JP5420938B2 - Nonaqueous secondary battery separator and nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery separator and nonaqueous secondary battery Download PDF

Info

Publication number
JP5420938B2
JP5420938B2 JP2009061218A JP2009061218A JP5420938B2 JP 5420938 B2 JP5420938 B2 JP 5420938B2 JP 2009061218 A JP2009061218 A JP 2009061218A JP 2009061218 A JP2009061218 A JP 2009061218A JP 5420938 B2 JP5420938 B2 JP 5420938B2
Authority
JP
Japan
Prior art keywords
separator
secondary battery
heat
aqueous secondary
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009061218A
Other languages
Japanese (ja)
Other versions
JP2010218749A (en
Inventor
孝 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009061218A priority Critical patent/JP5420938B2/en
Publication of JP2010218749A publication Critical patent/JP2010218749A/en
Application granted granted Critical
Publication of JP5420938B2 publication Critical patent/JP5420938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は非水系二次電池用セパレータに関するものであり、特に非水系二次電池の安全性および電池特性を向上させる技術に関するものである。   The present invention relates to a separator for a non-aqueous secondary battery, and more particularly to a technique for improving the safety and battery characteristics of a non-aqueous secondary battery.

リチウムイオン二次電池に代表される非水系二次電池は、高エネルギー密度であり、携帯電話・ノートパソコンといった携帯用電子機器の主電源として広範に普及している。このリチウムイオン二次電池は、更なる高エネルギー密度化が求められているが、安全性の確保が技術的な課題となっている。   Non-aqueous secondary batteries represented by lithium ion secondary batteries have a high energy density and are widely used as main power sources for portable electronic devices such as mobile phones and laptop computers. This lithium ion secondary battery is required to have a higher energy density, but ensuring safety is a technical issue.

リチウムイオン二次電池の安全性確保においてセパレータの役割は重要であり、シャットダウン機能を有するという観点から、現状ではポリオレフィン、特にポリエチレン微多孔膜が用いられている。ここで、シャットダウン機能とは、電池の温度が上昇したときに、微多孔膜の孔が閉塞し電流を遮断する機能のことを言い、電池の熱暴走を食い止める働きがある。   The role of the separator is important in ensuring the safety of the lithium ion secondary battery, and from the viewpoint of having a shutdown function, polyolefins, particularly polyethylene microporous membranes are currently used. Here, the shutdown function refers to a function of blocking pores in the microporous membrane when the temperature of the battery rises, and blocking the current, and has a function of preventing thermal runaway of the battery.

一方、リチウムイオン二次電池は、年々高エネルギー密度化がなされており、安全性確保のためシャットダウン機能に加えて耐熱性も要求されてきている。しかしながら、シャットダウン機能は、ポリエチレンの溶融による孔の閉塞をその作動原理としているので耐熱性と相反するものである。このため、シャットダウン機能が作動した後、さらに電池がシャットダウン機能が作動する温度以上に曝され続けた場合に、セパレータの溶融(いわゆるメルトダウン)が進行してしまう場合がある。このメルトダウンの結果、電池内部で短絡が生じ、これに伴って大きな熱が発生してしまい、電池は発煙・発火・爆発といった危険に曝されることになる。このため、セパレータにはシャットダウン機能に加えて、シャットダウン機能が作動する温度近傍でメルトダウンが生じない程度の、十分な耐熱性が要求されている。   On the other hand, lithium ion secondary batteries have been increased in energy density year by year, and heat resistance has been required in addition to a shutdown function to ensure safety. However, the shutdown function is contrary to heat resistance because the operating principle is to close the hole by melting polyethylene. For this reason, if the battery continues to be exposed to a temperature higher than the temperature at which the shutdown function is activated after the shutdown function is activated, the separator may be melted (so-called meltdown). As a result of this meltdown, a short circuit occurs inside the battery, and as a result, a large amount of heat is generated, and the battery is exposed to dangers such as smoke, ignition, and explosion. For this reason, in addition to the shutdown function, the separator is required to have sufficient heat resistance so that meltdown does not occur near the temperature at which the shutdown function operates.

この点において、従来、耐熱性とシャットダウン機能を両立させるために、ポリオレフィン微多孔膜の片面又は両面を耐熱性多孔質層で被覆したり、耐熱性繊維からなる不織布を積層させるという技術が提案されている。例えば、ポリエチレン微多孔膜の片面又は両面に、ポリアミドやポリイミド等の耐熱性樹脂からなる耐熱性多孔質層を積層した非水電解質電池セパレータが知られている(特許文献1〜5参照)。   In this regard, conventionally, in order to achieve both heat resistance and a shutdown function, a technique has been proposed in which one or both surfaces of a polyolefin microporous membrane are covered with a heat resistant porous layer or a nonwoven fabric made of heat resistant fibers is laminated. ing. For example, a nonaqueous electrolyte battery separator is known in which a heat-resistant porous layer made of a heat-resistant resin such as polyamide or polyimide is laminated on one side or both sides of a polyethylene microporous membrane (see Patent Documents 1 to 5).

ところで、リチウムイオン電池の高容量化という点では、近年、様々な高容量タイプの正極材料や負極材料の開発が行われている。しかし、このような高容量タイプの正・負極材料には、充放電時における体積変化が大きなものが多く存在するため、電極の大きな体積変化によって電池特性が低下してしまうといった問題が生じてくる。   By the way, in terms of increasing the capacity of lithium ion batteries, in recent years, various high capacity type positive electrode materials and negative electrode materials have been developed. However, such high-capacity positive and negative electrode materials often have large volume changes during charging and discharging, and thus a problem arises in that battery characteristics deteriorate due to large volume changes in electrodes. .

すなわち、セパレータは、電池内においては正極と負極の間に配置されているため、電池の充放電が行われた場合、電極の膨張・収縮によってセパレータの厚み方向に圧縮力や回復力が作用する。従来のコバルト酸リチウムやハードカーボンなどの低容量タイプの正負極材料の場合は、電極の体積変化が小さいため、セパレータの厚み方向への変形も小さく、電池特性への影響も特にはない。ところが、高容量タイプの正・負極活物質など、充放電時における体積変化率が大きい電極材料を用いた場合、電極からセパレータに与えられる作用力も大きくなる。そして、電極の体積変化にセパレータが追随できない場合は、局所的にセパレータに折れやシワが生じたり、電極とセパレータとの間に隙間が生じたりする場合がある。特に、電極とセパレータとを巻き回した円筒型や扁平円筒型の電池においては、セパレータと電極との間にせん断力が生じやすいため、セパレータの折れ等の問題はより深刻なものとなる。さらに、特許文献1〜3に記載されたような従来の耐熱セパレータの場合、すべり性の悪い耐熱樹脂によって耐熱性多孔質層が形成されているため、セパレータの折れ等の問題はより発生しやすいと言える。このようなセパレータの折れ等は、最終的には電池のサイクル特性の低下につながってしまう。   That is, since the separator is disposed between the positive electrode and the negative electrode in the battery, when the battery is charged / discharged, a compressive force or a restoring force acts in the thickness direction of the separator due to the expansion / contraction of the electrode. . In the case of conventional low-capacity positive and negative electrode materials such as lithium cobaltate and hard carbon, since the volume change of the electrode is small, the deformation in the thickness direction of the separator is small, and the battery characteristics are not particularly affected. However, when an electrode material having a large volume change rate during charge / discharge, such as a high-capacity positive / negative active material, is used, the acting force applied from the electrode to the separator also increases. If the separator cannot follow the volume change of the electrode, the separator may be locally folded or wrinkled, or a gap may be formed between the electrode and the separator. In particular, in a cylindrical or flat cylindrical battery in which an electrode and a separator are wound, since a shearing force is likely to be generated between the separator and the electrode, problems such as breakage of the separator become more serious. Furthermore, in the case of conventional heat-resistant separators as described in Patent Documents 1 to 3, since the heat-resistant porous layer is formed of a heat-resistant resin having poor slip properties, problems such as breakage of the separator are more likely to occur. It can be said. Such breakage of the separator or the like eventually leads to deterioration of the cycle characteristics of the battery.

この点、従来の特許文献4,5に記載された技術では、耐熱性多孔質層に無機フィラーを含む構成であるため、耐熱性樹脂のすべり性低下については若干の改善が期待される。しかしながら、電極の体積変化の問題については未解決のままである。   In this regard, the techniques described in the conventional patent documents 4 and 5 are configured to include an inorganic filler in the heat-resistant porous layer, and therefore, a slight improvement is expected with respect to a decrease in slipperiness of the heat-resistant resin. However, the problem of electrode volume change remains unresolved.

特開2002−355938号公報JP 2002-355938 A 特開2005−209570号公報JP 2005-209570 A 特開2005−285385号公報JP 2005-285385 A 特開2000−030686号公報JP 2000-030686 A 特開2008−300362号公報JP 2008-300362 A

上記のような課題に鑑みて、本発明は、シャットダウン機能および耐熱性に優れ、さらに充放電時の体積変化率が大きい電極を用いた場合にも、電極の体積変化に好適に追従できるセパレータを提供することを目的とする。   In view of the above problems, the present invention provides a separator that can suitably follow the volume change of an electrode even when an electrode having an excellent shutdown function and heat resistance and having a large volume change rate during charge and discharge is used. The purpose is to provide.

上記課題を解決するため、本発明は以下の構成を採用する。
1. ポリオレフィン多孔質基材と、この多孔質基材の片面または両面に被覆された耐熱性樹脂を含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、接触底面が直径0.5cmの円状の接触端子を有した接触式膜厚計を用いて、印加荷重36g/cmで測定した膜厚をL1とし、印加荷重1.2kg/cmで測定した膜厚をL2とした場合に、L1−L2=2.0〜10μmとなることを特徴とする非水系二次電池用セパレータ。
2. 前記セパレータの静摩擦係数が0.3〜1.0であることを特徴とする上記1に記載の非水系二次電池用セパレータ。
3. 前記耐熱性多孔質層は、空孔率が50〜80%であり、かつ、BET法で測定した平均孔径が50〜300nmであることを特徴とする上記1または2に記載の非水系二次電池用セパレータ。
4. 前記耐熱性樹脂は、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドから成る群から選ばれる少なくとも一種であることを特徴とする上記1〜3のいずれかに記載の非水系二次電池用セパレータ。
5. 前記多孔質基材について、前記接触式膜厚計を用いて印加荷重36g/cmで測定した膜厚をL3とし、印加荷重1.2kg/cmで測定した膜厚をL4とした場合に、L3−L4=0.1〜2.0μmとなることを特徴とする上記1〜4のいずれかに記載の非水系二次電池用セパレータ。
6. 前記多孔質基材は、空孔率が30〜70%であり、かつ、BET法で測定した平均孔径が10〜400nmであることを特徴とする上記5に記載の非水系二次電池用セパレータ。
7. 前記耐熱性多孔質層が無機フィラーを含むことを特徴とする上記1〜6のいずれかに記載の非水系二次電池用セパレータ。
8. 前記無機フィラーが金属水酸化物および金属酸化物のうち少なくとも1種からなることを特徴とする上記7に記載の非水系二次電池用セパレータ。
9. 前記無機フィラーの平均粒径は0.1〜1μmであることを特徴とする上記7または8に記載の非水系二次電池用セパレータ。
10. 前記無機フィラーの含有量が前記耐熱性樹脂の体積に対し0.4〜4倍であることを特徴とする上記7〜9のいずれかに記載の非水系二次電池用セパレータ。
11. リチウムのドープおよび脱ドープにより起電力を得る非水系二次電池であって、正極集電体および正極活物質層を有する正極と、負極集電体および負極活物質層を有する負極と、これらの電極間に配置された上記1〜10のいずれかに記載の非水系二次電池用セパレータと、非水電解質とを備えて構成されたことを特徴とする非水系二次電池。
12. 前記正極活物質は、リチウムを脱ドープする過程における体積変化率が1%以上であることを特徴とする上記11記載の非水系二次電池。
13. 前記負極活物質は、リチウムをドープする過程における体積変化率が3%以上であることを特徴とする上記12に記載の非水系二次電池。
In order to solve the above problems, the present invention adopts the following configuration.
1. A separator for a non-aqueous secondary battery comprising a polyolefin porous substrate and a heat-resistant porous layer containing a heat-resistant resin coated on one or both surfaces of the porous substrate, the contact bottom surface having a diameter Using a contact-type film thickness meter having a circular contact terminal of 0.5 cm, the film thickness measured at an applied load of 36 g / cm 2 is L1, and the film thickness measured at an applied load of 1.2 kg / cm 2 is A separator for a non-aqueous secondary battery, wherein L1−L2 = 2.0 to 10 μm when L2.
2. 2. The separator for a non-aqueous secondary battery according to 1 above, wherein the separator has a static friction coefficient of 0.3 to 1.0.
3. 3. The non-aqueous secondary layer according to 1 or 2 above, wherein the heat-resistant porous layer has a porosity of 50 to 80% and an average pore diameter measured by a BET method of 50 to 300 nm. Battery separator.
4). Any of the above 1-3, wherein the heat-resistant resin is at least one selected from the group consisting of aromatic polyamide, polyimide, polyamideimide, polyethersulfone, polysulfone, polyetherketone, polyetherimide. A separator for a non-aqueous secondary battery according to 1.
5. About the said porous base material, when the film thickness measured with the applied load of 36 g / cm < 2 > using the said contact-type film thickness meter is set to L3, and the film thickness measured with the applied load of 1.2 kg / cm < 2 > is set to L4 L3-L4 = 0.1 to 2.0 μm, The separator for a non-aqueous secondary battery according to any one of 1 to 4 above.
6). 6. The separator for a non-aqueous secondary battery according to 5 above, wherein the porous substrate has a porosity of 30 to 70% and an average pore diameter measured by a BET method of 10 to 400 nm. .
7). The non-aqueous secondary battery separator according to any one of 1 to 6, wherein the heat-resistant porous layer contains an inorganic filler.
8). 8. The separator for a non-aqueous secondary battery as described in 7 above, wherein the inorganic filler comprises at least one of a metal hydroxide and a metal oxide.
9. 9. The separator for a non-aqueous secondary battery as described in 7 or 8 above, wherein the inorganic filler has an average particle size of 0.1 to 1 μm.
10. The separator for a nonaqueous secondary battery according to any one of 7 to 9, wherein the content of the inorganic filler is 0.4 to 4 times the volume of the heat resistant resin.
11. A non-aqueous secondary battery for obtaining an electromotive force by doping and dedoping of lithium, a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and A non-aqueous secondary battery comprising the separator for a non-aqueous secondary battery according to any one of 1 to 10 and a non-aqueous electrolyte disposed between electrodes.
12 12. The non-aqueous secondary battery as described in 11 above, wherein the positive electrode active material has a volume change rate of 1% or more in the process of dedoping lithium.
13. 13. The nonaqueous secondary battery as described in 12 above, wherein the negative electrode active material has a volume change rate of 3% or more in the process of doping lithium.

