JP2006111712A - Polyolefin microporous film - Google Patents

Polyolefin microporous film Download PDF

Info

Publication number
JP2006111712A
JP2006111712A JP2004299827A JP2004299827A JP2006111712A JP 2006111712 A JP2006111712 A JP 2006111712A JP 2004299827 A JP2004299827 A JP 2004299827A JP 2004299827 A JP2004299827 A JP 2004299827A JP 2006111712 A JP2006111712 A JP 2006111712A
Authority
JP
Japan
Prior art keywords
polyolefin
solvent
weight
microporous membrane
polyolefin microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004299827A
Other languages
Japanese (ja)
Other versions
JP2006111712A5 (en
Inventor
Kohei Endo
浩平 遠藤
Satoshi Kitazawa
諭 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Solfill Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Solfill Co Ltd filed Critical Teijin Solfill Co Ltd
Priority to JP2004299827A priority Critical patent/JP2006111712A/en
Publication of JP2006111712A publication Critical patent/JP2006111712A/en
Publication of JP2006111712A5 publication Critical patent/JP2006111712A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin microporous film suitably used as a separator for a battery and to provide a method for producing the same. <P>SOLUTION: The polyolefin microporous film comprises a polyolefin composition containing ≥1.0 wt.% of an ultra high molecular weight polyolefin having ≥5×10<SP>5</SP>viscosity average molecular weight and has 25-60% porosity and a porous structure of a branch and trunk-like fibril. The area of the porous part observed on the surface by a scanning electron microscope amounts to ≥80% and, in the porous part, the average diameter of trunk-like fibril is 0.01-0.05 μm and the average diameter of branch-like fibril crossing the trunk is 0.01-0.03 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は超高分子量ポリオレフィンを含むポリオレフィン微多孔膜に関するものであり、特にリチウムイオン二次電池等の電池用セパレータとして好適に用いられるポリオレフィン微多孔膜、およびその製造方法に関する。   The present invention relates to a polyolefin microporous membrane containing ultra-high molecular weight polyolefin, and more particularly to a polyolefin microporous membrane suitably used as a battery separator such as a lithium ion secondary battery, and a method for producing the same.

超高分子量ポリオレフィンを含むポリオレフィン微多孔膜は種々提案されており、その製造方法としては超高分子量ポリオレフィン組成物と溶媒からなる溶液を調整し、ダイより押出しゲル状組成物を成形し、次いで、延伸し、しかる後残存溶媒を除去することによって製造するなどの方法がある(特許文献1参照)。   Various polyolefin microporous membranes containing ultra-high molecular weight polyolefin have been proposed, and as a production method thereof, a solution comprising an ultra-high molecular weight polyolefin composition and a solvent is prepared, an extrusion gel composition is formed from a die, and then There is a method of producing by stretching and then removing the residual solvent (see Patent Document 1).

これらの方法は、超高分子量ポリオレフィン組成物と溶媒からなる溶液における溶媒量のコントロールについての検討を要し、揮発性および不揮発性の溶媒を組み合わせてポリマー溶液を調整することも提案されている(特許文献2参照)。   These methods require studies on the control of the amount of solvent in a solution comprising an ultrahigh molecular weight polyolefin composition and a solvent, and it has also been proposed to prepare a polymer solution by combining volatile and non-volatile solvents ( Patent Document 2).

また電池用セパレータとしての用途に適するフィルムとして各種の超高分子量ポリオレフィンを含むポリオレフィン微多孔膜が種々提案されているが(特許文献3等)、さらに薄くて高強度なものが求められている。   Various polyolefin microporous membranes containing various ultra-high molecular weight polyolefins have been proposed as films suitable for use as battery separators (Patent Document 3, etc.), but thinner and higher strength films are required.

特開平7−138404号公報JP 7-138404 A 特開平6−228333号公報JP-A-6-228333 特開平6−325747号公報JP-A-6-325747

本発明は超高分子量ポリオレフィンを含むポリオレフィン微多孔膜に関するものであり、均一な微細孔構造を有し、電池用セパレータとして好適に用いられるポリオレフィン微多孔膜、およびその製造方法に関するものである。   The present invention relates to a polyolefin microporous membrane containing ultra-high molecular weight polyolefin, and relates to a polyolefin microporous membrane having a uniform microporous structure and suitably used as a battery separator, and a method for producing the same.

本発明は粘度平均分子量が5×10以上の超高分子量ポリオレフィンを1重量%以上含むポリオレフィン組成物からなり、空孔率25〜60%であり、枝幹状のフィブリルからなる開孔構造を有するポリオレフィン微多孔膜であって、走査電子顕微鏡で表面観察される開孔部の占める面積が80%以上であり、開孔部において、幹状フィブリルの平均直径が0.01〜0.05μmであり、幹に交差する枝状フィブリルの平均直径が0.01〜0.03μmであることを特徴とするポリオレフィン微多孔膜である。 The present invention comprises a polyolefin composition containing 1% by weight or more of an ultrahigh molecular weight polyolefin having a viscosity average molecular weight of 5 × 10 5 or more, has a porosity of 25 to 60%, and has an open pore structure made of branched fibrils. Polyolefin microporous film having an area occupied by the aperture observed on the surface with a scanning electron microscope is 80% or more, and the average diameter of the trunk fibrils is 0.01 to 0.05 μm in the aperture The polyolefin microporous membrane is characterized in that the average diameter of the branched fibrils intersecting the trunk is 0.01 to 0.03 μm.

