher than 60%.
Since the polyolefin microporous film having a curvature of 1.2 to 1.8 can be realized with the structure of the present invention, it can be produced by the method as described above.

[用途]
上記のような物性から本発明のポリオレフィン微多孔膜は非水系二次電池用セパレータとして優れた特性を有する。非水系二次電池用セパレータに適用する場合はポリオレフィンの材質としてポリエチレンがシャットダウン特性の観点から適切である。
また、本発明のポリオレフィン微多孔膜は、フィルタに用いた場合の透過性能と膜強度に優れるものである。
[Usage]
Due to the above physical properties, the polyolefin microporous membrane of the present invention has excellent properties as a separator for non-aqueous secondary batteries. When applied to a separator for a non-aqueous secondary battery, polyethylene is appropriate as a polyolefin material from the viewpoint of shutdown characteristics.
The polyolefin microporous membrane of the present invention is excellent in permeation performance and membrane strength when used in a filter.

以下、本実施例における各種測定法について説明する。   Hereinafter, various measurement methods in this example will be described.

[目付]
サンプルを10cm×10cmに切り出し重量を測定する。この重量を面積で割ることで1m当たりの重量である目付を求めた。
[Unit weight]
A sample is cut into 10 cm × 10 cm and the weight is measured. By dividing this weight by the area, the basis weight which is the weight per 1 m 2 was obtained.

[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter.

[空孔率]
空孔率εは以下の式から算出した。
ε={1−Ws/(ds・t)}×100
ここで、Wsは目付(g/m)、dsは真密度(g/cm)、tは膜厚(μm)である。
[Porosity]
The porosity ε was calculated from the following formula.
ε = {1-Ws / (ds · t)} × 100
Here, Ws is a basis weight (g / m 2 ), ds is a true density (g / cm 3 ), and t is a film thickness (μm).

[比表面積]
JIS K 8830に準じて測定を行った。NOVA−1200(ユアサアイオニクス社製)を用い、窒素ガス吸着法よりBET式で解析し求めた。測定の際のサンプル重量は0.1〜0.15gとした。解析は3点法にて実施し、BETプロットから比表面積Ss(m/g)を求めた。
[Specific surface area]
The measurement was performed according to JIS K 8830. Using NOVA-1200 (manufactured by Yuasa Ionics Co., Ltd.), the BET equation was used for analysis and determination by the nitrogen gas adsorption method. The sample weight during measurement was 0.1 to 0.15 g. The analysis was carried out by a three-point method, and the specific surface area Ss (m 2 / g) was determined from the BET plot.

[平均フィブリル径と平均孔径]
フィブリル繊維質の全体積をVs1、全細孔体積をVs2とする。フィブリルの直径をRs1、円柱状孔の直径をRs2とするとし、フィブリル全長をLs1、円柱状孔全長をLs2とすると、下記式(i)〜(v)が成り立つ。
Ss・Ws=πRs1・Ls1=πRs2・Ls2 … (i)
s1=π(Rs1/2)・Ls1 … (ii)
s2=π(Rs2/2)・Ls2 … (iii)
s2=ε・(Vs1+Vs2) … (iv)
s1=Ws/ds … (v)
ここで、Ssは比表面積(m/g)、Wsは目付(g/m)、εは空孔率(%)、dsは比重(g/cm)である。
上記(i)〜(v)の式からRs1(フィブリル径)とRs2(孔径)を求めることができる。
[Average fibril diameter and average pore diameter]
Let V s1 be the total volume of fibril fiber, and V s2 be the total pore volume. When the diameter of the fibril is R s1 , the diameter of the cylindrical hole is R s2 , the total length of the fibril is L s1 , and the total length of the cylindrical hole is L s2 , the following formulas (i) to (v) are established.
Ss · Ws = πR s1 · L s1 = πR s2 · L s2 (i)
V s1 = π (R s1 / 2) 2 · L s1 (ii)
V s2 = π (R s2 / 2) 2 · L s2 (iii)
V s2 = ε · (V s1 + V s2 ) (iv)
V s1 = Ws / ds … (V)
Here, Ss is a specific surface area (m 2 / g), Ws is a basis weight (g / m 2 ), ε is a porosity (%), and ds is a specific gravity (g / cm 3 ).
R s1 (fibril diameter) and R s2 (pore diameter) can be determined from the above equations (i) to (v).