本発明によれば、シャットダウン機能、耐熱性および電極の体積変化への追従性に優れたセパレータを提供することができる。かかるセパレータは、非水系二次電池の安全性および電池特性を向上する技術として非常に有用である。   ADVANTAGE OF THE INVENTION According to this invention, the separator excellent in the shutdown function, heat resistance, and the followable | trackability to the volume change of an electrode can be provided. Such a separator is very useful as a technique for improving the safety and battery characteristics of a non-aqueous secondary battery.

以下、本発明の実施形態について詳細に説明する。
[非水系二次電池用セパレータ]
本発明の非水系二次電池用セパレータは、ポリオレフィン多孔質基材と、この多孔質基材の片面または両面に被覆された耐熱性樹脂を含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、接触底面が直径0.5cmの円状の接触端子を有した接触式膜厚計を用いて、印加荷重36g/cmで測定した膜厚をL1とし、印加荷重1.2kg/cmで測定した膜厚をL2とした場合に、L1−L2=2.0〜10μmとなることを特徴とする非水系二次電池用セパレータである。
Hereinafter, embodiments of the present invention will be described in detail.
[Separator for non-aqueous secondary battery]
A separator for a non-aqueous secondary battery according to the present invention comprises a non-aqueous two-layer battery comprising a polyolefin porous substrate and a heat-resistant porous layer containing a heat-resistant resin coated on one or both surfaces of the porous substrate. Using a contact film thickness meter having a circular contact terminal with a contact bottom surface of 0.5 cm in diameter, which is a separator for a secondary battery, the film thickness measured at an applied load of 36 g / cm 2 is L1, and the applied load When the film thickness measured at 1.2 kg / cm 2 is L2, L1−L2 = 2.0 to 10 μm, which is a non-aqueous secondary battery separator.

このような本発明の非水系二次電池用セパレータによれば、ポリオレフィン多孔質基材によりシャットダウン機能が得られると共に、耐熱性多孔質層によりシャットダウン温度以上の温度においても溶融しない耐熱性を得ることができる。そして、本発明のセパレータは、セパレータへの接触圧を比較的弱くして測定した場合の膜厚L1と、接触圧を比較的強くした場合の膜厚L2との関係がL1−L2=2.0〜10μmとなるようにして、柔軟性が大きなものとなっているため、電極の体積変化にも好適に追従できる。よって、充放電時の体積変化率が大きい電極を用いた場合にも、局所的にセパレータに折れやシワが生じたり、電極とセパレータとの間に隙間が生じたりするような問題を防ぐことができる。このため、本発明のセパレータによれば、安全性およびサイクル特性に優れた電池を提供することができ、特に高容量タイプの電極材料を用いた電池に好適に使用することができる。   According to the separator for a non-aqueous secondary battery of the present invention, a shutdown function is obtained by the polyolefin porous substrate, and heat resistance that does not melt even at a temperature higher than the shutdown temperature is obtained by the heat-resistant porous layer. Can do. In the separator of the present invention, the relationship between the film thickness L1 when the contact pressure to the separator is relatively weak and the film thickness L2 when the contact pressure is relatively strong is L1-L2 = 2. Since the flexibility is large so as to be 0 to 10 μm, it is possible to suitably follow the volume change of the electrode. Therefore, even when an electrode having a large volume change rate at the time of charging / discharging is used, it is possible to prevent problems such as local folding or wrinkling of the separator or a gap between the electrode and the separator. it can. For this reason, according to the separator of this invention, the battery excellent in safety | security and cycling characteristics can be provided, and it can use suitably for the battery especially using the high capacity | capacitance type electrode material.

本発明の非水系二次電池用セパレータは、印加荷重36g/cmで測定した膜厚をL1とし、印加荷重1.2kg/cmで測定した膜厚をL2とした場合に、膜厚差L1−L2=2.0〜10μmの範囲とすることが必要である。より好ましい膜厚差(L1−L2)は、2.0〜5.0μmの範囲である。ここで、本発明で言うところの膜厚差(L1−L2)は、セパレータの“柔軟性”の指標を表すものである。なお、膜厚差(L1−L2)が2.0μm未満の場合、電極の体積変化にセパレータが追従できにくくなり、上述したセパレータの折れ等の問題が生じる恐れがあるため好ましくない。一方、膜厚差(L1−L2)が10μmを超える場合、セパレータ全体の厚みが大きくなり過ぎたり、強度が低下して実用的でなくなるため好ましくない。かかる膜厚差(L1−L2)の関係を得るためには、耐熱性多孔質層の材質や空孔率、孔径、膜厚、無機フィラーの粒径や含有量といった因子を制御することが重要であり、また、ポリオレフィン多孔質基材における上述した材質等の因子を制御することも重要である。 The separator for a non-aqueous secondary battery of the present invention has a film thickness difference when the film thickness measured at an applied load of 36 g / cm 2 is L1, and the film thickness measured at an applied load of 1.2 kg / cm 2 is L2. It is necessary to set it as the range of L1-L2 = 2.0-10micrometer. A more preferable film thickness difference (L1-L2) is in the range of 2.0 to 5.0 μm. Here, the film thickness difference (L1-L2) referred to in the present invention represents an index of “flexibility” of the separator. In addition, when the film thickness difference (L1-L2) is less than 2.0 μm, it becomes difficult for the separator to follow the volume change of the electrode, and there is a possibility that the above-described problems such as breakage of the separator may occur. On the other hand, when the film thickness difference (L1-L2) exceeds 10 μm, it is not preferable because the thickness of the entire separator becomes too large or the strength is lowered and becomes impractical. In order to obtain the relationship between the film thickness differences (L1-L2), it is important to control factors such as the material, porosity, pore diameter, film thickness, and inorganic filler particle diameter and content of the heat-resistant porous layer. It is also important to control factors such as the above-described materials in the polyolefin porous substrate.

本発明では、セパレータの静摩擦係数は0.3〜1.0であるのが好ましく、0.3〜0.7であればより好ましい。このようなセパレータであれば、充放電時に電極が大きく変形しても、セパレータが電極に対して滑るようになため、円筒型や扁平円筒型の電池に適用した場合であっても、セパレータの折れ等の問題をより好適に防止することができる。また、セパレータが滑りやすいことから、電極とセパレータを重ね合わせて電池に組み込む工程においても巻取りをスムーズに行うことができる等、といった製造上の利点もある。なお、セパレータの静摩擦係数が0.3未満の場合は、滑りが良すぎて端面ずれなどが生じ易く、製造性の問題が発生する場合があるため好ましくない。一方、静摩擦係数が1.0を超える場合、充放電時における電極の体積変化の問題が顕著に現れるようになるため好ましくない。かかる静摩擦係数の調整法は、特に限定されるものではないが、例えば耐熱性多孔質層に無機フィラーやシリコーン樹脂等の滑剤を適宜添加することで調整可能である。   In the present invention, the static friction coefficient of the separator is preferably 0.3 to 1.0, more preferably 0.3 to 0.7. Even if the separator is applied to a cylindrical or flat cylindrical battery, even if the electrode is greatly deformed during charging and discharging, the separator slides against the electrode. Problems such as breakage can be more suitably prevented. In addition, since the separator is slippery, there is an advantage in manufacturing such that winding can be performed smoothly even in the process of stacking the electrode and the separator into the battery. In addition, when the static friction coefficient of a separator is less than 0.3, it is not preferable because slippage is too good and end face deviation is likely to occur, which may cause manufacturability problems. On the other hand, if the coefficient of static friction exceeds 1.0, the problem of electrode volume change during charging / discharging becomes noticeable. The method of adjusting the static friction coefficient is not particularly limited, but can be adjusted by appropriately adding a lubricant such as an inorganic filler or a silicone resin to the heat resistant porous layer, for example.

なお、本発明のセパレータの膜厚は、電池のエネルギー密度や出力特性を良好にする観点で、25μm以下が好ましい。非水系二次電池用セパレータの物性としては、ガーレ値(JIS・P8117)は10〜1000sec/100ccであり、膜抵抗は0.5〜10ohm・cmであり、突き刺し強度は10〜1000gであることが好ましい。 In addition, the film thickness of the separator of the present invention is preferably 25 μm or less from the viewpoint of improving the energy density and output characteristics of the battery. As the physical properties of the separator for non-aqueous secondary batteries, the Gurley value (JIS P8117) is 10 to 1000 sec / 100 cc, the membrane resistance is 0.5 to 10 ohm · cm 2 , and the puncture strength is 10 to 1000 g. It is preferable.

本発明におけるポリオレフィン多孔質基材は、内部に空孔ないし空隙を有する基材であって、例えば微多孔膜、不織布、紙状シート、その他三次元ネットーワーク構造を有するシート等が挙げられる。このうち特に、セパレータの厚み差(L1−L2)を本発明の範囲内に調整し易い点、ハンドリング性および強度の観点から、微多孔膜であることが好ましい。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。   The polyolefin porous substrate in the present invention is a substrate having pores or voids therein, and examples thereof include a microporous film, a nonwoven fabric, a paper sheet, and other sheets having a three-dimensional network structure. Among these, a microporous film is preferable from the viewpoints of easy adjustment of the thickness difference (L1-L2) of the separator within the scope of the present invention, handling properties, and strength. A microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do.

多孔質基材を構成するポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン、ポリメチルペンテン等が挙げられる。中でも良好なシャットダウン機能が得られる点でポリエチレンが好ましく、特に、高密度ポリエチレンや、高密度ポリエチレンと超高分子量ポリエチレンの混合物が好適である。ポリエチレンの分子量は、重量平均分子量が10万〜1000万であることが好適である。また、例えば、ポリエチレン以外に、ポリプロピレン、ポリメチルペンテン等の他のポリオレフィンを混合して用いても良い。   Examples of the polyolefin resin constituting the porous substrate include polyethylene, polypropylene, polymethylpentene, and the like. Among these, polyethylene is preferable in that a good shutdown function can be obtained, and high-density polyethylene or a mixture of high-density polyethylene and ultrahigh molecular weight polyethylene is particularly preferable. As for the molecular weight of polyethylene, it is suitable that the weight average molecular weight is 100,000 to 10,000,000. For example, in addition to polyethylene, other polyolefins such as polypropylene and polymethylpentene may be mixed and used.

本発明におけるポリオレフィン多孔質基材は、前記接触式膜厚計を用いて印加荷重36g/cmで測定した膜厚をL3とし、印加荷重1.2kg/cmで測定した膜厚をL4とした場合に、L3−L4=0.1〜2.0μmとなることが好ましい。より好ましい印加荷重の厚み差(L3−L4)は、0.5〜1.8μmである。このような多孔質基材は、セパレータ全体において比較的変形し難い部分になっているため、セパレータ全体の形状を良好に維持できると共に適切な強度を付与することができ、ハンドリング性が良好なものとなる。なお、印加荷重の厚み差(L3−L4)が0.1μm未満の場合、セパレータ全体の厚み差(L1−L2)を本発明の範囲内に調整し難くなるため好ましくない。一方、印加荷重の厚み差(L3‐L4)が2μmを超える場合、ハンドリング性が低下するため好ましくない。 The polyolefin porous substrate according to the present invention has a film thickness measured at an applied load of 36 g / cm 2 using the contact-type film thickness meter as L3, and a film thickness measured at an applied load of 1.2 kg / cm 2 as L4. In this case, L3−L4 = 0.1 to 2.0 μm is preferable. A more preferable thickness difference (L3−L4) of the applied load is 0.5 to 1.8 μm. Since such a porous substrate is a portion that is relatively difficult to deform in the entire separator, the shape of the entire separator can be maintained satisfactorily and appropriate strength can be imparted, and handling properties are good. It becomes. In addition, since it becomes difficult to adjust the thickness difference (L1-L2) of the whole separator in the range of this invention when the thickness difference (L3-L4) of an applied load is less than 0.1 micrometer, it is unpreferable. On the other hand, when the thickness difference (L3-L4) of the applied load exceeds 2 μm, the handling property is lowered, which is not preferable.

本発明におけるポリオレフィン多孔質基材は、空孔率が30〜70%であり、かつ、BET法で測定した平均孔径が10〜400nmであることが好ましい。かかる範囲であれば、セパレータ全体の厚み差(L1−L2)を本発明の範囲内に調整するのに好適である。なお、多孔質基材の空孔率が30%未満あるいは平均孔径が10nm未満の場合は、膜抵抗が高くなり過ぎ、かつ多孔質基材も変形し難くなり過ぎるため好ましくない。一方、多孔質基材の空孔率が70%を超える場合あるいは平均孔径が400nmを超える場合は、セパレータの熱収縮率が高くなり過ぎるため好ましくない。
なお、本発明におけるポリオレフィン多孔質基材の膜厚は、5〜20μmであることが好ましい。多孔質基材のガーレ値(JIS・P8117)は、10〜500sec/100ccが好ましい。
The polyolefin porous substrate in the present invention preferably has a porosity of 30 to 70% and an average pore diameter measured by the BET method of 10 to 400 nm. If it is this range, it is suitable for adjusting the thickness difference (L1-L2) of the whole separator in the range of the present invention. In addition, when the porosity of the porous substrate is less than 30% or the average pore diameter is less than 10 nm, it is not preferable because the membrane resistance becomes too high and the porous substrate becomes too difficult to deform. On the other hand, when the porosity of the porous substrate exceeds 70% or the average pore diameter exceeds 400 nm, the thermal contraction rate of the separator becomes too high, which is not preferable.
In addition, it is preferable that the film thickness of the polyolefin porous base material in this invention is 5-20 micrometers. The Gurley value (JIS P8117) of the porous substrate is preferably 10 to 500 sec / 100 cc.