本発明のポリオレフィン微多孔膜は、均一な微細孔構造を有し、低空孔率で適切な透過性を有することから、極薄であっても高強度の電池用セパレータとして好適に用いられる。   Since the polyolefin microporous membrane of the present invention has a uniform microporous structure, and has a low porosity and appropriate permeability, it is suitably used as a high-strength battery separator even if it is extremely thin.

以下、本発明について詳述する。なお、これらの実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。   Hereinafter, the present invention will be described in detail. In addition, these Examples etc. and description illustrate this invention, and do not restrict | limit the scope of the present invention.

本発明のポリオレフィン微多孔膜は、粘度平均分子量が5×10以上の超高分子量ポリオレフィンを少なくとも1重量%含有するポリオレフィン組成物からなる。 The polyolefin microporous membrane of the present invention comprises a polyolefin composition containing at least 1% by weight of an ultrahigh molecular weight polyolefin having a viscosity average molecular weight of 5 × 10 5 or more.

ポリオレフィン組成物における粘度平均分子量5×10万以上の超高分子量ポリオレフィンの割合は1重量%以上であり、好ましくは10〜90重量%である。ポリオレフィンとしては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体、または共重合体が挙げられる。なかでもポリエチレン、およびその共重合体が好ましい。 Ratio of viscosity average molecular weight 5 × 10 5 10,000 or more ultra-high molecular weight polyolefin in the polyolefin composition is 1 wt% or more, preferably 10 to 90 wt%. Examples of the polyolefin include crystalline homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. Of these, polyethylene and copolymers thereof are preferable.

また超高分子量ポリオレフィンは2種以上の組合せ、すなわち異種の超高分子量ポリオレフィンの組合せであっても、同種であるが分子量範囲や分子量分布が異なるものの組合せであっても良い。   The ultra-high molecular weight polyolefin may be a combination of two or more types, that is, a combination of different types of ultra-high molecular weight polyolefins, or a combination of the same type but different in molecular weight range and molecular weight distribution.

ポリオレフィン組成物における上記超高分子量ポリオレフィン以外の成分としては、粘度平均分子量5×10未満のポリオレフィンが挙げられる。粘度平均分子量5×10未満のポリオレフィンとしては超高分子量のものと同種のポリオレフィンであっても異種のポリオレフィンであっても良い。ポリオレフィンとしては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体、または共重合体が挙げられる。なかでもポリエチレン、およびその共重合体が好ましい。さらに線状ポリエチレンであることが好ましく、高密度ポリエチレンであることがさらに好ましい。 Examples of components other than the ultra-high molecular weight polyolefin in the polyolefin composition include polyolefins having a viscosity average molecular weight of less than 5 × 10 5 . The polyolefin having a viscosity average molecular weight of less than 5 × 10 5 may be the same type of polyolefin as that of an ultra high molecular weight or a different type of polyolefin. Examples of the polyolefin include crystalline homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. Of these, polyethylene and copolymers thereof are preferable. Further, linear polyethylene is preferable, and high density polyethylene is more preferable.

その他のポリオレフィン組成物には必要に応じて紫外線吸収剤、滑剤、アンチブロッキング剤、顔料、染料、無機充填剤などの各種添加剤を本発明の目的を損なわない範囲で添加することができる。   Various other additives such as an ultraviolet absorber, a lubricant, an antiblocking agent, a pigment, a dye, and an inorganic filler can be added to the other polyolefin composition as necessary without departing from the object of the present invention.

本発明のポリオレフィン微多孔膜は極薄で膜の厚さは20μm以下、好ましくは0.1〜16μmである。みかけ密度により求めた空孔率は25〜60%であり、より好ましくは25〜50%である。   The polyolefin microporous membrane of the present invention is extremely thin and has a thickness of 20 μm or less, preferably 0.1 to 16 μm. The porosity determined by the apparent density is 25 to 60%, more preferably 25 to 50%.

本発明のポリオレフィン微多孔膜は枝幹状のフィブリルからなる開孔構造を有し、かつ均一な微細孔を有することを特徴とする。すなわち走査電子顕微鏡で表面観察した際に開孔部が占める面積が80%以上であり、開孔部において幹状フィブリルの平均直径が0.01〜0.05μmであり、幹に交差する枝状フィブリルの平均直径が0.01〜0.03μmであることを特徴とする。   The polyolefin microporous membrane of the present invention is characterized by having an open pore structure composed of branched fibrils and uniform micropores. That is, the area occupied by the aperture when the surface is observed with a scanning electron microscope is 80% or more, and the average diameter of the stem-like fibrils is 0.01 to 0.05 μm in the aperture, and the branches intersect with the stem. The average diameter of the fibrils is 0.01 to 0.03 μm.