[膜抵抗]
サンプルを2.6cm×2.0cmのサイズに切り出す。非イオン性界面活性剤(花王社製;エマルゲン210P)を3重量%溶解したメタノール溶液に切り出したポリエチレン微多孔膜基材を浸漬し、風乾する。厚さ20μmのアルミ箔を2.0cm×1.4cmに切り出しリードタブを付ける。このアルミ箔を2枚用意して、アルミ箔間に切り出したサンプルをアルミ箔が短絡しないように挟む。サンプルに電解液である1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1重量比)を含浸させる。これをアルミラミネートパック中にタブがアルミパックの外に出るようにして減圧封入する。このようなセルをアルミ箔中にセパレータが1枚、2枚、3枚となるようにそれぞれ作製する。該セルを20℃の恒温槽中に入れ、交流インピーダンス法で振幅10mV、周波数100kHzにて該セルの抵抗を測定する。測定されたセルの抵抗値をセパレータの枚数に対してプロットし、このプロットを線形近似し傾きを求める。この傾きに電極面積である2.0cm×1.4cmを乗じてセパレータ1枚当たりの膜抵抗(ohm・cm)を求めた。
[Membrane resistance]
Cut the sample to a size of 2.6 cm × 2.0 cm. The polyethylene microporous membrane substrate cut out in a methanol solution in which 3% by weight of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P) is dissolved is immersed and air-dried. A 20 μm thick aluminum foil is cut into 2.0 cm × 1.4 cm and a lead tab is attached. Two aluminum foils are prepared, and a sample cut between the aluminum foils is sandwiched so that the aluminum foils are not short-circuited. The sample is impregnated with 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) as an electrolyte. This is sealed under reduced pressure in an aluminum laminate pack so that the tab comes out of the aluminum pack. Such cells are prepared so that there are one, two, and three separators in the aluminum foil, respectively. The cell is placed in a constant temperature bath at 20 ° C., and the resistance of the cell is measured by an AC impedance method at an amplitude of 10 mV and a frequency of 100 kHz. The measured resistance value of the cell is plotted against the number of separators, and this plot is linearly approximated to obtain the slope. The film resistance (ohm · cm 2 ) per separator was determined by multiplying the inclination by 2.0 cm × 1.4 cm which is the electrode area.

[ガーレ値]
ガーレ値(秒/100cc)はJIS P8117に従い測定した。
[Gurley value]
The Gurley value (second / 100 cc) was measured according to JIS P8117.

[曲路率]
曲路率τは以下の式から算出した。
τ={(Rm・ε)/(ρ・t)}(1/2)
ここで、Rmは膜抵抗(ohm・cm)、εは空孔率(%)、ρは電解液の比抵抗(ohm・cm)、tは膜厚(μm)である。本発明においては電解液に1MのLiBFプロピレンカーボネート/エチレンカーボネート(1/1重量比)を20℃で用いているが、この場合のρは2.663×10−2ohm・cmである。
[Curvature]
The curvature τ was calculated from the following equation.
τ = {(Rm · ε) / (ρ · t)} (1/2)
Here, Rm is the membrane resistance (ohm · cm 2 ), ε is the porosity (%), ρ is the specific resistance of the electrolyte (ohm · cm), and t is the film thickness (μm). In the present invention, 1M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) is used at 20 ° C. for the electrolytic solution. In this case, ρ is 2.663 × 10 −2 ohm · cm.

[突刺強度]
カトーテック社製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重を突刺強度とした。ここでサンプルはΦ11.3mmの穴があいた金枠(試料ホルダー)にシリコンゴム製のパッキンも一緒に挟み固定した。
[Puncture strength]
Using a KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd., a piercing test was conducted under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec, and the maximum piercing load was defined as the piercing strength. Here, the sample was fixed by sandwiching a silicon rubber packing in a metal frame (sample holder) having a hole of Φ11.3 mm.

[非水系二次電池の試作]
コバルト酸リチウム(LiCoO;日本化学工業社製)粉末89.5重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)4.5重量部、ポリフッ化ビニリデン(クレハ化学社製)6重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが20μmのアルミ箔上に塗布乾燥後プレスし、100μmの正極を得た。
[Prototype of non-aqueous secondary battery]
89.5 parts by weight of lithium cobalt oxide (LiCoO 2 ; manufactured by Nippon Chemical Industry Co., Ltd.), 4.5 parts by weight of acetylene black (manufactured by Denki Kagaku Co., Ltd .; trade name Denka Black), 6 polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) 6 These were kneaded using an N-methyl-2pyrrolidone solvent so as to be parts by weight to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 100 μm.