本発明における耐熱性多孔質層は、耐熱性樹脂を含んで構成されており、内部に多数の微細孔を有し、かつ、これら微細孔が互いに連結された多孔質構造となっている。かかる耐熱性多孔質層は、塗工法によりポリオレフィン多孔質基材の片面又は両面に直接固着された状態で被覆されていることが好ましい。   The heat-resistant porous layer in the present invention includes a heat-resistant resin, and has a porous structure in which a large number of micropores are connected to each other and these micropores are connected to each other. Such a heat-resistant porous layer is preferably coated in a state of being directly fixed to one or both surfaces of the polyolefin porous substrate by a coating method.

耐熱性樹脂は、融点が200℃以上の樹脂、あるいは、実質的に融点が存在しない樹脂についてはその熱分解温度が200℃以上の樹脂であれば好適に用いることができる。このような耐熱性樹脂としては、例えば全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルイミドおよびセルロースのうちの少なくとも1種が挙げられる。特に、耐久性の観点から全芳香族ポリアミドが好適であり、さらに多孔質層を形成しやすく耐酸化還元性に優れるという観点からメタ型芳香族ポリアミドが好適である。   As the heat resistant resin, a resin having a melting point of 200 ° C. or higher, or a resin having a melting point of 200 ° C. or higher can be suitably used for a resin having substantially no melting point. Examples of such a heat resistant resin include at least one of wholly aromatic polyamide, polyimide, polyamideimide, polysulfone, polyethersulfone, polyketone, polyetherketone, polyetherimide, and cellulose. In particular, wholly aromatic polyamides are preferable from the viewpoint of durability, and meta-type aromatic polyamides are preferable from the viewpoint of easily forming a porous layer and excellent redox resistance.

耐熱性多孔質層は、ハンドリング性、耐久性および熱収縮の抑制効果の観点から、ポリオレフィン多孔質基材の表裏両面に形成された方が好ましい。耐熱性多孔質層の厚みは、耐熱性多孔質層がポリオレフィン多孔質基材の両面に形成されている場合は該耐熱性多孔質層の厚みの合計が3μm以上12μm以下であることが好ましく、耐熱性多孔質層が片面にのみ形成されている場合は3μm以上12μm以下であることが好ましい。   The heat-resistant porous layer is preferably formed on both the front and back surfaces of the polyolefin porous substrate from the viewpoints of handling properties, durability, and the effect of suppressing heat shrinkage. When the heat-resistant porous layer is formed on both surfaces of the polyolefin porous substrate, the total thickness of the heat-resistant porous layer is preferably 3 μm or more and 12 μm or less, When the heat resistant porous layer is formed only on one side, it is preferably 3 μm or more and 12 μm or less.

耐熱性多孔質層は、空孔率が50〜80%であり、かつ、BET法で測定した平均孔径が50〜300nmであることが好ましい。かかる範囲であれば、セパレータ全体の厚み差(L1−L2)を本発明の範囲内に調整するのに好適である。なお、耐熱性多孔質層の空孔率が50%未満あるいは平均孔径が50nm未満の場合は、膜抵抗が高くなり過ぎ、かつセパレータ全体の厚み差(L1−L2)を本発明の範囲内に調整し難くなるため好ましくない。一方、耐熱性多孔質層の空孔率が80%を超える場合あるいは平均孔径が300nmを超える場合は、セパレータの熱収縮率が高くなり過ぎるため好ましくない。   The heat-resistant porous layer preferably has a porosity of 50 to 80% and an average pore diameter measured by the BET method of 50 to 300 nm. If it is this range, it is suitable for adjusting the thickness difference (L1-L2) of the whole separator in the range of the present invention. When the porosity of the heat-resistant porous layer is less than 50% or the average pore diameter is less than 50 nm, the membrane resistance becomes too high, and the thickness difference (L1-L2) of the entire separator is within the scope of the present invention. Since it becomes difficult to adjust, it is not preferable. On the other hand, when the porosity of the heat resistant porous layer exceeds 80% or the average pore diameter exceeds 300 nm, the thermal contraction rate of the separator becomes too high, which is not preferable.

本発明において、耐熱性多孔質層は無機フィラーを含有していることが好ましい。無機フィラーを適切に添加することで、シャットダウン特性を向上させたり、ポリオレフィンの融点を超える高温領域でのセパレータの熱収縮を抑制したり、膜抵抗を低減させたり、摩擦係数を低減させたりすることができる。無機フィラーの材質としては、アルミナ、ジルコニア、イットリア、セリア、マグネシア、チタニア、シリカなどの金属酸化物、炭化アルミニウム、炭化チタン、炭化タングステン等の金属炭化物、窒化ホウ素、窒化アルミニウム等の金属窒化物、炭酸カルシウム、硫酸バリウムなどの塩の類、水酸化アルミニウム、ベーマイト、水酸化マグネシウム等の金属水酸化物等、もしくはこれらの2種以上の組合せが挙げられる。また、これらは多孔質形状であっても良く、非晶または結晶どちらでも良い。中でも、高温下におけるセパレータの熱収縮の抑制の観点から、金属水酸化物および金属酸化物のうち少なくとも1種からなることが好ましい。特に、水酸化アルミニウムやベーマイト等の金属水酸化物は、アルミナ等の金属酸化物に比べて柔らかく、セパレータの製造装置あるいは電池の製造装置を傷つけることがないため好ましい。   In the present invention, the heat-resistant porous layer preferably contains an inorganic filler. Appropriately adding an inorganic filler improves the shutdown characteristics, suppresses thermal contraction of the separator in the high temperature range exceeding the melting point of polyolefin, reduces film resistance, and reduces the friction coefficient Can do. As the material of the inorganic filler, metal oxides such as alumina, zirconia, yttria, ceria, magnesia, titania and silica, metal carbides such as aluminum carbide, titanium carbide and tungsten carbide, metal nitrides such as boron nitride and aluminum nitride, Examples thereof include salts such as calcium carbonate and barium sulfate, metal hydroxides such as aluminum hydroxide, boehmite and magnesium hydroxide, or combinations of two or more thereof. Moreover, these may have a porous shape, and may be either amorphous or crystalline. Especially, it is preferable to consist of at least 1 sort (s) among a metal hydroxide and a metal oxide from a viewpoint of suppression of the thermal contraction of the separator under high temperature. In particular, metal hydroxides such as aluminum hydroxide and boehmite are preferable because they are softer than metal oxides such as alumina and do not damage the separator manufacturing apparatus or the battery manufacturing apparatus.

本発明では無機フィラーの含有量が耐熱性樹脂の体積に対し0.4〜4倍であることが好ましい。無機フィラーの含有量が0.4倍より低いと、すべり性の向上効果が得られ難く、高温における寸法安定性といった耐熱性にかかわる特性等も不十分となる場合がある。また、無機フィラーの含有量が4倍を超えると、耐熱性多孔質層が緻密化されすぎ、セパレータ全体の厚み差(L1−L2)を本発明の範囲内に調整し難くなるため好ましくない。   In the present invention, the content of the inorganic filler is preferably 0.4 to 4 times the volume of the heat resistant resin. When the content of the inorganic filler is lower than 0.4 times, it is difficult to obtain the effect of improving the slipperiness, and the characteristics related to heat resistance such as dimensional stability at high temperatures may be insufficient. On the other hand, when the content of the inorganic filler exceeds 4 times, the heat-resistant porous layer is excessively densified, and it is difficult to adjust the thickness difference (L1-L2) of the entire separator within the range of the present invention.

本発明では無機フィラーの平均粒子径は0.1〜1μmの範囲が好ましい。無機フィラーの平均粒子径が1μmを超えると、耐熱性多孔質層を適切な厚みで成形することが困難になる上、セパレータ全体の厚み差(L1−L2)を本発明の範囲内に調整し難くなるため好ましくない。また、無機フィラーの平均粒子径が0.1μmより小さくなるとすべり性向上の効果が得られ難いため好ましくない。   In the present invention, the average particle size of the inorganic filler is preferably in the range of 0.1 to 1 μm. When the average particle diameter of the inorganic filler exceeds 1 μm, it becomes difficult to form the heat-resistant porous layer with an appropriate thickness, and the thickness difference (L1-L2) of the entire separator is adjusted within the range of the present invention. Since it becomes difficult, it is not preferable. Moreover, when the average particle diameter of an inorganic filler becomes smaller than 0.1 micrometer, since the effect of a slip improvement is hard to be acquired, it is unpreferable.

[ポリオレフィン微多孔膜の製造方法]
本発明における多孔質基材として使用可能なポリオレフィン微多孔膜は、例えば下記に示す方法で製造できる。すなわち、(I)ポリオレフィン組成物をパラフィン、流動パラフィン、パラフィン油、鉱油、ひまし油、テトラリン、エチレングリコール、グリセリン、デカリン、トルエン、キシレン、ジエチルトリアミン、エチルジアミン、ジメチルスルホキシド、ヘキサン等の溶剤に溶解させた溶液を調整する工程、(II)前記溶液をポリオレフィン組成物の融点以上かつ融点+60℃以下の温度でダイより押出し、冷却してゲル状組成物を形成する工程、(III)前記ゲル状組成物を延伸する工程、(IV)延伸されたゲル状組成物を熱固定する工程、(V)前記溶剤を除去する工程、(VI)アニールする工程を含む一連の工程により製造される。
ここで、延伸工程は二軸延伸が好ましく、縦延伸、横延伸を別々に実施する逐次二軸延伸、縦延伸、横延伸を同時に実施する同時二軸延伸いずれの方法も好適に用いることが可能である。
[Production method of polyolefin microporous membrane]
The polyolefin microporous membrane that can be used as the porous substrate in the present invention can be produced, for example, by the method shown below. That is, (I) a polyolefin composition is dissolved in a solvent such as paraffin, liquid paraffin, paraffin oil, mineral oil, castor oil, tetralin, ethylene glycol, glycerin, decalin, toluene, xylene, diethyltriamine, ethyldiamine, dimethylsulfoxide, hexane, etc. A step of preparing a solution, (II) a step of extruding the solution from a die at a temperature not lower than the melting point of the polyolefin composition and not higher than a melting point + 60 ° C., and cooling to form a gel-like composition, (III) the gel-like composition It is manufactured by a series of steps including a step of stretching a product, (IV) a step of heat-setting the stretched gel-like composition, (V) a step of removing the solvent, and (VI) a step of annealing.
Here, the stretching step is preferably biaxial stretching, and any method of sequential biaxial stretching, longitudinal stretching, and lateral stretching simultaneously performing longitudinal stretching and transverse stretching separately can be suitably used. It is.

本発明で用いるポリオレフィン微多孔膜は、例えば、該溶剤に流動パラフィンとデカリンからなる混合溶剤を用い、ポリオレフィン組成物の濃度を15〜35重量%とし、延伸倍率を50〜100倍(縦延伸倍率×横延伸倍率)とし、熱固定温度を110〜140℃とし、アニール温度を熱固定温度以下の温度とすることで得ることができるが、これに限定されるものではない。   The polyolefin microporous membrane used in the present invention is, for example, a mixed solvent composed of liquid paraffin and decalin as the solvent, the concentration of the polyolefin composition is 15 to 35% by weight, and the stretch ratio is 50 to 100 times (longitudinal stretch ratio). X transverse stretching ratio), a heat setting temperature of 110 to 140 ° C., and an annealing temperature not higher than the heat setting temperature, but is not limited thereto.

なお、ポリオレフィン組成物の濃度を低くしたり、延伸倍率を大きくすると、平均孔径が大きくなる傾向がある。また、ポリオレフィン組成物の濃度を高くしたり、延伸倍率を低くしたりすると、平均孔径が小さくなったりする傾向がある。また、熱固定温度を高くすると、平均孔径が大きくなることがあり、逆に熱固定温度を低くすると平均孔径が小さくなり過ぎることがある。アニール温度を熱固定温度より高くしたり、アニール時に大きく変形させるようなことがあると、平均孔径が大きくなったりすることがある。ポリオレフィン組成物の濃度を35重量%以上としたり、熱固定温度を140℃より高くしたり、アニールを熱固定温度より高い温度で実施したりすると、空孔率が低くなり過ぎることがある。また、アニール時に大きな変形を伴うことがあっても、、空孔率が低くなり過ぎることがある。ポリオレフィン組成物の濃度を15重量%より低くすると、空孔率が高くなり過ぎることがある。   In addition, when the density | concentration of a polyolefin composition is made low or a draw ratio is enlarged, there exists a tendency for an average hole diameter to become large. Moreover, when the density | concentration of polyolefin composition is made high or a draw ratio is made low, there exists a tendency for an average hole diameter to become small. Further, when the heat setting temperature is increased, the average pore diameter may be increased. Conversely, when the heat setting temperature is decreased, the average hole diameter may be excessively decreased. If the annealing temperature is set higher than the heat setting temperature, or if the annealing temperature is greatly deformed during annealing, the average pore diameter may be increased. If the concentration of the polyolefin composition is 35% by weight or more, the heat setting temperature is higher than 140 ° C., or the annealing is performed at a temperature higher than the heat setting temperature, the porosity may be too low. Further, even if there is a large deformation during annealing, the porosity may be too low. If the concentration of the polyolefin composition is lower than 15% by weight, the porosity may become too high.