枝幹状の開孔構造とは、走査電子顕微鏡で表面を観察したときに一方向に幹状のフィブリル群が観察され、幹状フィブリル群とほぼ垂直方向に枝状のフィブリル群が観察される構造をいう。開孔部が占める面積は、走査型電子顕微鏡の2,000倍写真を無作為に複数枚撮影し、閉孔部(黒く写り、拡大すると閉孔状態が観察される部分)とそれ以外の開孔部(白く写る部分)との面積比より求めることができる。開孔部が占める面積は、より好ましくは90%以上である。   When the surface is observed with a scanning electron microscope, a branch-like fibril group is observed in one direction, and a branch-like fibril group is observed in a direction substantially perpendicular to the trunk-like fibril group. Refers to the structure. As for the area occupied by the aperture, take a random number of 2,000 times photographs of a scanning electron microscope, close the aperture (the part that appears black and the closed state is observed when enlarged), and other apertures. It can be determined from the area ratio to the hole (the part that appears white). The area occupied by the opening is more preferably 90% or more.

開孔部における幹状フィブリルおよび枝状フィブリルの平均直径は、開孔部の走査電子顕微鏡写真の50,000倍写真から枝状フィブリルと幹状フィブリルの直径を観察し、その平均値より求めることができる。   The average diameter of the stem fibrils and branch fibrils in the opening is determined from the average value of the diameters of the branch fibrils and the stem fibrils observed from the 50,000 times the scanning electron micrograph of the aperture. Can do.

本発明の膜はコールターポロメータで測定される平均孔径が好ましくは0.01〜0.1μm、より好ましくは0.03〜0.1μmである。   The membrane of the present invention preferably has an average pore size measured by a Coulter porometer of 0.01 to 0.1 μm, more preferably 0.03 to 0.1 μm.

また本発明の膜はコールターポロメータで測定される細孔容積が好ましくは0.3〜1ml/g、より好ましくは0.5〜1ml/gである。   The membrane of the present invention preferably has a pore volume measured with a Coulter porometer of 0.3 to 1 ml / g, more preferably 0.5 to 1 ml / g.

また本発明の膜は、破断強度が60MPa〜200MPaであることが好ましい。すなわち本発明の膜は、細孔容積が大きいわりに高強度であることを特徴とする。また本発明の膜は、ガーレー値が150〜1000秒/100ccであることが好ましい。   The film of the present invention preferably has a breaking strength of 60 MPa to 200 MPa. That is, the membrane of the present invention is characterized by high strength despite its large pore volume. The film of the present invention preferably has a Gurley value of 150 to 1000 seconds / 100 cc.

以上のように本発明のポリオレフィン微多孔膜は、枝幹状のフィブリルからなる開孔構造を有し、均一な微細孔構造を発現し、低空孔率でも適切な透過性を有することから、極薄であっても高強度で電池性能の良好な電池用セパレータとして好適に用いられる。また、リチウムイオン二次電池、リチウムイオンポリマー電池等の電池セパレータに好適に用いられる。   As described above, the polyolefin microporous membrane of the present invention has an open pore structure composed of branched fibrils, expresses a uniform microporous structure, and has appropriate permeability even at a low porosity. Even if it is thin, it is suitably used as a battery separator having high strength and good battery performance. Moreover, it is used suitably for battery separators, such as a lithium ion secondary battery and a lithium ion polymer battery.

次に、本発明のポリオレフィン微多孔膜を製造する方法について説明する。本発明のポリオレフィン微多孔膜は粘度平均分子量が5×10以上のポリオレフィンを少なくとも1重量%含むポリオレフィン組成物5〜70重量部と、大気圧における沸点が200℃以上の溶媒(A)および200℃未満の揮発性溶媒(B)とからなる混合溶媒30〜95重量部とを含む溶液を調製し、前記溶液をポリオレフィン組成物の融点+60℃以下の温度でダイより押出し、冷却してゲル状組成物を形成し、前記ゲル状組成物から溶媒(B)を除去した後延伸し、次いで溶媒(A)を除去することにより製造できる。 Next, a method for producing the polyolefin microporous membrane of the present invention will be described. The polyolefin microporous membrane of the present invention comprises 5 to 70 parts by weight of a polyolefin composition containing at least 1% by weight of a polyolefin having a viscosity average molecular weight of 5 × 10 5 or more, a solvent (A) having a boiling point of 200 ° C. or higher at atmospheric pressure, and 200 A solution containing 30 to 95 parts by weight of a mixed solvent composed of a volatile solvent (B) having a temperature of less than 0 ° C. is prepared. The solution is extruded from a die at a temperature of the melting point of the polyolefin composition + 60 ° C. or less, cooled, and gelled. It can be produced by forming a composition, removing the solvent (B) from the gel composition and then stretching, and then removing the solvent (A).