メソフェーズカーボンマイクロビーズ(MCMB:大阪瓦斯化学社製)粉末87重量部、アセチレンブラック(電気化学工業社製;商品名デンカブラック)3重量部、ポリフッ化ビニリデン(クレハ化学社製)10重量部となるようにN−メチル−2ピロリドン溶媒を用いてこれらを混練し、スラリーを作製した。得られたスラリーを厚さが18μmの銅箔上に塗布乾燥後プレスし、90μmの負極を得た。   87 parts by weight of mesophase carbon microbeads (MCMB: Osaka Gas Chemical Co., Ltd.) powder, 3 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo; trade name Denka Black), 10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd.) Thus, these were knead | mixed using the N-methyl-2 pyrrolidone solvent, and the slurry was produced. The obtained slurry was applied onto a copper foil having a thickness of 18 μm, dried and pressed to obtain a negative electrode having a thickness of 90 μm.

上記正極及び負極を、セパレータを介して対向させた。これに電解液を含浸させアルミラミネートフィルムからなる外装に封入して非水系二次電池を作製した。ここで、電解液には1M LiPF エチレンカーボネート/エチルメチルカーボネート(3/7重量比)(キシダ化学社製)を用いた。
ここで、この試作電池は正極面積が2×1.4cm、負極面積は2.2×1.6cmで、設定容量は8mAh(4.2V−2.75Vの範囲)である。
The positive electrode and the negative electrode were opposed to each other through a separator. This was impregnated with an electrolytic solution and sealed in an exterior made of an aluminum laminate film to produce a non-aqueous secondary battery. Here, 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) (manufactured by Kishida Chemical Co., Ltd.) was used as the electrolytic solution.
Here, this prototype battery has a positive electrode area of 2 × 1.4 cm 2 , a negative electrode area of 2.2 × 1.6 cm 2 , and a set capacity of 8 mAh (in the range of 4.2V-2.75V).

[負荷特性評価]
上記のような方法で作製した電池を用いて放電性評価を実施した。先ず、1.6mA、4.2Vで8時間定電流・定電圧充電、1.6mA、2.75Vで定電流放電という充放電サイクルを10サイクル実施し、10サイクル目に得られた放電容量をこの電池の放電容量とした。次に、1.6mA、4.2Vで8時間定電流・定電圧充電、16mA、2.75Vで定電流放電を行う。このとき得られた容量を10サイクル目の電池の放電容量で割り、得られた数値を負荷特性の指標とした。
[Load characteristic evaluation]
Dischargeability evaluation was implemented using the battery produced by the above methods. First, 10 charge / discharge cycles of 1.6 mA, 4.2 V for 8 hours constant current / constant voltage charge, 1.6 mA, 2.75 V for constant current discharge were performed, and the discharge capacity obtained in the 10th cycle was calculated. It was set as the discharge capacity of this battery. Next, constant current / constant voltage charging is performed at 1.6 mA and 4.2 V for 8 hours, and constant current discharging is performed at 16 mA and 2.75 V. The capacity obtained at this time was divided by the discharge capacity of the battery at the 10th cycle, and the obtained value was used as an index of load characteristics.

[実施例1]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
[Example 1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Mixing liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 are 1: 9 (weight ratio) and the polyethylene concentration is 30% by weight. A polyethylene solution was prepared by dissolving in a solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し細孔を構成する構造を有するものであった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefin was entangled in a network and constituted pores.

得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。   Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

[実施例2]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を7:3(重量比)となるようにして、ポリエチレン濃度が17重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=17:51:32(重量比)である。
[Example 2]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Mixing liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 become 7: 3 (weight ratio) and the polyethylene concentration becomes 17% by weight. A polyethylene solution was prepared by dissolving in a solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 17: 51: 32 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に120℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し細孔を構成する構造を有するものであった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 120 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefin was entangled in a network and constituted pores.

得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。   Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

[実施例3]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を3:7(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
[Example 3]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Mixing liquid paraffin (Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 become 3: 7 (weight ratio) and the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に135℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し細孔を構成する構造を有するものであった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 135 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefin was entangled in a network and constituted pores.