[非水系二次電池用セパレータの製造方法]
本発明の非水系二次電池用セパレータの製造方法は特に限定されないが、例えば、以下の(i)〜(iv)の工程を含む製造方法により製造可能である。すなわち、(i)耐熱性樹脂および水溶性有機溶剤を含む塗工用スラリーを作製する工程と、(ii)得られた塗工用スラリーをポリオレフィン多孔質基材の片面又は両面に塗工する工程と、(iii)塗工されたスラリー中の耐熱性樹脂を凝固させる工程と、(iv)この凝固工程後のシートを水洗および乾燥する工程と、を実施することからなる製造方法である。
[Method for producing separator for non-aqueous secondary battery]
Although the manufacturing method of the separator for non-aqueous secondary batteries of this invention is not specifically limited, For example, it can manufacture with the manufacturing method containing the process of the following (i)-(iv). That is, (i) a step of producing a slurry for coating containing a heat-resistant resin and a water-soluble organic solvent, and (ii) a step of coating the obtained coating slurry on one or both sides of a polyolefin porous substrate. And (iii) a step of coagulating the heat-resistant resin in the coated slurry, and (iv) a step of washing and drying the sheet after the coagulation step.

前記工程(i)において、水溶性有機溶剤としては、耐熱性樹脂に対して良溶媒である溶剤であれば特に限定されないが、具体的には例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶剤を使用することができる。また、スラリー中には、さらに耐熱性樹脂に対して貧溶媒となる溶剤も、一部混合して用いることもできる。このような貧溶媒を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶媒としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。なお、耐熱性多孔質層中に無機フィラーを含ませる態様のセパレータを得るためには、当該スラリー中にさらに無機フィラーを適量混合させればよい。スラリー中における耐熱性樹脂の濃度は4〜9重量%であることが好ましい。   In the step (i), the water-soluble organic solvent is not particularly limited as long as it is a good solvent for the heat-resistant resin, and specifically, for example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl Polar solvents such as sulfoxide can be used. Further, in the slurry, a solvent that becomes a poor solvent for the heat-resistant resin can be partially mixed and used. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred. In addition, in order to obtain the separator of the aspect which includes an inorganic filler in a heat resistant porous layer, what is necessary is just to mix an appropriate amount of inorganic fillers in the said slurry. The concentration of the heat resistant resin in the slurry is preferably 4 to 9% by weight.

工程(ii)において、ポリオレフィン多孔質基材へのスラリーの塗工量は2〜3g/m程度が好ましい。塗工方法は、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。中でも、塗膜を均一に塗布するという観点において、リバースロールコーター法が好適である。また、塗工時のスラリー温度を調整することで耐熱多孔質層を安定に得ることが出来る。ここでスラリー温度は特に限定されるものではないが、5℃〜40℃の範囲が好ましい。 In step (ii), the amount of slurry applied to the polyolefin porous substrate is preferably about 2 to 3 g / m 2 . Examples of the coating method include a knife coater method, a gravure coater method, a screen printing method, a Meyer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method. Among them, the reverse roll coater method is preferable from the viewpoint of uniformly applying the coating film. Moreover, a heat resistant porous layer can be stably obtained by adjusting the slurry temperature at the time of coating. Here, the slurry temperature is not particularly limited, but a range of 5 ° C to 40 ° C is preferable.

工程(iii)において、スラリー中の耐熱性樹脂を凝固させる方法としては、塗工後のポリオレフィン多孔質基材に対して凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に当該基材を浸漬する方法などが挙げられる。凝固液は、耐熱性樹脂を凝固できるものであれば特に限定されないが、水、又はスラリーに用いた良溶媒に水を適当量含ませた混合液が好ましい。ここで、水の混合量は凝固液に対して40〜80重量%が好適である。また、凝固液の温度と上記工程(ii)におけるスラリー温度との差が小さいことが好ましく、例えば温度差は30℃以内であれば好適である。更に、これら凝固浴に浸漬した後、直ちに第2凝固浴に浸漬する方法も、本発明のセパレータにおける膜厚差(L1−L2)を得る上で望ましい。この第2凝固浴は水、又はスラリーに用いた良溶媒に水を適当量含ませた混合液が好ましい。ここで、水の混合量は凝固液に対して40重量%以上が好適である。   In step (iii), the heat-resistant resin in the slurry can be coagulated by spraying a coagulating liquid on the polyolefin porous substrate after coating, or a bath containing the coagulating liquid (coagulating bath). For example, a method of immersing the base material therein. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a mixed liquid in which an appropriate amount of water is contained in a good solvent used in the slurry is preferable. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid. Further, it is preferable that the difference between the temperature of the coagulation liquid and the slurry temperature in the step (ii) is small. For example, the temperature difference is preferably within 30 ° C. Further, a method of immersing in these coagulation baths and then immediately immersing in the second coagulation bath is also desirable for obtaining the film thickness difference (L1-L2) in the separator of the present invention. The second coagulation bath is preferably water or a mixed solution in which an appropriate amount of water is contained in the good solvent used for the slurry. Here, the mixing amount of water is preferably 40% by weight or more with respect to the coagulating liquid.

工程(iv)において、乾燥方法は特に限定されないが、乾燥温度は50〜80℃が適当である。高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。   In the step (iv), the drying method is not particularly limited, but the drying temperature is suitably 50 to 80 ° C. In the case of applying a high drying temperature, it is preferable to apply a method of contacting the roll in order to prevent dimensional change due to heat shrinkage.

[非水系二次電池]
本発明の非水系二次電池は、リチウムのドープおよび脱ドープにより起電力を得る非水系二次電池であって、正極集電体および正極活物質層を有する正極と、負極集電体および負極活物質層を有する負極と、これらの電極間に配置された上記の本発明セパレータと、非水電解質とを備えて構成されたことを特徴とする非水系二次電池である。かかる本発明の非水系二次電池は、高温時における安全性や耐久性に優れ、サイクル特性等にも優れている。
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery that obtains an electromotive force by doping and dedoping lithium, and includes a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode current collector, and a negative electrode A non-aqueous secondary battery comprising: a negative electrode having an active material layer; the separator of the present invention disposed between these electrodes; and a non-aqueous electrolyte. Such a non-aqueous secondary battery of the present invention is excellent in safety and durability at high temperatures, and is excellent in cycle characteristics and the like.

本発明において、正極活物質は、リチウムを脱ドープする過程における体積変化率が1%以上であることが好ましい。かかる正極活物質としては、例えばLiMn、LiCoO、LiNiO、LiCo0.5Ni0.5、LiAl0.25Ni0.75、あるいはこれらの二種以上を組み合わせたもの等を挙げることができる。なお、正極活物質の体積変化率が1%未満の場合、電池の放電容量が小さなものとなり、かつ、本発明のセパレータの利点が活かされないため好ましくない。 In the present invention, the positive electrode active material preferably has a volume change rate of 1% or more in the process of dedoping lithium. Examples of the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiCo 0.5 Ni 0.5 O 2 , LiAl 0.25 Ni 0.75 O 2 , or a combination of two or more of these. The thing etc. can be mentioned. In addition, when the volume change rate of a positive electrode active material is less than 1%, since the discharge capacity of a battery becomes small and the advantage of the separator of this invention is not utilized, it is unpreferable.

かかる正極活物質は、正極集電体上に積層された正極層中に存在している。当該正極層は正極活物質、バインダーおよび導電助剤を含んだ構成とすることができる。このような正極層は、正極活物質、バインダー、導電助剤および溶剤を混練してスラリーを作製し、これを正極集電体上へ塗工し、乾燥・プレスすることで作製することができる。この場合、正極活物質、バインダーおよび導電助剤の合計重量を100%としたとき、正極活物質の重量は80〜98重量%、バインダーは2〜20重量%、導電助剤は0〜10重量%の範囲が好適である。バインダーとしては、ポリフッ化ビニリデンが好適に用いられる。導電助剤は、黒鉛粉末、アセチレンブラック、ケッチェンブラック、気相成長カーボンファイバー等が好適に用いられる。集電体にはアルミ箔、ステンレススチール等が好適である。   Such a positive electrode active material exists in the positive electrode layer laminated on the positive electrode current collector. The positive electrode layer can include a positive electrode active material, a binder, and a conductive auxiliary. Such a positive electrode layer can be prepared by kneading a positive electrode active material, a binder, a conductive additive, and a solvent to prepare a slurry, coating this on a positive electrode current collector, drying and pressing. . In this case, when the total weight of the positive electrode active material, the binder and the conductive auxiliary is 100%, the positive electrode active material has a weight of 80 to 98% by weight, the binder has a weight of 2 to 20%, and the conductive auxiliary has a weight of 0 to 10%. % Range is preferred. As the binder, polyvinylidene fluoride is preferably used. As the conductive additive, graphite powder, acetylene black, ketjen black, vapor grown carbon fiber, and the like are preferably used. For the current collector, aluminum foil, stainless steel or the like is suitable.

本発明において、負極活物質は、リチウムをドープする過程における体積変化率が3%以上であることが好ましい。かかる負極活物質としては、例えばSn、SnSb、AgSn、人造黒鉛、グラファイト、Si、SiO、Vあるいはこれらの二種以上を組み合わせたもの等を挙げることができる。なお、負極活物質の体積変化率が3%未満の場合には、電池の放電容量が小さなものとなり、かつ、本発明セパレータの利点が活かされないため好ましくない。 In the present invention, the negative electrode active material preferably has a volume change rate of 3% or more in the process of doping lithium. Examples of the negative electrode active material include Sn, SnSb, Ag 3 Sn, artificial graphite, graphite, Si, SiO, V 5 O 4, or combinations of two or more thereof. In addition, when the volume change rate of a negative electrode active material is less than 3%, since the discharge capacity of a battery becomes small and the advantage of this invention separator is not utilized, it is unpreferable.

かかる負極活物質は、負極集電体上に積層された負極層中に存在している。当該負極層は負極活物質、バインダーおよび導電助剤を含んだ構成とすることができる。このような負極層は、負極活物質、バインダー、導電助剤および溶剤を混練してスラリーを作製し、これを負極集電体上へ塗工し、乾燥・プレスすることで作製することができる。この場合、負極活物質、バインダーおよび導電助剤の合計重量を100%としたとき、負極活物質の重量は80〜98重量%、バインダーは2〜20重量%、導電助剤は0〜10重量%の範囲が好適である。バインダーとしては、ポリフッ化ビニリデンやカルボキシメチルセルロース等が挙げられる。導電助剤は黒鉛粉末、アセチレンブラック、ケッチェンブラック、気相成長カーボンファイバー等が好適に用いられる。集電体には銅箔、ステンレススチール等が好適である。   Such a negative electrode active material is present in the negative electrode layer laminated on the negative electrode current collector. The negative electrode layer can include a negative electrode active material, a binder, and a conductive additive. Such a negative electrode layer can be prepared by kneading a negative electrode active material, a binder, a conductive additive, and a solvent to prepare a slurry, coating this on a negative electrode current collector, drying and pressing. . In this case, when the total weight of the negative electrode active material, the binder, and the conductive auxiliary agent is 100%, the negative electrode active material weight is 80 to 98% by weight, the binder is 2 to 20% by weight, and the conductive auxiliary agent is 0 to 10% by weight. % Range is preferred. Examples of the binder include polyvinylidene fluoride and carboxymethyl cellulose. As the conductive additive, graphite powder, acetylene black, ketjen black, vapor grown carbon fiber, and the like are preferably used. The current collector is preferably copper foil, stainless steel, or the like.

電解液は、リチウム塩を非水系溶媒に溶解させた非水系電解液が用いられる。リチウム塩としては、LiPF、LiBF、LiClO等が好適に用いられる。非水系溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等が挙げられる。これらリチウム塩及び非水系溶媒は単独で用いても2種類以上混合して用いても構わない。リチウム塩の濃度は0.5〜2.0Mの範囲が好適である。また、電解液にビニレンカーボネートを添加した方が耐久性の観点から好適である。 As the electrolytic solution, a non-aqueous electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent is used. As the lithium salt, LiPF 6 , LiBF 4 , LiClO 4 and the like are preferably used. Examples of the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). These lithium salts and non-aqueous solvents may be used alone or in combination of two or more. The concentration of the lithium salt is preferably in the range of 0.5 to 2.0M. In addition, it is preferable from the viewpoint of durability that vinylene carbonate is added to the electrolytic solution.

本発明の非水系二次電池において、上記正極、負極、セパレータからなる電池エレメントは円筒状または扁平状に捲回したり、積層構造としたりして外装中に封入される。外装は金属ケース、アルミラミネートフィルムケース等の如何なる形態においても適用可能である。   In the non-aqueous secondary battery of the present invention, the battery element composed of the positive electrode, the negative electrode, and the separator is wound in a cylindrical shape or a flat shape, or is laminated in a package structure. The exterior can be applied in any form such as a metal case or an aluminum laminated film case.

本発明の実施例および比較例における各種物性の測定方法は次の通りである。
[膜厚並びに膜厚差(L1−L2)の測定]
サンプルとなるセパレータを、長さ方向に15cm、幅方向に50cmのサイズで採取した。このサンプルについて、接触式の膜厚計を用いて任意の20点について測定した。膜厚計は、接触式の膜厚計(ミツトヨ社製)、接触端子底面が直径0.5cmの円柱状のものを用いた。測定においては、先ず、印加荷重36g/cmで20点測定し、これらの平均値L1を求めた。この際、測定箇所にはマーカーにて印を付しておいた。次いで、先ほど印を付した20点について、印加荷重1.2kg/cmで膜厚を測定し、これらの平均値L2を求めた。そして、L1とL2との差である膜厚差(L1−L2)を求めた。なお、ポリオレフィン多孔質基材の膜厚差(L3−L4)についても上記と同様にして求め、この場合、上記のL1をL3と読み替え、上記のL2をL4と読み替えればよい。また、本発明の「膜厚」で特に指定のない場合は、荷重36g/cmの時の数値を用いた。
The measuring methods of various physical properties in the examples and comparative examples of the present invention are as follows.
[Measurement of film thickness and film thickness difference (L1-L2)]
A separator as a sample was collected in a size of 15 cm in the length direction and 50 cm in the width direction. About this sample, it measured about arbitrary 20 points | pieces using the contact-type film thickness meter. As the film thickness meter, a contact-type film thickness meter (manufactured by Mitutoyo Corporation), a cylindrical one having a contact terminal bottom of 0.5 cm in diameter was used. In the measurement, first, 20 points were measured with an applied load of 36 g / cm 2 , and an average value L1 was obtained. At this time, the measurement location was marked with a marker. Next, the film thickness was measured at an applied load of 1.2 kg / cm 2 at 20 points marked earlier, and an average value L2 was obtained. And the film thickness difference (L1-L2) which is the difference of L1 and L2 was calculated | required. Note that the film thickness difference (L3-L4) of the polyolefin porous substrate is obtained in the same manner as described above. In this case, the above L1 may be read as L3 and the above L2 may be read as L4. Further, when there is no specific designation in the “film thickness” of the present invention, a numerical value at a load of 36 g / cm 2 was used.