ポリオレフィン組成物については上記で述べたとおりであり、ポリオレフィン組成物と混合溶媒よりポリオレフィン溶液を調整する。ポリオレフィン溶液の濃度は1〜30重量%が好ましく、より好ましくは10〜25重量%である。ポリオレフィン溶液の濃度が1重量%未満では、冷却ゲル化して得られるゲル状成形物が溶媒で高度に膨潤されるため変形し易く取扱いに支障をきたす場合がある。一方、30重量%以上では押し出しの際の圧力が高くなるため吐出量が低くなり生産性が上げられない場合がある。また、押し出し工程での配向が進み、延伸性や均一性が確保できなくなる場合がある。   The polyolefin composition is as described above, and a polyolefin solution is prepared from the polyolefin composition and a mixed solvent. The concentration of the polyolefin solution is preferably 1 to 30% by weight, more preferably 10 to 25% by weight. When the concentration of the polyolefin solution is less than 1% by weight, the gel-like molded product obtained by cooling and gelation is highly swollen with a solvent, so that it may be easily deformed and hinder handling. On the other hand, if it is 30% by weight or more, the pressure at the time of extrusion becomes high, so the discharge amount becomes low and the productivity may not be improved. Moreover, the orientation in the extrusion process proceeds, and stretchability and uniformity may not be ensured.

ここでポリオレフィン組成物100重量部に対し、大気圧における沸点が200℃以上の溶媒(A)を50重量部以上用いる。ポリオレフィン組成物100重量部に対し、溶媒(A)を100重量部以上用いることが好ましい。   Here, 50 parts by weight or more of the solvent (A) having a boiling point of 200 ° C. or higher at atmospheric pressure is used with respect to 100 parts by weight of the polyolefin composition. It is preferable to use 100 parts by weight or more of the solvent (A) with respect to 100 parts by weight of the polyolefin composition.

沸点が200℃以上の溶媒(A)と沸点が200℃未満の溶媒(B)の混合比は、Aが5〜95%であり、さらには10〜60%であることが好ましい。   The mixing ratio of the solvent (A) having a boiling point of 200 ° C. or more and the solvent (B) having a boiling point of less than 200 ° C. is 5 to 95%, more preferably 10 to 60%.

沸点が200℃以上の溶媒(A)と沸点が200℃未満の溶媒(B)とのぞれぞれの沸点の差としては、15℃以上、好ましくは25℃、更に好ましくは35℃以上であることが好ましい。   The difference in boiling point between the solvent (A) having a boiling point of 200 ° C. or more and the solvent (B) having a boiling point of less than 200 ° C. is 15 ° C. or more, preferably 25 ° C., more preferably 35 ° C. or more. Preferably there is.

またポリオレフィン溶液が製造され処理される温度で溶媒(A)と溶媒(B)とが混和可能であり、それによって均質の溶液を得ることができるものを選択する。   In addition, the solvent (A) and the solvent (B) are miscible at the temperature at which the polyolefin solution is produced and processed, and thereby a homogeneous solution can be obtained.

大気圧における沸点が200℃以上の溶媒(A)としては、該ポリオレフィンを十分に溶解できるものであれば特に限定されない。以下、溶媒の大気圧における沸点を括弧内に記すが、好ましい溶媒としては例えば、パラフィン(>300℃、17個以上の炭素原子)、パラフィン油(230−300℃)、一部の鉱油(〜300℃)、テトラリン(206℃)、エチレングリコール(>300℃)、グリセリン(290℃)が好ましく挙げられる。なかでもパラフィンが好ましい。ここで括弧内に大気圧における沸点を記す。   The solvent (A) having a boiling point of 200 ° C. or higher at atmospheric pressure is not particularly limited as long as it can sufficiently dissolve the polyolefin. Hereinafter, the boiling point of the solvent at atmospheric pressure is shown in parentheses. Preferred examples of the solvent include paraffin (> 300 ° C., 17 or more carbon atoms), paraffin oil (230-300 ° C.), some mineral oils (˜ 300 ° C.), tetralin (206 ° C.), ethylene glycol (> 300 ° C.), and glycerin (290 ° C.). Of these, paraffin is preferable. Here, the boiling point at atmospheric pressure is shown in parentheses.

大気圧における沸点が200℃未満の溶媒(B)としては、該ポリオレフィンを十分に溶解できるものであれば特に限定されない。例えば、トルエン(110℃)、キシレン(138−144℃)、9〜11個の炭素原子を有するアルカン(151−196℃)、又はデカリン(187−196℃)、ジエチレントリアミン(107℃)、エチレンジアミン(116℃)又はジメチルスルホキシド(189℃)好ましく挙げられる。なかでもデカリンが好ましい。   The solvent (B) having a boiling point of less than 200 ° C. at atmospheric pressure is not particularly limited as long as it can sufficiently dissolve the polyolefin. For example, toluene (110 ° C), xylene (138-144 ° C), alkane having 9 to 11 carbon atoms (151-196 ° C), or decalin (187-196 ° C), diethylenetriamine (107 ° C), ethylenediamine ( 116 ° C.) or dimethyl sulfoxide (189 ° C.). Of these, decalin is preferred.