得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。   Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

[比較例1]
ポリエチレンパウダーとして三井化学社製のUH210とHD6720を用いた。UH210とHD6720を2:8(重量比:平均分子量74万)となるようにして、ポリエチレン濃度が20重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=20:50:30(重量比)である。
[Comparative Example 1]
UH210 and HD6720 manufactured by Mitsui Chemicals, Inc. were used as polyethylene powder. Liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Sumoyle P-350P; Boiling point 480 ° C.) with UH210 and HD6720 at 2: 8 (weight ratio: average molecular weight 740,000) and polyethylene concentration of 20% by weight. ) And decalin in a mixed solvent to prepare a polyethylene solution. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 20: 50: 30 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.0倍、延伸温度は105℃、横延伸は延伸倍率13.0倍、延伸温度は115℃とした。横延伸の後に140℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、125℃、弛緩率9%でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し細孔を構成する構造を有するものであった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.0 times, the stretching temperature was 105 ° C., the transverse stretching was 13.0 times the stretching ratio, and the stretching temperature was 115 ° C. After transverse stretching, heat setting was performed at 140 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Thereafter, the film was dried at 50 ° C. and annealed at 125 ° C. and a relaxation rate of 9% to obtain a polyethylene microporous film. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefin was entangled in a network and constituted pores.

得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。   Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

[比較例2]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を3:7(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。
[Comparative Example 2]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Mixing liquid paraffin (Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 become 3: 7 (weight ratio) and the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).

このポリエチレン溶液にポリエチレンの重量に対し0.2倍のシリカ粉末(トクヤマ製:トクシール)を添加し分散させて、スラリーを調整した。このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率13.0倍、延伸温度は105℃とした。横延伸の後に138℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理し、さらに酸性水溶液中でシリカを除去することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し細孔を構成する構造を有するものであった。   A slurry was prepared by adding and dispersing 0.2 times the silica powder (manufactured by Tokuyama: Tokuseal) to the polyethylene solution. This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 13.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 138 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC, annealed at 120 degreeC, and also removed the silica in acidic aqueous solution, and obtained the polyethylene microporous film. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefin was entangled in a network and constituted pores.

得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。   Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

[比較例3]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を4:6(重量比)となるようにして、ポリエチレン濃度が20重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=20:40:40(重量比)である。
[Comparative Example 3]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Mixing liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 become 4: 6 (weight ratio) and the polyethylene concentration becomes 20% by weight. A polyethylene solution was prepared by dissolving in a solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 20: 40: 40 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.0倍、延伸温度は105℃、横延伸は延伸倍率13.0倍、延伸温度は115℃とした。横延伸の後に135℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、125℃、弛緩率10%でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交絡し細孔を構成する構造を有するものであった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 5.0 times, the stretching temperature was 105 ° C., the transverse stretching was 13.0 times the stretching ratio, and the stretching temperature was 115 ° C. After transverse stretching, heat setting was performed at 135 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Thereafter, the film was dried at 50 ° C., and annealed at 125 ° C. and a relaxation rate of 10% to obtain a polyethylene microporous film. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefin was entangled in a network and constituted pores.

得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。   Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

[比較例4]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を3:7(重量比)となるようにして、ポリエチレン濃度が20重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=20:60:20(重量比)である。
[Comparative Example 4]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. Mixing liquid paraffin (Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that GUR2126 and GURX143 become 3: 7 (weight ratio) and the polyethylene concentration becomes 20% by weight. A polyethylene solution was prepared by dissolving in a solvent. The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 20: 60: 20 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。該ベーステープを60℃で8分、95℃で15分乾燥し、該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は13.5倍、延伸温度は90℃、横延伸は延伸倍率20.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜はフィブリル状ポリオレフィンが網目状に交錯し細孔を構成する構造を有するものであった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and the base tape was stretched by biaxial stretching in which longitudinal stretching and lateral stretching were sequentially performed. Here, the longitudinal stretching was 13.5 times, the stretching temperature was 90 ° C., the transverse stretching was 20.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The obtained polyethylene microporous membrane had a structure in which fibrillar polyolefins crossed like a network to form pores.