[空孔率]
構成材料がa、b、c…、nからなり、構成材料の重量がWa、Wb、Wc…、Wn(g・cm)であり、それぞれの真密度がda、db、dc…、dn(g/cm)で、着目する層の膜厚をt(cm)としたとき、空孔率ε(%)は下記式(1)より求めた。
ε={1−(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100 …(1)
なお、荷重下空孔率は材料に荷重を掛けて測定した際の空孔率を示す。また、単に空孔率と称する場合は荷重36g/cmの時の空孔率を示す。
[Porosity]
The constituent materials are a, b, c..., N, and the weights of the constituent materials are Wa, Wb, Wc..., Wn (g · cm 2 ), and their true densities are da, db, dc. g / cm 3 ), where the thickness of the layer of interest is t (cm), the porosity ε (%) was obtained from the following formula (1).
ε = {1− (Wa / da + Wb / db + Wc / dc +... + Wn / dn) / t} × 100 (1)
In addition, the porosity under load shows the porosity at the time of measuring by applying a load to material. In addition, when simply referred to as porosity, the porosity at a load of 36 g / cm 2 is shown.

[耐熱性多孔質層の孔径]
まず、サンプルとなるセパレータ、基材、フィラーのそれぞれの窒素ガス吸着量を、JIS Z 8830に準じた窒素ガス吸着法によって求めた。測定は、NOVA−1200(ユアサアイオニクス社製)を用い、3点法にて行った。そして、得られた窒素ガス吸着量から、下記式(2)に基づいて各セパレータ、基材、フィラーの比表面積を求めた。
1/[W・{(P/P)−1}]={(C−1)/(Wm・C)}(P/P)(1/(Wm・C) …(2)
ここで、Pは吸着平衡における吸着質の気体の圧力、Pは吸着平衡における吸着質の飽和蒸気圧、Wは吸着平衡圧Pにおける吸着量、Wmは単分子吸着量、CはBET定数である。
そして、サンプル中の細孔の構造が全て円柱状であると仮定し、細孔容積と表面積の測定結果から平均孔径を算出した。具体的に、セパレータの比表面積をSt、基材の比表面積をSs、無機フィラーの比表面積をSfとし、この比表面積にサンプルを構成する重量をかけることでサンプル中の構成材料の表面積を求めることができる。すなわち、耐熱性樹脂の重量をWa、無機フィラーの重量をWf、基材のポリオレフィン微多孔膜の重量をWsとすると、耐熱性樹脂の表面積はSt・(Wa+Wf+Ws)−(Ss・Ws+Sf・Wf)、基材のポリオレフィン微多孔膜の表面積は、Ss・Wsとなる。
全細孔容積をVt2、円柱状細孔の直径をRt2、円柱状細孔の全長をLt2とすると、以下の(3)〜(5)の式が成立する。
St・(Wa+Wf+Ws)−Ss・Ws=π・Rt2・Lt2 … (3)
Vt2=π(Rt2/2)・Lt2 … (4)
Vt2=ε・(Wa/da+Wf/df+Vt2) … (5)
ここで、Wfは無機フィラーの重量、dfは無機フィラーの密度である。上記(3)〜(5)の式から、耐熱性多孔質層中の細孔の平均孔径Rt2を求めた。なお、不織布に耐熱多孔質層を積層したものについても同様の方法で平均孔径を求めることができる。
[Pore diameter of heat-resistant porous layer]
First, the nitrogen gas adsorption amount of each of the separator, the base material, and the filler as a sample was determined by a nitrogen gas adsorption method according to JIS Z 8830. The measurement was performed by a three-point method using NOVA-1200 (manufactured by Yuasa Ionics). And the specific surface area of each separator, a base material, and a filler was calculated | required from the obtained nitrogen gas adsorption amount based on following formula (2).
1 / [W · {(P 0 / P) −1}] = {(C−1) / (Wm · C)} (P / P 0 ) (1 / (Wm · C) (2)
Here, P is the gas pressure of the adsorbate in the adsorption equilibrium, P 0 is the saturated vapor pressure of the adsorbate in the adsorption equilibrium, W is the adsorption amount at the adsorption equilibrium pressure P, Wm is the single molecule adsorption amount, and C is the BET constant. is there.
Then, assuming that the pore structure in the sample was all cylindrical, the average pore diameter was calculated from the measurement results of the pore volume and surface area. Specifically, the specific surface area of the separator is St, the specific surface area of the substrate is Ss, the specific surface area of the inorganic filler is Sf, and the surface area of the constituent material in the sample is obtained by multiplying the specific surface area by the weight constituting the sample. be able to. That is, when the weight of the heat resistant resin is Wa, the weight of the inorganic filler is Wf, and the weight of the polyolefin microporous film of the substrate is Ws, the surface area of the heat resistant resin is St · (Wa + Wf + Ws) − (Ss · Ws + Sf · Wf). The surface area of the polyolefin microporous membrane of the substrate is Ss · Ws.
When the total pore volume is Vt2, the diameter of the cylindrical pore is Rt2, and the total length of the cylindrical pore is Lt2, the following equations (3) to (5) are established.
St · (Wa + Wf + Ws) −Ss · Ws = π · Rt2 · Lt2 (3)
Vt2 = π (Rt2 / 2) 2 · Lt2 (4)
Vt2 = ε · (Wa / da + Wf / df + Vt2) (5)
Here, Wf is the weight of the inorganic filler, and df is the density of the inorganic filler. From the formulas (3) to (5), the average pore diameter Rt2 of the pores in the heat resistant porous layer was determined. Note that the average pore diameter can be determined by the same method for the nonwoven fabric laminated with the heat resistant porous layer.

[ポリオレフィン微多孔膜の孔径]
基材のポリオレフィン微多孔膜がフィブリル状繊維質から構成され、細孔が円柱状の孔であると仮定する。フィブリル繊維質の全体積をVs1、全細孔体積をVs2とする。フィブリルの直径をRs1とし、円柱状孔の直径をRs2とし、フィブリル全長をLs1とし、円柱状孔全長をLs2とすると、以下の(6)〜(10)の式が成立する。
Ss・Ws=π・Rs1・Ls1=π・Rs2・Ls2 … (6)
Vs1=π・(Rs1/2)・Ls1 … (7)
Vs2=π・(Rs/2)・Ls2 …(8)
Vs2=ε・(Vs1+Vs2) … (9)
Vs1=Ws/ds … (10)
ここで、εは空孔率、dsはポリオレフィンの比重である。上記(6)〜(10)の式から基材のポリオレフィン微多孔膜の細孔の平均孔径Rs2を求めた。なお、不織布についても同様に平均孔径を求めることができる。
[Porosity of polyolefin microporous membrane]
It is assumed that the polyolefin microporous membrane of the substrate is composed of fibrillar fibers and the pores are cylindrical pores. The total volume of fibril fiber is Vs1, and the total pore volume is Vs2. When the diameter of the fibril is Rs1, the diameter of the cylindrical hole is Rs2, the total length of the fibril is Ls1, and the total length of the cylindrical hole is Ls2, the following equations (6) to (10) are established.
Ss · Ws = π · Rs1 · Ls1 = π · Rs2 · Ls2 (6)
Vs1 = π · (Rs1 / 2) 2 · Ls1 (7)
Vs2 = π · (Rs / 2) 2 · Ls2 (8)
Vs2 = ε · (Vs1 + Vs2) (9)
Vs1 = Ws / ds (10)
Here, ε is the porosity, and ds is the specific gravity of the polyolefin. From the above formulas (6) to (10), the average pore diameter Rs2 of the pores of the polyolefin microporous membrane of the substrate was determined. It should be noted that the average pore diameter can be similarly determined for the nonwoven fabric.

[無機フィラーの平均粒子径]
レーザー回折式粒度分布測定装置(シスメックス社製、マスターサイザー2000)を用いて測定を行った。分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X−100」を微量用いた。体積粒度分布における中心粒子径(D50)を平均粒子径とした。
[Average particle size of inorganic filler]
Measurement was performed using a laser diffraction particle size distribution analyzer (manufactured by Sysmex Corporation, Mastersizer 2000). Water was used as a dispersion medium, and a small amount of nonionic surfactant “Triton X-100” was used as a dispersant. The central particle size (D50) in the volume particle size distribution was taken as the average particle size.

[耐熱性多孔質層の塗工量]
耐熱性多孔質層を塗工したセパレータとこれに用いたポリエチレン微多孔膜の目付を測定し、これらの差から耐熱性多孔質層の塗工量を求めた。なお、目付は、サンプルを10cm×10cmに切り出して、この重量を測定し、これを1m当たりの重量に変換することで求めた。
[Coating amount of heat-resistant porous layer]
The basis weight of the separator coated with the heat resistant porous layer and the polyethylene microporous film used therefor was measured, and the coating amount of the heat resistant porous layer was determined from the difference between them. The basis weight was obtained by cutting a sample into 10 cm × 10 cm, measuring this weight, and converting this to a weight per 1 m 2 .

[ガーレ値]
ガーレ値(秒/100cc)はJIS P8117に従い測定した。
[Gurley value]
The Gurley value (second / 100 cc) was measured according to JIS P8117.

[実施例1]
(1)ポリエチレン微多孔膜の作製
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィンとデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却して、60℃で8分、95℃で15分乾燥し、ゲル状テープ(ベーステープ)を作製した。該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。このポリエチレン微多孔膜の物性は、膜厚L3は10.3μm、印加荷重1.2kg/cmで測定した膜厚L4は9.5μm、膜厚差(L3−L4)は0.8μm、空孔率50%、ガーレ値268秒/100cc、膜抵抗2.641ohm・cm、突刺強度443g、BET法により測定した平均孔径は42.1nmであった。
[Example 1]
(1) Production of polyethylene microporous membrane Ticona's GUR2126 (weight average molecular weight 4150,000, melting point 141 ° C) and GURX143 (weight average molecular weight 560,000, melting point 135 ° C) were used as polyethylene powder. A polyethylene solution was prepared by dissolving GUR2126 and GURX143 in a mixed solvent of liquid paraffin and decalin such that the polyethylene concentration was 30% by weight so that the ratio was 1: 9 (weight ratio). The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio). This polyethylene solution was extruded from a die at 148 ° C., cooled in a water bath, and dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes to produce a gel tape (base tape). The base tape was stretched by biaxial stretching, which was sequentially performed with longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The physical properties of this polyethylene microporous film are as follows: film thickness L3 is 10.3 μm, film thickness L4 measured at an applied load of 1.2 kg / cm 2 is 9.5 μm, film thickness difference (L3−L4) is 0.8 μm, empty The porosity was 50%, the Gurley value was 268 seconds / 100 cc, the membrane resistance was 2.641 ohm · cm 2 , the puncture strength was 443 g, and the average pore diameter measured by the BET method was 42.1 nm.

(2)セパレータの作製
メタ型全芳香族ポリアミドとしてポリメタフェニレンイソフタルアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)を用いた。無機微粒子として平均粒子径0.8μmの水酸化アルミニウム(昭和電工製;H‐43M)を用いた。
コーネックスと水酸化アルミニウムが重量比で23:77(体積比は34:66)となるように調整し、これらをコーネックスが5.5重量%となるようにジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比で50:50となっている混合溶媒に混合し塗工液を作製した。
マイヤーバー(番手6)を2本対峙させ、マイヤーバー間のクリアランスを30μmに調整し、これらマイヤーバーの両側から20℃に調整した該塗工液を供給し、マイヤーバー間にあるポリエチレン微多孔膜を引っ張りながら通過させることでポリエチレン微多孔膜の表裏両面に該塗工液を塗工した。
これを重量比で水:該混合溶媒=50:50で40℃となっている凝固液中に浸漬し、次いで水:該混合溶媒=90:10に調整した第2凝固浴に浸漬し、次いで水洗・乾燥を行い、コーネックスと水酸化アルミニウムからなる耐熱性多孔質層をポリエチレン微多孔膜の表裏両面に形成した。
上記のような手法で作製した本発明の非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が18.2μm、印加荷重1.2kg/cmで測定した膜厚L2が15.9μm、膜厚差(L1−L2)は2.3μm、塗工量は6.08g/m、ガーレ値は380秒/100ccであった。また、耐熱性多孔質層の厚み7.9μm、塗工量は6.08g/m、空孔率65%、BET法平均孔径151nmであった。なお、これらの物性を表1に示した。また、以下に説明する実施例2〜3、参考例1および比較例1〜4についても同様に表1にまとめて示した。
(2) Production of Separator Conex (registered trademark; manufactured by Teijin Techno Products), which is polymetaphenylene isophthalamide, was used as a meta-type wholly aromatic polyamide. Aluminum hydroxide (manufactured by Showa Denko; H-43M) having an average particle diameter of 0.8 μm was used as the inorganic fine particles.
Conex and aluminum hydroxide were adjusted so that the weight ratio was 23:77 (volume ratio was 34:66), and these were adjusted so that Conex was 5.5% by weight, dimethylacetamide (DMAc) and tripropylene. Glycol (TPG) was mixed with a mixed solvent having a weight ratio of 50:50 to prepare a coating solution.
Two Meyer bars (counter 6) face each other, the clearance between the Mayer bars is adjusted to 30 μm, and the coating liquid adjusted to 20 ° C. is supplied from both sides of these Mayer bars, and the polyethylene microporous between the Mayer bars The coating solution was applied to both the front and back surfaces of the polyethylene microporous membrane by passing the membrane while pulling.
This was immersed in a coagulation liquid having a weight ratio of water: the mixed solvent = 50: 50 and 40 ° C., then immersed in a second coagulation bath adjusted to water: the mixed solvent = 90: 10, Washing with water and drying were performed, and heat-resistant porous layers made of Conex and aluminum hydroxide were formed on both surfaces of the polyethylene microporous membrane.
The characteristics of the separator for a non-aqueous secondary battery of the present invention produced by the method as described above were as follows. The film thickness L1 is 18.2 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 is 15.9 μm, the film thickness difference (L1−L2) is 2.3 μm, and the coating amount is 6.08 g / m 2. The Gurley value was 380 seconds / 100 cc. The heat-resistant porous layer had a thickness of 7.9 μm, a coating amount of 6.08 g / m 2 , a porosity of 65%, and a BET method average pore diameter of 151 nm. These physical properties are shown in Table 1. In addition, Examples 2 to 3 described below , Reference Example 1 and Comparative Examples 1 to 4 are also shown in Table 1 in the same manner.