該超高分子量ポリオレフィン溶液(懸濁液)は一軸押出機、好ましくは二軸押出機で混練し、増粘した流体を融点+60℃以下の温度でTダイもしくはIダイで押し出し、チルロールまたは、冷却浴に通過させ、ゲル化温度以下に急冷しゲル化することが好ましい。   The ultrahigh molecular weight polyolefin solution (suspension) is kneaded with a single screw extruder, preferably a twin screw extruder, and the thickened fluid is extruded with a T die or an I die at a temperature of melting point + 60 ° C. or lower, and then a chill roll or cooling. It is preferable to pass through a bath, rapidly cool below the gelation temperature and gel.

次いでこのゲル状成形物より溶媒(B)を除去する。脱溶媒処理は、加熱等により蒸発させ除去する方法などがあげられる。溶媒(B)を除去することにより、ゲル状成形物中に含まれる溶媒量が10〜80重量%になることが好ましい。更に好ましくは30〜70重量%である。   Next, the solvent (B) is removed from the gel-like molded product. Examples of the solvent removal treatment include a method of evaporating and removing by heating or the like. By removing the solvent (B), the amount of the solvent contained in the gel-like molded product is preferably 10 to 80% by weight. More preferably, it is 30 to 70% by weight.

溶媒(B)を加熱により除去するときの加熱温度は50〜100℃、好ましくは70〜90℃であることが好ましい。これにより溶媒(B)はゲル状成形物中から除去され、ゲル状成形物中には溶媒(A)が残存する。   The heating temperature for removing the solvent (B) by heating is 50 to 100 ° C, preferably 70 to 90 ° C. Thereby, the solvent (B) is removed from the gel-like molded product, and the solvent (A) remains in the gel-like molded product.

ゲル成形物中の溶媒(A)の量としては、5重量%以下では、延伸成形物中に形成される微細孔の孔径が本発明の目的とするところのリチウムイオン二次電池等の電池用セパレータに要求されるものより大きくなり好ましくない。一方、95重量%を越えると、延伸にともなう多量の溶媒の滲み出し等で取扱い上に問題がある。   When the amount of the solvent (A) in the gel molded product is 5% by weight or less, the pore diameter of the micropores formed in the stretched molded product is intended for a battery such as a lithium ion secondary battery as an object of the present invention. This is not preferable because it is larger than that required for the separator. On the other hand, when it exceeds 95% by weight, there is a problem in handling due to a large amount of solvent oozing with stretching.

溶媒(B)を除いた後、延伸処理を行う。ここで、延伸処理の前に弛緩処理を行っても良い。   After removing the solvent (B), a stretching treatment is performed. Here, a relaxation treatment may be performed before the stretching treatment.

延伸処理は、ゲル状成形物を加熱し、通常のテンター法、ロール法、圧延法もしくはこれらの方法の組合せによって所定の倍率で2軸延伸する。2軸延伸は、同時または逐次のどちらであってもよい。また縦多段延伸や3、4段延伸とすることもできる。   In the stretching treatment, the gel-like molded product is heated and biaxially stretched at a predetermined magnification by a normal tenter method, roll method, rolling method, or a combination of these methods. Biaxial stretching may be simultaneous or sequential. Moreover, it can also be set as longitudinal multistage extending | stretching, 3 or 4 steps | stretching.

延伸温度は、90℃〜融点未満であることが好ましく、さらに好ましくは100〜120℃である。加熱温度が融点を越える場合は、ゲル状成形物が溶解するために延伸できない。又、加熱温度が90℃未満の場合は、ゲル状成形物の軟化が不十分で延伸において破膜し易く高倍率の延伸が困難となる場合がある。   It is preferable that extending | stretching temperature is 90 to less than melting | fusing point, More preferably, it is 100 to 120 degreeC. When the heating temperature exceeds the melting point, it cannot be stretched because the gel-like molded product is dissolved. On the other hand, when the heating temperature is less than 90 ° C., the gel-like molded product is not sufficiently softened, and the film is likely to be broken during stretching, making it difficult to stretch at a high magnification.

また、延伸倍率は、原反の厚さによって異なるが、1軸方向で少くとも2倍以上、好ましくは4〜20倍で行う。   Moreover, although a draw ratio changes with thickness of an original fabric, it carries out by at least 2 times or more in a uniaxial direction, Preferably it is 4-20 times.