ただし、延伸工程で一部破断などが認められ成形性は非常に悪かった。
得られたポリエチレン微多孔膜の特性(目付、膜厚、比表面積、平均フィブリル径、平均孔径、空孔率、曲路率、突刺強度、ガーレ値及び膜抵抗)の測定結果を表1に示す。また、得られたポリエチレン微多孔膜を用いて非水系二次電池を試作し測定した負荷特性の測定結果を表1に示す。
However, some breakage and the like were observed in the stretching process, and the moldability was very poor.
Table 1 shows the measurement results of the characteristics (weight per unit area, film thickness, specific surface area, average fibril diameter, average pore diameter, porosity, curvature, puncture strength, Gurley value, and membrane resistance) of the obtained polyethylene microporous film. . In addition, Table 1 shows the measurement results of load characteristics obtained by making a prototype of a non-aqueous secondary battery using the obtained polyethylene microporous membrane.

Figure 2010053245
Figure 2010053245

表1に示した結果より明らかなように、フィブリル状ポリオレフィンの平均フィブリル径及びポリオレフィン微多孔膜中の細孔の平均孔径が本発明の範囲である実施例1、2及び3のポリオレフィン微多孔膜は、空孔率が大きく、曲路率が小さく、突刺強度が大きいので、セパレータやフィルタに用いた場合の透過性能と膜強度とが良好なものであった。また、膜抵抗が小さく、負荷特性が大きいので、電池セパレータとして用いた場合の電池性能が良好なものであった。   As is clear from the results shown in Table 1, the polyolefin microporous membranes of Examples 1, 2, and 3 in which the average fibril diameter of the fibrillated polyolefin and the average pore diameter of the pores in the polyolefin microporous membrane are within the scope of the present invention. Has a high porosity, a low curvature, and a high puncture strength, so that the permeation performance and the membrane strength when used in separators and filters were good. In addition, since the membrane resistance is small and the load characteristics are large, the battery performance when used as a battery separator is good.

一方、フィブリル状ポリオレフィンの平均フィブリル径が本発明の範囲外(80nm超)で、かつポリオレフィン微多孔膜中の細孔の平均孔径が本発明の範囲外(50nm超)である比較例1、2のポリオレフィン微多孔膜は、曲路率が大きく、突刺強度が小さいので、セパレータやフィルタに用いた場合の透過性能と膜強度とが劣るものであった。また、膜抵抗が大きく、負荷特性が小さいので、電池セパレータとして用いた場合の電池性能が劣るものであった。   On the other hand, Comparative Examples 1 and 2 in which the average fibril diameter of the fibrillated polyolefin is outside the range of the present invention (over 80 nm) and the average pore diameter of the pores in the polyolefin microporous membrane is out of the range of the present invention (over 50 nm). The polyolefin microporous film had a large curvature and a low puncture strength, so that the permeation performance and the film strength when used in a separator or filter were inferior. Moreover, since the membrane resistance is large and the load characteristics are small, the battery performance when used as a battery separator is inferior.

また、フィブリル状ポリオレフィンの平均フィブリル径が本発明の範囲外(80nm超)である比較例3のポリオレフィン微多孔膜は、空孔率が小さく、セパレータやフィルタに用いた場合の透過性能が劣るものであった。また、膜抵抗が大きく、負荷特性が小さいので、電池セパレータとして用いた場合の電池性能が劣るものであった。   In addition, the polyolefin microporous membrane of Comparative Example 3 in which the average fibril diameter of the fibrillated polyolefin is outside the range of the present invention (over 80 nm) has a low porosity and inferior permeation performance when used in a separator or filter. Met. Moreover, since the membrane resistance is large and the load characteristics are small, the battery performance when used as a battery separator is inferior.

また、平均フィブリル径および平均孔径がともに本発明の範囲外(平均フィブリル径40nm未満、平均孔径15nm未満)である比較例4のポリオレフィン微多孔膜は、成形が困難であったのに加え、平均孔径が小さすぎるため電解液の含浸が困難であり、その結果、膜抵抗が高くなり、それから算出される曲路率も高く、負荷特性が著しく悪かった。   In addition, the polyolefin microporous membrane of Comparative Example 4 in which both the average fibril diameter and the average pore diameter are outside the scope of the present invention (average fibril diameter less than 40 nm, average pore diameter less than 15 nm) was difficult to mold, Since the pore diameter was too small, it was difficult to impregnate the electrolyte solution. As a result, the membrane resistance was high, the curvature calculated from it was high, and the load characteristics were extremely poor.