[実施例2]
ポリエチレン微多孔膜およびメタ型全芳香族ポリアミドには、実施例1と同様のものを用いた。また、無機微粒子として平均粒子径0.8μmのα−アルミナ(昭和電工社製;AL160SG−3)を用いた。
コーネックスとアルミナが重量比で15:85(体積比は34:66)となるように調整し、これらをコーネックスが5.5重量%となるようにジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比で50:50となっている混合溶媒に混合し塗工液を作製した。マイヤーバーを2本対峙させ、その間に25℃に調整した該塗工液を適量載せた。ポリエチレン微多孔膜を塗工液が載っているマイヤーバー間を通過させてポリエチレン微多孔膜の両面に塗工液を塗工した。ここで、マイヤーバー間のクリアランスは30μmに調整し、マイヤーバーの番手は2本とも6を用いた。
これを重量比で水:該混合溶媒=50:50で40℃となっている凝固液中に浸漬し、次いで水:該混合溶媒=99:1に調整した第2凝固浴に浸漬し、次いで水洗・乾燥を行い、耐熱性多孔質層をポリエチレン微多孔膜の表裏両面に形成した。
上記のような手法で作製した本発明の非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が17.5μm、印加荷重1.2kg/cmで測定した膜厚L2が15.5μm、膜厚差(L1−L2)は2.0μm、ガーレ値は390秒/100ccであった。また、耐熱性多孔質層の厚み7.2μm、塗工量は7.58g/m、空孔率70%、BET法平均孔径217nmであった。
[Example 2]
The same polyethylene microporous membrane and meta-type wholly aromatic polyamide as in Example 1 were used. Further, α-alumina (manufactured by Showa Denko; AL160SG-3) having an average particle diameter of 0.8 μm was used as the inorganic fine particles.
Conex and alumina were adjusted so that the weight ratio was 15:85 (volume ratio was 34:66), and these were adjusted so that Conex was 5.5% by weight, dimethylacetamide (DMAc) and tripropylene glycol ( TPG) was mixed with a mixed solvent having a weight ratio of 50:50 to prepare a coating solution. Two Mayer bars were opposed to each other, and an appropriate amount of the coating solution adjusted to 25 ° C. was placed between them. The polyethylene microporous film was passed between Mayer bars on which the coating liquid was placed, and the coating liquid was applied to both sides of the polyethylene microporous film. Here, the clearance between the Mayer bars was adjusted to 30 μm, and the number of the Mayer bars used was 6.
This was immersed in a coagulation liquid having a weight ratio of water: the mixed solvent = 50: 50 and 40 ° C., then immersed in a second coagulation bath adjusted to water: the mixed solvent = 99: 1, Washing with water and drying were performed to form heat-resistant porous layers on both sides of the polyethylene microporous membrane.
The characteristics of the separator for a non-aqueous secondary battery of the present invention produced by the method as described above were as follows. The film thickness L1 was 17.5 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 was 15.5 μm, the film thickness difference (L1−L2) was 2.0 μm, and the Gurley value was 390 seconds / 100 cc. . The heat-resistant porous layer had a thickness of 7.2 μm, a coating amount of 7.58 g / m 2 , a porosity of 70%, and a BET method average pore diameter of 217 nm.

[実施例3]
ポリエチレン微多孔膜は、実施例1と同様のものを用いた。耐熱性樹脂には、ポリエーテルスルホン(PES、住友化学社製 スミカエクセルPES4800P)を用いた。無機微粒子として平均粒子径0.8μmのα−アルミナ(昭和電工社製;AL160SG−3)を用いた。
PESとアルミナが重量比で15:85(体積比は34:66)となるように調整し、これらをPESが5.5重量%となるようにジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比で50:50となっている混合溶媒に混合し塗工液を作製した。
マイヤーバーを2本対峙させた。ここで、マイヤーバー間のクリアランスは30μmに調整し、マイヤーバーの番手は2本とも6を用いた。これらマイヤーバーの両側から25℃に調整した該塗工液を供給し、マイヤーバー間にあるポリエチレン微多孔膜を引っ張りながら通過させることでポリエチレン微多孔膜の表裏両面に該塗工液を塗工した。
これを重量比で水:該混合溶媒=50:50で40℃となっている凝固液中に浸漬し、次いで水:該混合溶媒=61:39に調整した第2凝固浴に浸漬し、次いで水洗・乾燥を行い、PESとアルミナからなる多孔質層をポリエチレン微多孔膜の表裏両面に形成した。
上記のような手法で作製した本発明の非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が21μm、印加荷重1.2kg/cmで測定した膜厚L2が18μm、膜厚差(L1−L2)は3.0μm、ガーレ値は410秒/100ccであった。また、耐熱性多孔質層の厚み10.7μm、塗工量は12.08g/m、空孔率68%、BET法平均孔径185nmであった。
[Example 3]
The same polyethylene microporous membrane as in Example 1 was used. Polyethersulfone (PES, Sumika Excel PES4800P manufactured by Sumitomo Chemical Co., Ltd.) was used as the heat resistant resin. Α-alumina (manufactured by Showa Denko KK; AL160SG-3) having an average particle diameter of 0.8 μm was used as the inorganic fine particles.
The weight ratio of PES and alumina was adjusted to 15:85 (volume ratio was 34:66), and these were adjusted so that PES was 5.5% by weight, dimethylacetamide (DMAc) and tripropylene glycol (TPG). Was mixed with a mixed solvent having a weight ratio of 50:50 to prepare a coating solution.
Two Meyer bars were confronted. Here, the clearance between the Mayer bars was adjusted to 30 μm, and the number of the Mayer bars used was 6. The coating liquid adjusted to 25 ° C. is supplied from both sides of these Mayer bars, and the coating liquid is applied to both the front and back surfaces of the polyethylene microporous film by passing the polyethylene microporous film between the Mayer bars while pulling. did.
This was immersed in a coagulation liquid having a weight ratio of water: the mixed solvent = 50: 50 and 40 ° C., then immersed in a second coagulation bath adjusted to water: the mixed solvent = 61: 39, Washing with water and drying were performed, and a porous layer made of PES and alumina was formed on both the front and back surfaces of the polyethylene microporous membrane.
The characteristics of the separator for a non-aqueous secondary battery of the present invention produced by the method as described above were as follows. The film thickness L1 was 21 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 was 18 μm, the film thickness difference (L1−L2) was 3.0 μm, and the Gurley value was 410 seconds / 100 cc. The heat-resistant porous layer had a thickness of 10.7 μm, a coating amount of 12.08 g / m 2 , a porosity of 68%, and a BET method average pore diameter of 185 nm.

参考例1
実施例1における塗工液の作製において、コーネックスと水酸化アルミニウムが重量比で80:20(体積比は88:12)となるように調整した点以外は実施例1と同様にして、非水系二次電池用セパレータを得た。
このセパレータの物性は、膜厚L1が21μm、印加荷重1.2kg/cmで測定した膜厚L2が18μm、膜厚差(L1−L2)が3.0μm、ガーレ値が388秒/100ccであった。また、耐熱性多孔質層の厚みは10.7μm、塗工量は6.08g/m、空孔率は64%、BET法平均孔径は124nmであった。
[ Reference Example 1 ]
In the preparation of the coating solution in Example 1, except that CONEX aluminum hydroxide was adjusted to 80:20 (volume ratio 88:12) in a weight ratio in the same manner as in Example 1, the non A separator for an aqueous secondary battery was obtained.
The physical properties of this separator are as follows: the film thickness L1 is 21 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 is 18 μm, the film thickness difference (L1-L2) is 3.0 μm, and the Gurley value is 388 seconds / 100 cc. there were. The heat-resistant porous layer had a thickness of 10.7 μm, a coating amount of 6.08 g / m 2 , a porosity of 64%, and a BET method average pore diameter of 124 nm.

[比較例1]
多孔質基材として、ポリエチレンテレフタレート(PET)よりなる不織布(帝人ファイバー株式会社製)を用いた。この不織布は、目付7g/m、膜厚L3が15.0μm、印加荷重1.2kg/cmで測定した膜厚L4が14.6μm、膜厚差(L3−L4)は0.4μm、空孔率67%、BET法で測定した平均孔径が90nm、ガーレ値120秒/100cc、突刺強度が320gであった。塗工液には実施例1と同じものを用いた。
PET不織布をガラス板上に固定し、番手6のマイヤーバーを用いて25℃に調整した該塗工液をPET不織布の両面に塗工した。ここでマイヤーバーとPET不織布のクリアランスは40μmとした。塗工液を塗工したPET不織布を重量比で水:該混合溶媒=50:50で40℃となっている凝固液中に浸漬し、次いで水:該混合溶媒=98:2に調整した第2凝固浴に浸漬し、次いで水洗・乾燥を行い、耐熱性多孔質層をPET不織布の両面に形成した。
上記のような手法で作製した非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が20.8μm、印加荷重1.2kg/cmで測定した膜厚L2が18.3μm、膜厚差(L1−L2)は2.5μm、ガーレ値は381秒/100ccであった。また、耐熱性多孔質層の厚み5.8μm、塗工量は5.0g/m、空孔率76%、BET法平均孔径238nmであった。
[Comparative Example 1]
As the porous substrate, a nonwoven fabric (manufactured by Teijin Fibers Limited) made of polyethylene terephthalate (PET) was used. This nonwoven fabric has a basis weight of 7 g / m 2 , a film thickness L3 of 15.0 μm, a film thickness L4 measured at an applied load of 1.2 kg / cm 2 of 14.6 μm, a film thickness difference (L3−L4) of 0.4 μm, The porosity was 67%, the average pore diameter measured by the BET method was 90 nm, the Gurley value was 120 seconds / 100 cc, and the puncture strength was 320 g. The same coating solution as in Example 1 was used.
A PET nonwoven fabric was fixed on a glass plate, and the coating liquid adjusted to 25 ° C. using a Meyer bar of No. 6 was applied to both surfaces of the PET nonwoven fabric. Here, the clearance between the Meyer bar and the PET nonwoven fabric was 40 μm. The PET nonwoven fabric coated with the coating liquid was immersed in a coagulating liquid at 40 ° C. in a weight ratio of water: the mixed solvent = 50: 50, and then adjusted to water: the mixed solvent = 98: 2. 2 It was immersed in a coagulation bath, then washed with water and dried to form heat-resistant porous layers on both sides of the PET nonwoven fabric.
The characteristics of the separator for a non-aqueous secondary battery produced by the method as described above were as follows. The film thickness L1 was 20.8 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 was 18.3 μm, the film thickness difference (L1−L2) was 2.5 μm, and the Gurley value was 381 seconds / 100 cc. . The heat-resistant porous layer had a thickness of 5.8 μm, a coating amount of 5.0 g / m 2 , a porosity of 76%, and a BET method average pore diameter of 238 nm.

[比較例2]
ポリエチレン微多孔膜および塗工液として、実施例1に示したものと同じものを用いた。
マイヤーバーを2本対峙させた。ここで、マイヤーバー間のクリアランスは60μmに調整し、マイヤーバーの番手は2本とも6を用いた。これらマイヤーバーの両側から9℃に調整した該塗工液を供給し、マイヤーバー間にあるポリエチレン微多孔膜を引っ張りながら通過させることでポリエチレン微多孔膜の表裏両面に該塗工液を塗工した。これを重量比で水:該混合溶媒=50:50で40℃となっている凝固液中に浸漬し、次いで水洗・乾燥を行い、コーネックスと水酸化アルミニウムからなる多孔質層をポリエチレン微多孔膜の表裏両面に形成した。
上記のような手法で作製した非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が27.0μm、印加荷重1.2kg/cmで測定した膜厚L2が16.5μm、膜厚差(L1−L2)は10.5μm、ガーレ値は410秒/100ccであった。また、耐熱性多孔質層の厚み16.7μm、塗工量は12.08g/m、空孔率80%、BET法平均孔径110nmであった。
[Comparative Example 2]
The same polyethylene microporous film and coating solution as those shown in Example 1 were used.
Two Meyer bars were confronted. Here, the clearance between the Mayer bars was adjusted to 60 μm, and the number of the Mayer bars used was 6. The coating liquid adjusted to 9 ° C. is supplied from both sides of these Mayer bars, and the coating liquid is applied to both the front and back surfaces of the polyethylene microporous film by passing the polyethylene microporous film between the Mayer bars while pulling it. did. This was immersed in a coagulation liquid having a water ratio of water: the mixed solvent = 50: 50 at 40 ° C., then washed with water and dried, and the porous layer composed of Conex and aluminum hydroxide was microporous in polyethylene. Formed on both sides of the membrane.
The characteristics of the separator for a non-aqueous secondary battery produced by the method as described above were as follows. The film thickness L1 was 27.0 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 was 16.5 μm, the film thickness difference (L1−L2) was 10.5 μm, and the Gurley value was 410 seconds / 100 cc. . The heat-resistant porous layer had a thickness of 16.7 μm, a coating amount of 12.08 g / m 2 , a porosity of 80%, and a BET method average pore diameter of 110 nm.