延伸後の微多孔膜は、抽出溶剤に浸漬して溶媒(A)を抽出する。抽出溶剤としてはペンタン、ヘキサン、ヘプタン、シクロヘキサン、デカリン、テトラリンなどの炭化水素、塩化メチレン、四塩化炭素、メチレンクロライドなどの塩素化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類など易揮発性のものを用いることができる。これらの溶剤はポリオレフィン組成物の溶解に用いた溶媒に応じて適宜選択し、単独もしくは混合して用いることができる。溶媒の抽出は、微多孔膜中の溶媒を1重量%未満に迄除去する。   The microporous membrane after stretching is immersed in an extraction solvent to extract the solvent (A). Extraction solvents include hydrocarbons such as pentane, hexane, heptane, cyclohexane, decalin and tetralin, chlorinated hydrocarbons such as methylene chloride, carbon tetrachloride and methylene chloride, fluorinated hydrocarbons such as ethane trifluoride, diethyl ether, Easily volatile substances such as ethers such as dioxane can be used. These solvents are appropriately selected according to the solvent used for dissolving the polyolefin composition, and can be used alone or in combination. Solvent extraction removes the solvent in the microporous membrane to less than 1% by weight.

しかる後に、必要に応じて80〜150℃の温度範囲において熱セットを行うことにより安定した目的性能を有するポリオレフィン微多孔薄膜を得ることができる。   Thereafter, a polyolefin microporous thin film having stable target performance can be obtained by performing heat setting in a temperature range of 80 to 150 ° C. as necessary.

なお、ポリオレフィン微多孔膜は、水処理等親水化が要求される用途においては、親水化の処理を行うことが好ましい。親水化処理としては、公知の種々の方法、例えばグリセリン、エチレングリコール、アルコール等の親水性化合物を含浸させる等の化学的な方法、およびコロナ処理やプラズマ処理やUV処理等の物理処理があげられる。   The polyolefin microporous membrane is preferably subjected to hydrophilization in applications that require hydrophilization such as water treatment. Examples of the hydrophilic treatment include various known methods such as chemical methods such as impregnation with hydrophilic compounds such as glycerin, ethylene glycol and alcohol, and physical treatments such as corona treatment, plasma treatment, and UV treatment. .

以下に本発明の実施例を示すが、本発明はそれによって限定されるものではない。なお、実施例における試験方法は次の通りである。
(1)厚み測定
ミツトヨ製のLytematicにアンリツ製の測定子(重量1gの5mmφの円柱測定子)を使用し9.8×10−3Nの接圧で測定した。
(2)空孔率
(1)で測定した厚みd(μm)と電子天秤にて測定した目付け量BW(g/m)から見かけの密度ρapを算出し、ポリエチレン密度ρPEから下記式(I)に代入して求めた。
ρap=BW/d
空孔率=(1−ρap/ρPE)×100%・・・(I)
(3)平均孔径、細孔容積
ベックマンコールター製100cxを使用し、サンプルを50℃にて3時間乾燥し、測定を実施し、平均孔径と細孔容積を求めた。
(4)破断点強度の測定は、ASTMD882に準拠して実施した。
(5)透気度の測定は、JISP8117に準拠して実施した。
(6)開孔度とフィブリルの平均直径
開孔度は、走査型電子顕微鏡の2,000倍写真を無作為に10枚撮影し、閉孔部(黒く写り、拡大すると閉孔状態が観察される部分)と開孔部の面積から割合を算出した。
幹状フィブリルおよび枝状フィブリルの平均直径は、開孔部の電子顕微鏡写真の50,000倍写真を無作為に10枚撮影し、縦1.8μm×横2.3μmの視野像の中で縦横に上下左右の両端を含む、均等な5本のラインを引き、交差する幹状フィブリルおよび枝状フィブリルの平均直径を求め平均値を算出した。
走査型顕微鏡は日立ハイテクノロジーズ製S−5200を使用し、白金を約2nmスパッタリングして表面にコーティングし、加速電圧は2kVで測定した。画像の寸法は、基準サンプルで校正した。
Examples of the present invention are shown below, but the present invention is not limited thereby. In addition, the test method in an Example is as follows.
(1) Thickness measurement An Anritsu probe (5 mmφ cylindrical probe with a weight of 1 g) was used for Mitutoyo Lytematic and measured with a contact pressure of 9.8 × 10 −3 N.
(2) Porosity The apparent density ρ ap is calculated from the thickness d (μm) measured in (1) and the basis weight BW (g / m 2 ) measured with an electronic balance, and the following formula is calculated from the polyethylene density ρ PE. Obtained by substituting for (I).
ρ ap = BW / d
Porosity = (1-ρ ap / ρ PE ) × 100% (I)
(3) Average pore diameter and pore volume Using 100 cx manufactured by Beckman Coulter, the sample was dried at 50 ° C. for 3 hours, measured, and the average pore diameter and pore volume were determined.
(4) The strength at break was measured according to ASTM D882.
(5) The air permeability was measured according to JISP8117.
(6) Opening degree and average diameter of fibrils The opening degree was measured by randomly taking 10 2,000 times photographs of a scanning electron microscope, and the closed part (shown in black and enlarged when the closed state was observed). The ratio was calculated from the area) and the area of the aperture.
The average diameter of the stem fibrils and the branch fibrils was taken at random from 50,000 times the photomicrograph of the electron micrograph of the aperture, and the vertical and horizontal dimensions in the field image of 1.8 μm x 2.3 μm Five uniform lines including the upper, lower, left and right ends were drawn, and the average diameter of the intersecting trunk fibrils and branch fibrils was determined to calculate the average value.
The scanning microscope used S-5200 manufactured by Hitachi High-Technologies, and platinum was sputtered to a thickness of about 2 nm to coat the surface, and the acceleration voltage was measured at 2 kV. Image dimensions were calibrated with a reference sample.