本発明のポリオレフィン微多孔膜は、セパレータやフィルタに有用である。特に、非水系二次電池の特性向上の技術として有効に活用できる。   The polyolefin microporous membrane of the present invention is useful for separators and filters. In particular, it can be effectively utilized as a technique for improving the characteristics of non-aqueous secondary batteries.

Claims (6)

ポリオレフィンのフィブリルから構成され、厚み方向に連通する細孔を有するポリオレフィン微多孔膜であって、該フィブリルの平均フィブリル径が40〜80nm、該細孔の平均孔径が15〜50nmであることを特徴とするポリオレフィン微多孔膜。   A polyolefin microporous membrane composed of polyolefin fibrils and having pores communicating in the thickness direction, wherein the fibrils have an average fibril diameter of 40 to 80 nm, and the pores have an average pore diameter of 15 to 50 nm. A polyolefin microporous membrane. 前記ポリオレフィン微多孔膜の空孔率が30〜60%であることを特徴とする請求項1記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to claim 1, wherein the porosity of the microporous polyolefin membrane is 30 to 60%. 前記細孔の曲路率が1.2〜1.8であることを特徴とする請求項1または2記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to claim 1 or 2, wherein the pore has a curvature of 1.2 to 1.8. 前記ポリオレフィン微多孔膜の突刺強度が300g以上であることを特徴とする請求項1〜3いずれかに記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 3, wherein a puncture strength of the polyolefin microporous membrane is 300 g or more. 前記ポリオレフィン微多孔膜の膜厚が5〜25μmであることを特徴とする請求項1〜4いずれかに記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 4, wherein the polyolefin microporous membrane has a thickness of 5 to 25 µm. 前記ポリオレフィンがポリエチレンであることを特徴とする請求項1〜5いずれかに記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to claim 1, wherein the polyolefin is polyethylene.
JP2008219719A 2008-08-28 2008-08-28 Polyolefin microporous membrane Pending JP2010053245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219719A JP2010053245A (en) 2008-08-28 2008-08-28 Polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219719A JP2010053245A (en) 2008-08-28 2008-08-28 Polyolefin microporous membrane

Publications (1)

Publication Number Publication Date
JP2010053245A true JP2010053245A (en) 2010-03-11

Family

ID=42069488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219719A Pending JP2010053245A (en) 2008-08-28 2008-08-28 Polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP2010053245A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201949A (en) * 2010-03-24 2011-10-13 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2011210436A (en) * 2010-03-29 2011-10-20 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012048918A (en) * 2010-08-25 2012-03-08 Sony Corp Separator and nonaqueous electrolyte battery prepared therewith
JP2013211193A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous sheet and secondary battery using same
JP2014218563A (en) * 2013-05-07 2014-11-20 帝人株式会社 Base material for liquid filter
JP2014224240A (en) * 2013-04-15 2014-12-04 東レ株式会社 Porous film, separator for an electricity storage device, and electricity storage device
JP2015159126A (en) * 2015-05-01 2015-09-03 ソニー株式会社 Separator and nonaqueous electrolyte battery prepared therewith
KR20160005738A (en) 2013-05-07 2016-01-15 데이진 가부시키가이샤 Base for liquid filters
KR20160006722A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
KR20160006723A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
WO2017073781A1 (en) * 2015-10-30 2017-05-04 宇部興産株式会社 Porous film and electricity storage device
EP3053951A4 (en) * 2013-10-03 2017-05-24 Toray Battery Separator Film Co., Ltd. Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
WO2018020825A1 (en) * 2016-07-25 2018-02-01 帝人株式会社 Composite membrane substrate
JP2018020301A (en) * 2016-08-05 2018-02-08 東京応化工業株式会社 Porous body, filter, filter medium, filter device, refining method and manufacturing method of acrylic polymer, and manufacturing method of photosensitive resin composition
KR20180061199A (en) 2015-09-29 2018-06-07 닛폰 고도시 코포레이션 Separator and electrochemical device for electrochemical device
WO2018123935A1 (en) 2016-12-26 2018-07-05 株式会社 東芝 Non-aqueous electrolyte cell and cell pack
JP6453515B1 (en) * 2017-11-15 2019-01-16 ラ イ、ソ Manufacturing method of stacked secondary battery
WO2019093498A1 (en) * 2017-11-10 2019-05-16 旭化成株式会社 Separator for electricity storage devices, and electricity storage device
JP2019091550A (en) * 2017-11-10 2019-06-13 積水化学工業株式会社 Power storage device separator and power storage device
JP2020070337A (en) * 2018-10-30 2020-05-07 帝人株式会社 Polyolefin microporous film, and liquid filter
KR20210055091A (en) 2018-10-26 2021-05-14 데이진 가부시키가이샤 Polyolefin microporous membrane, filter, chromatography carrier, and immunochromatographic strip
WO2021149828A1 (en) 2020-01-23 2021-07-29 ニッポン高度紙工業株式会社 Separator for lithium ion secondary batteries, and lithium ion secondary battery
US11931700B2 (en) 2017-03-30 2024-03-19 Teijin Limited Substrate for liquid filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228718A (en) * 1994-02-16 1995-08-29 Tonen Chem Corp Microporous polyolefin film
JP2002367590A (en) * 2001-06-11 2002-12-20 Nitto Denko Corp Porous film
JP2003105122A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2003105123A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2003103625A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin microporous film and method for manufacturing the same
JP2003103626A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin microporous film and method for manufacturing the same
JP2006111712A (en) * 2004-10-14 2006-04-27 Teijin Solfill Kk Polyolefin microporous film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228718A (en) * 1994-02-16 1995-08-29 Tonen Chem Corp Microporous polyolefin film
JP2002367590A (en) * 2001-06-11 2002-12-20 Nitto Denko Corp Porous film
JP2003105122A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2003105123A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin minute porous film and method of its manufacture
JP2003103625A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin microporous film and method for manufacturing the same
JP2003103626A (en) * 2001-09-28 2003-04-09 Tonen Chem Corp Polyolefin microporous film and method for manufacturing the same
JP2006111712A (en) * 2004-10-14 2006-04-27 Teijin Solfill Kk Polyolefin microporous film