[比較例3]
ポリエチレン微多孔膜および塗工液として、実施例1に示したものと同じものを用いた。
マイヤーバーを2本対峙させた。ここで、マイヤーバー間のクリアランスは30μmに調整し、マイヤーバーの番手は2本とも6を用いた。これらマイヤーバーの両側から0℃に調整した該塗工液を供給し、マイヤーバー間にあるポリエチレン微多孔膜を引っ張りながら通過させることでポリエチレン微多孔膜の表裏両面に該塗工液を塗工した。これを重量比で水:該混合溶媒=70:40で40℃となっている凝固液中に浸漬し、次いで水洗・乾燥を行い、コーネックスと水酸化アルミニウムからなる多孔質層をポリエチレン微多孔膜の表裏両面に形成した。
上記のような手法で作製した非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が25.0μm、印加荷重1.2kg/cmで測定した膜厚L2が14.0μm、膜厚差(L1−L2)は11.0μm、ガーレ値は405秒/100ccであった。また、耐熱性多孔質層の厚み14.7μm、塗工量は9.08g/m、空孔率83%、BET法平均孔径280nmであった。
[Comparative Example 3]
The same polyethylene microporous film and coating solution as those shown in Example 1 were used.
Two Meyer bars were confronted. Here, the clearance between the Mayer bars was adjusted to 30 μm, and the number of the Mayer bars used was 6. The coating liquid adjusted to 0 ° C. is supplied from both sides of these Mayer bars, and the coating liquid is applied to both the front and back sides of the polyethylene microporous film by passing the polyethylene microporous film between the Mayer bars while pulling. did. This was immersed in a coagulating liquid at 40 ° C. with water: the mixed solvent = 70: 40 by weight ratio, then washed with water and dried, and the porous layer made of Conex and aluminum hydroxide was microporous in polyethylene. Formed on both sides of the membrane.
The characteristics of the separator for a non-aqueous secondary battery produced by the method as described above were as follows. The film thickness L1 was 25.0 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 was 14.0 μm, the film thickness difference (L1−L2) was 11.0 μm, and the Gurley value was 405 seconds / 100 cc. . The heat-resistant porous layer had a thickness of 14.7 μm, a coating amount of 9.08 g / m 2 , a porosity of 83%, and a BET method average pore diameter of 280 nm.

[比較例4]
ポリエチレン微多孔膜および塗工液として、実施例1に示したものと同じものを用いた。
マイヤーバーを2本対峙させた。ここで、マイヤーバー間のクリアランスは20μmに調整し、マイヤーバーの番手は2本とも6を用いた。これらマイヤーバーの両側から4℃に調整した該塗工液を供給し、マイヤーバー間にあるポリエチレン微多孔膜を引っ張りながら通過させることでポリエチレン微多孔膜の表裏両面に該塗工液を塗工した。これを重量比で水:該混合溶媒=50:50で40℃となっている凝固液中に浸漬し、次いで水洗・乾燥を行い、コーネックスと水酸化アルミニウムからなる多孔質層をポリエチレン微多孔膜の表裏両面に形成した。
上記のような手法で作製した非水系二次電池用セパレータの特性は以下の通りであった。膜厚L1が12μm、印加荷重1.2kg/cmで測定した膜厚L2が11μm、膜厚差(L1−L2)は1.0μm、ガーレ値は385秒/100ccであった。また、耐熱性多孔質層の厚み1.7μm、塗工量は2.08g/m、空孔率66%、BET法平均孔径179nmであった。
[Comparative Example 4]
The same polyethylene microporous film and coating solution as those shown in Example 1 were used.
Two Meyer bars were confronted. Here, the clearance between the Mayer bars was adjusted to 20 μm, and the number of the Mayer bars used was 6. The coating liquid adjusted to 4 ° C. is supplied from both sides of these Mayer bars, and the coating liquid is applied to both the front and back surfaces of the polyethylene microporous film by passing the polyethylene microporous film between the Mayer bars while pulling. did. This was immersed in a coagulation liquid having a water ratio of water: the mixed solvent = 50: 50 at 40 ° C., then washed with water and dried, and the porous layer composed of Conex and aluminum hydroxide was microporous in polyethylene. Formed on both sides of the membrane.
The characteristics of the separator for a non-aqueous secondary battery produced by the method as described above were as follows. The film thickness L1 was 12 μm, the film thickness L2 measured at an applied load of 1.2 kg / cm 2 was 11 μm, the film thickness difference (L1−L2) was 1.0 μm, and the Gurley value was 385 seconds / 100 cc. The heat-resistant porous layer had a thickness of 1.7 μm, a coating amount of 2.08 g / m 2 , a porosity of 66%, and a BET method average pore diameter of 179 nm.

Figure 0005420938
Figure 0005420938

[膜抵抗]
上述のようにして作製した実施例1〜3、参考例1および比較例1〜4の各セパレータについて、膜抵抗を測定した。具体的に、まずサンプルとなるセパレータを2.6cm×2.0cmのサイズに切り出した。切り出したサンプルを、非イオン性界面活性剤(花王社製;エマルゲン210P)を3重量%溶解したメタノール溶液に浸漬し、風乾した。厚さ20μmのアルミ箔を、2.0cm×1.4cmに切り出しリードタブを付けた。このアルミ箔を2枚用意して、アルミ箔間に切り出したセパレータを、アルミ箔が短絡しないように挟んだ。電解液には、プロピレンカーボネートとエチレンカーボネートが1対1の重量比で混合された溶媒中にLiBFを1M溶解させたものを用い、この電解液を上記セパレータに含浸させた。これをアルミラミネートパック中に、タブがアルミパックの外に出るようにして減圧封入した。このようなセルを、アルミ箔中にセパレータが1枚、2枚、3枚となるようにそれぞれ作製した。このセルを20℃の恒温槽中に入れ、交流インピーダンス法で、振幅10mV、周波数100kHzにてこのセルの抵抗を測定した。測定されたセルの抵抗値を、セパレータの枚数に対してプロットし、このプロットを線形近似し、傾きを求めた。この傾きに、電極面積である2.0cm×1.4cmを乗じて、セパレータ1枚当たりの膜抵抗(ohm・cm)を求めた。結果を表2にまとめて示す。
[Membrane resistance]
Membrane resistance was measured for each of the separators of Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4 produced as described above. Specifically, first, a separator as a sample was cut into a size of 2.6 cm × 2.0 cm. The cut sample was immersed in a methanol solution in which 3% by weight of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P) was dissolved, and air-dried. A 20 μm thick aluminum foil was cut into 2.0 cm × 1.4 cm, and a lead tab was attached. Two aluminum foils were prepared, and a separator cut between the aluminum foils was sandwiched between the aluminum foils so that the aluminum foils were not short-circuited. As the electrolytic solution, a solution in which 1M LiBF 4 was dissolved in a solvent in which propylene carbonate and ethylene carbonate were mixed at a weight ratio of 1: 1 was used, and the separator was impregnated with the electrolytic solution. This was sealed in an aluminum laminate pack under reduced pressure so that the tabs came out of the aluminum pack. Such cells were prepared so that there were one, two, and three separators in the aluminum foil, respectively. The cell was placed in a constant temperature bath at 20 ° C., and the resistance of the cell was measured by an AC impedance method at an amplitude of 10 mV and a frequency of 100 kHz. The measured resistance value of the cell was plotted against the number of separators, and this plot was linearly approximated to obtain the slope. The inclination was multiplied by the electrode area of 2.0 cm × 1.4 cm to determine the membrane resistance (ohm · cm 2 ) per separator. The results are summarized in Table 2.

[静摩擦係数]
セパレータの滑り性を評価するために、東洋精機社製のカード摩擦試験機を用いて、セパレータの摩擦係数を測定した。具体的には、荷重1kgのおもりにセパレータを貼り付け、セパレータを貼り付けた面を試験機におけるSUS製のステージ面に接触させ、このおもりを押すのに必要な力を測定した。そして、この力と垂直抗力から摩擦係数を求めた。なお、該おもりのセパレータを貼り付けた面は7cm×7cmの正方形状の平面であった。結果を表2にまとめて示す。
[Static friction coefficient]
In order to evaluate the slipperiness of the separator, the friction coefficient of the separator was measured using a card friction tester manufactured by Toyo Seiki Co., Ltd. Specifically, a separator was attached to a weight with a load of 1 kg, the surface on which the separator was attached was brought into contact with a SUS stage surface in a testing machine, and the force required to push the weight was measured. And the friction coefficient was calculated | required from this force and normal force. The surface on which the weight separator was affixed was a 7 cm × 7 cm square plane. The results are summarized in Table 2.

[シャットダウン(SD)特性]
上述のようにして作製した実施例1〜3、参考例1および比較例1〜4の各セパレータについて、SD特性を評価した。具体的にまず、セパレータをΦ19mmに打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾する。そしてセパレータに電解液を含浸させSUS板(Φ15.5mm)に挟んだ。ここで電解液は1M LiBF プロピレンカーボネート/エチレンカーボネート(1/1重量比)を用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することでセルの抵抗を測定した。その結果、昇温時に抵抗値が1.0×10ohm・cm以上まで上昇した場合にシャットダウン機能が発現されたとみなし、シャットダウン機能がある場合は○、無い場合は×と評価した。結果を表2にまとめて示す。
[Shutdown (SD) characteristics]
SD characteristics were evaluated for the separators of Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4 produced as described above. Specifically, first, the separator is punched to Φ19 mm, dipped in a 3% by weight methanol solution of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P), and air-dried. Then, the separator was impregnated with the electrolytic solution and sandwiched between SUS plates (Φ15.5 mm). Here, 1 M LiBF 4 propylene carbonate / ethylene carbonate (1/1 weight ratio) was used as the electrolytic solution. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple, and put it in the oven. The cell resistance was measured by raising the temperature at a rate of temperature increase of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz. As a result, when the resistance value increased to 1.0 × 10 3 ohm · cm 2 or more at the time of temperature rise, it was considered that the shutdown function was exhibited. The results are summarized in Table 2.

[耐熱性]
上記のSD特性の評価において、シャットダウン機能が発現した後、150〜190℃の温度下においても抵抗値が1.0×10ohm・cm以上のレベルを維持し続けた場合は、メルトダウンが生じておらず耐熱性に優れているため、耐熱性が良好(○)と判断した。一方、150〜190℃における抵抗値が1.0×10ohm・cmを下回った場合は、耐熱性が不良(×)と判断した。結果を表2にまとめて示す。
[Heat-resistant]
In the evaluation of the above SD characteristics, if the resistance value continues to maintain a level of 1.0 × 10 3 ohm · cm 2 or higher even at a temperature of 150 to 190 ° C. after the shutdown function is exhibited, Was not generated and the heat resistance was excellent, and therefore, the heat resistance was judged to be good (◯). On the other hand, when the resistance value at 150 to 190 ° C. was lower than 1.0 × 10 3 ohm · cm 2 , the heat resistance was judged to be poor (×). The results are summarized in Table 2.

Figure 0005420938
Figure 0005420938

[実施例5〜7、参考例2、比較例5〜8]
実施例1〜3、参考例1、比較例1〜4のセパレータを用いて、以下のようにして18650型円筒電池を作成し、サイクル特性を評価した。
(1)負極の作製
平均粒子径10mに分級した錫粉末(三菱マテリアル製)100重量部、アセチレンブラック5重量部、およびポリフッ化ビニリデン10重量部となるように、これらの材料をN−メチルピロリドンに溶解、分散させた負極剤ペーストを準備した。この負極剤ペーストではポリフッ化ビニリデンの濃度を6重量%とした。得られたペーストを厚さ18μmの銅箔上へ塗工し、乾燥後プレスして総厚み100μmとなるように負極を作製した。これを幅52mmにスリットし、端部にタブを接合して負極を作製した。なお、負極活物質の錫の体積変化率は370%であった。
[Examples 5 to 7, Reference Example 2 , Comparative Examples 5 to 8]
Using the separators of Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4, 18650 type cylindrical batteries were prepared as follows, and the cycle characteristics were evaluated.
(1) Production of negative electrode N-methylpyrrolidone was prepared by adding 100 parts by weight of tin powder (manufactured by Mitsubishi Materials) classified to an average particle size of 10 m, 5 parts by weight of acetylene black, and 10 parts by weight of polyvinylidene fluoride. A negative electrode agent paste dissolved and dispersed in was prepared. In this negative electrode paste, the concentration of polyvinylidene fluoride was 6% by weight. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode so that the total thickness was 100 μm. This was slit to a width of 52 mm, and a tab was joined to the end to produce a negative electrode. The volume change rate of tin of the negative electrode active material was 370%.

(2) 正極の作製
乾燥重量換算で、正極活物質のコバルト酸リチウム(LiCoO;日本化学工業社製)粉末89.5重量部、アセチレンブラック(デンカブラック;電気化学工業社製)粉末4.5重量部、および、ポリフッ化ビニリデン(クレハ化学工業株式会社製)6重量部となるように、これらの材料をN−メチルピロリドンに溶解させた正極剤ペーストを準備した。この正極剤ペーストではポリフッ化ビニリデンの濃度を6重量%とした。得られたペーストを厚さ20μmのアルミ箔上へ塗工し、乾燥後プレスして総厚み100μmとなるように正極を作製した。これを幅55mmにスリットし、端部にタブを接合して正極を作製した。なお、正極活物質のLiCoOの体積変化率は1.8%であった。
(2) Production of Positive Electrode 89.5 parts by weight of lithium cobaltate (LiCoO 2 ; manufactured by Nippon Chemical Industry Co., Ltd.) powder of the positive electrode active material, acetylene black (Denka Black; manufactured by Electrochemical Industry Co., Ltd.) powder in terms of dry weight A positive electrode paste in which these materials were dissolved in N-methylpyrrolidone was prepared so as to be 5 parts by weight and 6 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd.). In this positive electrode paste, the concentration of polyvinylidene fluoride was 6% by weight. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to produce a positive electrode so that the total thickness was 100 μm. This was slit to a width of 55 mm, and a tab was joined to the end to produce a positive electrode. The volume change rate of LiCoO 2 as the positive electrode active material was 1.8%.