[実施例1]
粘度平均分子量が2×10の超高分子量ポリエチレン(三井化学株式会社製「ハイゼックスミリオン」240S)30重量部と3.5×10の高密度ポリエチレン70重量部とデカリン244重量部および流動パラフィン(40℃における粘度が68×10−6/s)244重量部を2軸混練押し出し機を用いて180℃で溶解させてゾル化し、該ゾル化物をフラットフィルム押し出しダイを介して190℃で押し出し、水中に吐出してゲル状シートを成形した。続いてこのゲル状シートを、80℃で加熱してデカリンを1重量%以下まで除いた。次いで115℃で縦方向に5倍、ついで115℃で横方向に10倍で延伸を行い、延伸膜を得た。延伸膜は130℃(溶媒除去後の1stDSCの融点がショルダー含めダブルピークなる熱固定温度)で熱固定され、得られた延伸膜をヘキサンで洗浄して残留する流動パラフィンを抽出除去した後、乾燥及び熱処理を行いポリエチレン微多孔膜を得た。
このポリエチレン微多孔膜の物性および走査電子顕微鏡による表面観察の結果を表1に示す。
[Example 1]
30 parts by weight of ultra high molecular weight polyethylene having a viscosity average molecular weight of 2 × 10 6 (“Hi-Zex Million” 240S manufactured by Mitsui Chemicals, Inc.), 70 parts by weight of high-density polyethylene of 3.5 × 10 5 , 244 parts by weight of decalin and liquid paraffin (A viscosity at 40 ° C. is 68 × 10 −6 m 2 / s) 244 parts by weight are dissolved at 180 ° C. using a twin-screw kneading extruder to form a sol, and the sol product is 190 ° C. through a flat film extrusion die. And extruded into water to form a gel sheet. Subsequently, the gel-like sheet was heated at 80 ° C. to remove decalin to 1% by weight or less. Next, the film was stretched 5 times in the longitudinal direction at 115 ° C. and then 10 times in the transverse direction at 115 ° C. to obtain a stretched film. The stretched membrane is heat-set at 130 ° C. (heat setting temperature at which the melting point of 1st DSC after solvent removal has a double peak including the shoulder), and the resulting stretched membrane is washed with hexane to remove residual liquid paraffin and then dried. And a heat treatment was performed to obtain a polyethylene microporous membrane.
Table 1 shows the physical properties of this polyethylene microporous membrane and the results of surface observation by a scanning electron microscope.

[実施例2〜5]
表1に記載のとおりの超高分子量ポリエチレン、高密度ポリエチレン、溶媒を用いて、実施例1と同様にポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜の物性および走査電子顕微鏡による表面観察の結果を表1に示す。
[Examples 2 to 5]
A polyethylene microporous membrane was obtained in the same manner as in Example 1 using ultrahigh molecular weight polyethylene, high density polyethylene, and a solvent as described in Table 1. Table 1 shows the physical properties of the obtained polyethylene microporous film and the results of surface observation by a scanning electron microscope.

Figure 2006111712
Figure 2006111712

[比較例1〜4]
表2に記載のとおりの超高分子量ポリエチレン、高密度ポリエチレン、溶媒を用いて、実施例1と同様にポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜の物性および走査電子顕微鏡による表面観察の結果を表2に示す。
[Comparative Examples 1-4]
A polyethylene microporous membrane was obtained in the same manner as in Example 1 using ultrahigh molecular weight polyethylene, high density polyethylene, and a solvent as described in Table 2. Table 2 shows the physical properties of the obtained polyethylene microporous film and the results of surface observation by a scanning electron microscope.

Figure 2006111712
Figure 2006111712

実施例1で得られた膜の走査型電子顕微鏡の2,000倍写真図である。2 is a 2,000 times photograph of a scanning electron microscope of the film obtained in Example 1. FIG. 実施例1で得られた膜の開孔部の電子顕微鏡写真の50,000倍写真図である。2 is a 50,000 times photographic view of an electron micrograph of an aperture portion of the film obtained in Example 1. FIG.