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011201949A (en) * 2010-03-24 2011-10-13 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2011210436A (en) * 2010-03-29 2011-10-20 Teijin Ltd Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2012048918A (en) * 2010-08-25 2012-03-08 Sony Corp Separator and nonaqueous electrolyte battery prepared therewith
JP2013211193A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous sheet and secondary battery using same
JP2014224240A (en) * 2013-04-15 2014-12-04 東レ株式会社 Porous film, separator for an electricity storage device, and electricity storage device
US11338251B2 (en) 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
KR20160005738A (en) 2013-05-07 2016-01-15 데이진 가부시키가이샤 Base for liquid filters
KR20160006722A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
KR20160006723A (en) 2013-05-07 2016-01-19 데이진 가부시키가이샤 Liquid filter substrate
KR20200122428A (en) 2013-05-07 2020-10-27 데이진 가부시키가이샤 Liquid filter substrate
KR20200122429A (en) 2013-05-07 2020-10-27 데이진 가부시키가이샤 Liquid filter substrate
US11338252B2 (en) 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
JP2014218563A (en) * 2013-05-07 2014-11-20 帝人株式会社 Base material for liquid filter
KR20200123271A (en) 2013-05-07 2020-10-28 데이진 가부시키가이샤 Base for liquid filters
US11338250B2 (en) 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
EP3053951A4 (en) * 2013-10-03 2017-05-24 Toray Battery Separator Film Co., Ltd. Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
US10158112B2 (en) 2013-10-03 2018-12-18 Toray Industries, Inc. Porous membrane, battery separator obtained using same, and method of producing same
JP2015159126A (en) * 2015-05-01 2015-09-03 ソニー株式会社 Separator and nonaqueous electrolyte battery prepared therewith
KR20180061199A (en) 2015-09-29 2018-06-07 닛폰 고도시 코포레이션 Separator and electrochemical device for electrochemical device
US10748713B2 (en) 2015-09-29 2020-08-18 Nippon Kodoshi Corporation Separator for electrochemical device and electrochemical device
JPWO2017073781A1 (en) * 2015-10-30 2018-08-16 宇部興産株式会社 Porous membrane and power storage device
WO2017073781A1 (en) * 2015-10-30 2017-05-04 宇部興産株式会社 Porous film and electricity storage device
KR102391826B1 (en) 2016-07-25 2022-04-27 데이진 가부시키가이샤 Composite membrane substrate
US11929531B2 (en) 2016-07-25 2024-03-12 Teijin Limited Composite membrane
KR20210060655A (en) * 2016-07-25 2021-05-26 데이진 가부시키가이샤 Composite membrane substrate
WO2018020825A1 (en) * 2016-07-25 2018-02-01 帝人株式会社 Composite membrane substrate
JP2018020301A (en) * 2016-08-05 2018-02-08 東京応化工業株式会社 Porous body, filter, filter medium, filter device, refining method and manufacturing method of acrylic polymer, and manufacturing method of photosensitive resin composition
US10964926B2 (en) 2016-12-26 2021-03-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
WO2018123935A1 (en) 2016-12-26 2018-07-05 株式会社 東芝 Non-aqueous electrolyte cell and cell pack
US11931700B2 (en) 2017-03-30 2024-03-19 Teijin Limited Substrate for liquid filter
JP2019091550A (en) * 2017-11-10 2019-06-13 積水化学工業株式会社 Power storage device separator and power storage device
JPWO2019093498A1 (en) * 2017-11-10 2019-11-21 旭化成株式会社 Electric storage device separator and electric storage device
US11784343B2 (en) 2017-11-10 2023-10-10 Asahi Kasei Kabushiki Kaisha Separator for electricity storage devices, and electricity storage device