(3)電極群の作製
上記で得られた正極および負極を、実施例1〜3、参考例1、比較例1〜4の各セパレータを介して両端に正極集電体および負極集電体が露出する形で円筒状に捲回し、捲回型電極群(直径17mm、長さ60mm)を作製した。
(3) Production of electrode group The positive electrode and the negative electrode obtained above were connected to the positive electrode current collector and the negative electrode current collector at both ends through the separators of Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4, respectively. The electrode was wound into a cylindrical shape in an exposed manner to produce a wound electrode group (diameter 17 mm, length 60 mm).

(4)円筒型電池の作製
上記で得られた各捲回型電極群を、直径18mm、高さ65mmの有底円筒形の電池ケースに挿入した。それと共に、正極リードの他端を封口板に接続し、負極リードの多端を電池ケースの底に接続した。この電池ケースを円筒状のプラスチック製外装体に挿入した後、電池ケース内に非水電解液5.2mlを注液し、電池ケースの開口端部をかしめて封口板を固定し、電池ケースを密閉して本発明の非水電解質二次電池(実施例5〜7、参考例2、比較例5〜8)を作製した。ここで非水電解液には、エチレンカーボネートとエチルメチルカーボネートが3対7の重量比で混合された混合溶液に、LiPFを1Mの濃度で溶解させたものを用いた。
(4) Production of Cylindrical Battery Each wound electrode group obtained above was inserted into a bottomed cylindrical battery case having a diameter of 18 mm and a height of 65 mm. At the same time, the other end of the positive electrode lead was connected to the sealing plate, and the other end of the negative electrode lead was connected to the bottom of the battery case. After this battery case is inserted into a cylindrical plastic casing, 5.2 ml of non-aqueous electrolyte is injected into the battery case, the opening end of the battery case is crimped to fix the sealing plate, and the battery case is fixed. The nonaqueous electrolyte secondary battery (Examples 5-7 , Reference Example 2 , Comparative Examples 5-8) of this invention was produced by sealing. Here, as the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solution in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3 to 7 was used.

(5)円筒型電池のサイクル特性評価
実施例1〜3、参考例1および比較例1〜4のセパレータを用いて作成した円筒型電池(実施例5〜7、参考例2、比較例5〜8)について、4.0Vの定電流・定電圧充電と、2.75Vの定電流放電を100サイクル繰り返した後に、放電容量を測定した。
サイクル特性の評価は、放電容量保持率(%)=100サイクル後の放電容量/3サイクル後の放電容量で行った。放電容量保持率が80%超であれば良(○)と評価し、70〜80%の場合は△と評価し、70%未満の場合は不良(×)と評価した。結果を表3に示す。また、以下の実施例9〜13についても同様にまとめて表3に示した。
(5) Cylindrical battery cycle characteristic evaluation Cylindrical batteries prepared using the separators of Examples 1 to 3, Reference Example 1 and Comparative Examples 1 to 4 (Examples 5 to 7, Reference Example 2 and Comparative Examples 5 to 5) For 8), a 4.0 V constant current / constant voltage charge and a 2.75 V constant current discharge were repeated 100 cycles, and then the discharge capacity was measured.
The evaluation of the cycle characteristics was performed by discharge capacity retention rate (%) = discharge capacity after 100 cycles / discharge capacity after 3 cycles. When the discharge capacity retention rate was over 80%, it was evaluated as good (◯), when it was 70 to 80%, it was evaluated as Δ, and when it was less than 70%, it was evaluated as defective (×). The results are shown in Table 3. The following Examples 9 to 13 are also shown in Table 3 in the same manner.

[実施例9]
実施例5における負極材料をSiO粉末(和光純薬社製、試薬)に変更した点以外は実施例5と同様にして、本発明の非水系二次電池を作製した。なお、負極活物質のSiOの体積変化率は120%であった。
[Example 9]
A nonaqueous secondary battery of the present invention was produced in the same manner as in Example 5 except that the negative electrode material in Example 5 was changed to SiO powder (manufactured by Wako Pure Chemical Industries, Ltd., reagent). The volume change rate of SiO of the negative electrode active material was 120%.

[実施例10]
実施例5における負極材料をSiに変更した点以外は実施例5と同様にして、本発明の非水系二次電池を作製した。なお、負極活物質のSiの体積変化率は200%であった。
[Example 10]
A nonaqueous secondary battery of the present invention was produced in the same manner as in Example 5 except that the negative electrode material in Example 5 was changed to Si. The volume change rate of Si of the negative electrode active material was 200%.

[実施例11]
実施例5における負極材料をハードカーボン(昭和電工社製)に変更した点以外は実施例5と同様にして、本発明の非水系二次電池を作製した。なお、負極活物質のハードカーボンの体積変化率は5%であった。
[Example 11]
A non-aqueous secondary battery of the present invention was produced in the same manner as in Example 5 except that the negative electrode material in Example 5 was changed to hard carbon (manufactured by Showa Denko KK). In addition, the volume change rate of the hard carbon of the negative electrode active material was 5%.

[実施例12]
実施例5における負極材料を天然グラファイト(グラフテック社製)に変更した点以外は実施例5と同様にして、本発明の非水系二次電池を作製した。なお、負極活物質の天然グラファイトの体積変化率は5%であった。
[Example 12]
A non-aqueous secondary battery of the present invention was produced in the same manner as in Example 5 except that the negative electrode material in Example 5 was changed to natural graphite (manufactured by Graphtec). The volume change rate of natural graphite as the negative electrode active material was 5%.

[実施例13]
実施例5における負極材料をSnSbに変更した点以外は実施例5と同様にして、本発明の非水系二次電池を作製した。なお、負極活物質のSnSbの体積変化率は20%であった。
[Example 13]
A nonaqueous secondary battery of the present invention was produced in the same manner as in Example 5 except that the negative electrode material in Example 5 was changed to SnSb. The volume change rate of SnSb of the negative electrode active material was 20%.

Figure 0005420938
Figure 0005420938

Claims (6)

ポリオレフィンから構成される微多孔膜である多孔質基材と、この多孔質基材の片面または両面に被覆された耐熱性樹脂を含む耐熱性多孔質層と、を備えた非水系二次電池用セパレータであって、
当該非水系二次電池用セパレータは、接触底面が直径0.5cmの円状の接触端子を有した接触式膜厚計を用いて、印加荷重36g/cmで測定した膜厚をL1とし、印加荷重1.2kg/cmで測定した膜厚をL2とした場合に、L1−L2=2.0〜10μmとなり、
前記多孔質基材は、前記接触式膜厚計を用いて印加荷重36g/cm で測定した膜厚をL3とし、印加荷重1.2kg/cm で測定した膜厚をL4とした場合に、L3−L4=0.5〜1.8μmとなり、膜厚が5〜20μmであり、空孔率が30〜70%であり、かつ、BET法で測定した平均孔径が10〜400nmであり、
前記耐熱性多孔質層は、膜厚が3〜12μmであり、空孔率が50〜80%であり、かつ、BET法で測定した平均孔径が50〜300nmであり、
前記耐熱性樹脂は、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドから成る群から選ばれる少なくとも一種であり、
前記耐熱性多孔質層は無機フィラーを含み、前記無機フィラーの平均粒径は0.1〜1μmであり、かつ、前記無機フィラーの含有量が前記耐熱性樹脂の体積に対し0.4〜4倍であることを特徴とする非水系二次電池用セパレータ。
A non-aqueous secondary battery comprising a porous base material, which is a microporous membrane made of polyolefin, and a heat-resistant porous layer containing a heat-resistant resin coated on one or both sides of the porous base material A separator,
The non-aqueous secondary battery separator uses a contact-type film thickness meter having a circular contact terminal with a contact bottom surface of 0.5 cm in diameter, and the film thickness measured at an applied load of 36 g / cm 2 is L1, the film thickness measured at an applied load of 1.2 kg / cm 2 in the case of the L2, becomes L1-L2 = 2.0~10μm,
The porous substrate has a thickness measured with an applied load of 36 g / cm 2 using the contact film thickness meter as L3, and a thickness measured with an applied load of 1.2 kg / cm 2 as L4. L3-L4 = 0.5 to 1.8 μm, the film thickness is 5 to 20 μm, the porosity is 30 to 70%, and the average pore diameter measured by the BET method is 10 to 400 nm,
The heat-resistant porous layer has a film thickness of 3 to 12 μm, a porosity of 50 to 80%, and an average pore diameter measured by the BET method of 50 to 300 nm,
The heat resistant resin is at least one selected from the group consisting of aromatic polyamide, polyimide, polyamideimide, polyethersulfone, polysulfone, polyetherketone, polyetherimide,
The heat-resistant porous layer contains an inorganic filler, the average particle diameter of the inorganic filler is 0.1 to 1 μm, and the content of the inorganic filler is 0.4 to 4 with respect to the volume of the heat-resistant resin. The separator for non-aqueous secondary batteries characterized by being doubled .
前記セパレータの静摩擦係数が0.3〜1.0であることを特徴とする請求項1に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 1, wherein the separator has a static friction coefficient of 0.3 to 1.0. 前記無機フィラーが金属水酸化物および金属酸化物のうち少なくとも1種からなることを特徴とする請求項1または請求項2に記載の非水系二次電池用セパレータ。  The said inorganic filler consists of at least 1 sort (s) among a metal hydroxide and a metal oxide, The separator for non-aqueous secondary batteries of Claim 1 or Claim 2 characterized by the above-mentioned. リチウムのドープおよび脱ドープにより起電力を得る非水系二次電池であって、正極集電体および正極活物質層を有する正極と、負極集電体および負極活物質層を有する負極と、これらの電極間に配置された請求項1〜3のいずれかに記載の非水系二次電池用セパレータと、非水電解質とを備えて構成されたことを特徴とする非水系二次電池。  A non-aqueous secondary battery for obtaining an electromotive force by doping and dedoping of lithium, a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and A non-aqueous secondary battery comprising the non-aqueous secondary battery separator according to claim 1 and a non-aqueous electrolyte disposed between the electrodes. 前記正極活物質は、リチウムを脱ドープする過程における体積変化率が1%以上であることを特徴とする請求項4記載の非水系二次電池。  The non-aqueous secondary battery according to claim 4, wherein the positive electrode active material has a volume change rate of 1% or more in a process of dedoping lithium. 前記負極活物質は、リチウムをドープする過程における体積変化率が3%以上であることを特徴とする請求項4または5に記載の非水系二次電池。  The non-aqueous secondary battery according to claim 4 or 5, wherein the negative electrode active material has a volume change rate of 3% or more in the process of doping lithium.
JP2009061218A 2009-03-13 2009-03-13 Nonaqueous secondary battery separator and nonaqueous secondary battery Active JP5420938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061218A JP5420938B2 (en) 2009-03-13 2009-03-13 Nonaqueous secondary battery separator and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061218A JP5420938B2 (en) 2009-03-13 2009-03-13 Nonaqueous secondary battery separator and nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2010218749A JP2010218749A (en) 2010-09-30
JP5420938B2 true JP5420938B2 (en) 2014-02-19

Family

ID=42977371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061218A Active JP5420938B2 (en) 2009-03-13 2009-03-13 Nonaqueous secondary battery separator and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5420938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985426B2 (en) 2016-08-30 2021-04-20 Samsung Sdi Co., Ltd Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736186B2 (en) * 2011-02-14 2015-06-17 株式会社ダイセル Porous membrane containing inorganic particles and method for producing the same
KR101344939B1 (en) * 2011-12-13 2013-12-27 주식회사 코캄 A complex separator with excellent heat resistance for lithium secondary batteries and Lithium secondary batteries comprising the same
JP5910164B2 (en) * 2012-02-28 2016-04-27 日産自動車株式会社 Nonaqueous electrolyte secondary battery
HUE052426T2 (en) * 2012-03-28 2021-04-28 Asahi Chemical Ind Porous film and multilayer porous film
PL2832542T3 (en) * 2012-03-30 2021-04-06 Toray Industries, Inc. Multilayered microporous polyolefin film
CN104254933B (en) * 2012-04-30 2017-06-06 株式会社Lg化学 Barrier film and possesses its electrochemical device
JP5967442B2 (en) * 2013-02-12 2016-08-10 トヨタ自動車株式会社 Secondary battery
JP6079870B2 (en) * 2013-03-26 2017-02-15 日産自動車株式会社 Nonaqueous electrolyte secondary battery
KR101762087B1 (en) 2014-08-29 2017-07-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous secondary battery separator, laminated body, method for producing laminated body, and nonaqueous secondary battery
CN117458084B (en) * 2023-12-19 2024-03-19 宁德新能源科技有限公司 Secondary battery and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080487A1 (en) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP2007123237A (en) * 2005-09-29 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and manufacturing method of this electrode for nonaqueous electrolyte battery
JP4740034B2 (en) * 2006-05-23 2011-08-03 株式会社巴川製紙所 Electrochemical element separator
EP2575196B1 (en) * 2006-11-20 2014-05-28 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery.
JP5196982B2 (en) * 2007-03-28 2013-05-15 三洋電機株式会社 Non-aqueous electrolyte battery
EP2549566B1 (en) * 2007-06-19 2015-12-16 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985426B2 (en) 2016-08-30 2021-04-20 Samsung Sdi Co., Ltd Separator for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same

Also Published As

Publication number Publication date
JP2010218749A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5420938B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4653849B2 (en) Non-aqueous secondary battery separator
KR101434379B1 (en) Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
JP4920122B2 (en) Polyolefin microporous membrane, separator for nonaqueous secondary battery, nonaqueous secondary battery, and method for producing polyolefin microporous membrane
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
JP5356878B2 (en) Non-aqueous secondary battery separator
JP4806735B1 (en) Polyolefin microporous membrane and production method thereof, separator for non-aqueous secondary battery, and non-aqueous secondary battery
KR101429580B1 (en) Nonaqueous secondary battery separator and non-aqueous secondary battery
KR101429579B1 (en) Nonaqueous secondary battery separator and non-aqueous secondary battery
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5745174B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5612797B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
CN113678313A (en) Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
JP2011113921A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5400508B2 (en) Non-aqueous secondary battery separator
JP2011134563A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP7041195B2 (en) Separator for non-water-based secondary battery and non-water-based secondary battery
JP2011134562A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5420938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150