WO2019093498A1 (en) * 2017-11-10 2019-05-16 旭化成株式会社 Separator for electricity storage devices, and electricity storage device
JP2020004729A (en) * 2017-11-10 2020-01-09 旭化成株式会社 Power storage device separator and power storage device
CN110366787A (en) * 2017-11-10 2019-10-22 旭化成株式会社 Electrical storage device separator and electrical storage device
CN114335893A (en) * 2017-11-10 2022-04-12 旭化成株式会社 Separator for power storage device, and power storage device
JP2019091682A (en) * 2017-11-15 2019-06-13 ラ イ、ソ Method of manufacturing laminated secondary battery
US10283806B1 (en) 2017-11-15 2019-05-07 Sora Lee Manufacturing method for laminated secondary battery
JP6453515B1 (en) * 2017-11-15 2019-01-16 ラ イ、ソ Manufacturing method of stacked secondary battery
KR20210055091A (en) 2018-10-26 2021-05-14 데이진 가부시키가이샤 Polyolefin microporous membrane, filter, chromatography carrier, and immunochromatographic strip
WO2020090792A1 (en) * 2018-10-30 2020-05-07 帝人株式会社 Polyolefin microporous membrane and liquid filter
JP7152106B2 (en) 2018-10-30 2022-10-12 帝人株式会社 Polyolefin microporous membrane and liquid filter
JP2020070337A (en) * 2018-10-30 2020-05-07 帝人株式会社 Polyolefin microporous film, and liquid filter
WO2021149828A1 (en) 2020-01-23 2021-07-29 ニッポン高度紙工業株式会社 Separator for lithium ion secondary batteries, and lithium ion secondary battery
KR20220130131A (en) 2020-01-23 2022-09-26 닛폰 고도시 코포레이션 Lithium ion secondary battery separator and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2010053245A (en) Polyolefin microporous membrane
JP4550936B2 (en) Non-aqueous secondary battery separator
JP5226763B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP5420938B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101423296B1 (en) Porous separators for secondary battery comprising cellulose fibers and silica and preparation method thereof
JP5356878B2 (en) Non-aqueous secondary battery separator
KR101164650B1 (en) Porous separators for secondary battery comprising cellulose nanofibrils and preparation method thereof
KR101546010B1 (en) Nonaqueous-secondary-battery separator and nonaqueous secondary battery
KR101581389B1 (en) Nonaqueous-secondary-battery separator and nonaqueous secondary battery
JP2011108444A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2019093498A1 (en) Separator for electricity storage devices, and electricity storage device
JP2011210574A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and the nonaqueous secondary battery
JP2012048987A (en) Polyolefin microporous film, nonaqueous secondary battery separator, and nonaqueous secondary battery
KR101942640B1 (en) Separator for energy storage device
JP2011192529A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP4230584B2 (en) Polyethylene microporous membrane
JP2011204587A (en) Separator for nonaqueous secondary battery, nonaqueous secondary battery, and method of manufacturing separator for nonaqueous secondary battery
JP2011192528A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR20150009856A (en) Porous polymeric separator and a method for preparing the same
EP3920318B1 (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
KR20150072868A (en) Porous polyolefin separator and a method for preparing the same
JP7152435B2 (en) Polyolefin microporous membrane
EP4160806A1 (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2013211190A (en) Separator and nonaqueous electrolyte battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409