Claims (9)

粘度平均分子量が5×10以上の超高分子量ポリオレフィンを1重量%以上含むポリオレフィン組成物からなり、空孔率25〜60%であり、枝幹状のフィブリルからなる開孔構造を有するポリオレフィン微多孔膜であって、走査電子顕微鏡で表面観察される開孔部の占める面積が80%以上であり、開孔部において、幹状フィブリルの平均直径が0.01〜0.05μmであり、幹に交差する枝状フィブリルの平均直径が0.01〜0.03μmであることを特徴とするポリオレフィン微多孔膜。 A polyolefin fine particle comprising a polyolefin composition containing 1% by weight or more of an ultrahigh molecular weight polyolefin having a viscosity average molecular weight of 5 × 10 5 or more, having a porosity of 25 to 60%, and having an open pore structure composed of branched fibrils It is a porous film, and the area occupied by the aperture observed on the surface with a scanning electron microscope is 80% or more, and the average diameter of the stem fibrils is 0.01 to 0.05 μm in the aperture, A polyolefin microporous membrane, wherein the average diameter of the branched fibrils intersecting with each other is 0.01 to 0.03 μm. コールターポロメータで測定される平均孔径が0.01〜0.1μmである請求項1に記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to claim 1, wherein an average pore diameter measured by a Coulter porometer is 0.01 to 0.1 µm. コールターポロメータで測定される細孔容積が0.3〜1.0ml/gである請求項1または2に記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to claim 1 or 2, wherein the pore volume measured by a Coulter porometer is 0.3 to 1.0 ml / g. 粘度平均分子量が5×10以上のポリオレフィンを少なくとも1重量%含むポリオレフィン組成物5〜70重量部と、大気圧における沸点が200℃以上の溶媒(A)および200℃未満の揮発性溶媒(B)とからなる混合溶媒30〜95重量部とを含む溶液を調製し、前記溶液をポリオレフィン組成物の融点+60℃以下の温度でダイより押出し、冷却してゲル状組成物を形成し、前記ゲル状組成物から溶媒(B)を除去した後、延伸し、次いで溶媒(A)を除去することを特徴とする請求項1〜3のいずれかに記載のポリオレフィン微多孔膜の製造方法。 5 to 70 parts by weight of a polyolefin composition containing at least 1% by weight of a polyolefin having a viscosity average molecular weight of 5 × 10 5 or more, a solvent (A) having a boiling point at atmospheric pressure of 200 ° C. or higher, and a volatile solvent (B And a solution containing 30 to 95 parts by weight of a mixed solvent, and extruding the solution from a die at a temperature not higher than the melting point of the polyolefin composition + 60 ° C. and cooling to form a gel composition. The method for producing a polyolefin microporous membrane according to any one of claims 1 to 3, wherein the solvent (B) is removed from the composition and then stretched, and then the solvent (A) is removed. ポリオレフィン組成物100重量部に対し、大気圧における沸点が200℃以上の溶媒(A)を50重量部以上用いる請求項4に記載のポリオレフィン微多孔膜の製造方法。   The method for producing a polyolefin microporous membrane according to claim 4, wherein 50 parts by weight or more of the solvent (A) having a boiling point of 200 ° C or higher at atmospheric pressure is used with respect to 100 parts by weight of the polyolefin composition. ポリオレフィン組成物100重量部に対し、溶媒(A)を100重量部以上用いる請求項4または5に記載のポリオレフィン微多孔膜の製造方法。   The method for producing a polyolefin microporous membrane according to claim 4 or 5, wherein the solvent (A) is used in an amount of 100 parts by weight or more based on 100 parts by weight of the polyolefin composition. 溶媒(A)はパラフィン、ひまし油、および鉱油からなる群より選ばれる少なくとも1種である請求項4〜6のいずれかに記載のポリオレフィン微多孔膜の製造方法。   The method for producing a polyolefin microporous membrane according to any one of claims 4 to 6, wherein the solvent (A) is at least one selected from the group consisting of paraffin, castor oil, and mineral oil. 溶媒(B)はデカリン、テトラリン、およびヘキサンからなる群より選ばれる少なくとも1種である請求項4〜7のいずれかに記載のポリオレフィン微多孔膜の製造方法。   The method for producing a polyolefin microporous membrane according to any one of claims 4 to 7, wherein the solvent (B) is at least one selected from the group consisting of decalin, tetralin, and hexane. 請求項1〜3のいずれかに記載のポリオレフィン微多孔膜の電池用セパレータとしての使用。   Use of the polyolefin microporous membrane according to any one of claims 1 to 3 as a battery separator.
JP2004299827A 2004-10-14 2004-10-14 Polyolefin microporous film Pending JP2006111712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299827A JP2006111712A (en) 2004-10-14 2004-10-14 Polyolefin microporous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299827A JP2006111712A (en) 2004-10-14 2004-10-14 Polyolefin microporous film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009252999A Division JP2010024463A (en) 2009-11-04 2009-11-04 Method for producing polyolefin microporous film, and method for manufacturing separator for battery

Publications (2)

Publication Number Publication Date
JP2006111712A true JP2006111712A (en) 2006-04-27
JP2006111712A5 JP2006111712A5 (en) 2009-12-17

Family

ID=36380503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299827A Pending JP2006111712A (en) 2004-10-14 2004-10-14 Polyolefin microporous film

Country Status (1)

Country Link
JP (1) JP2006111712A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149895A1 (en) * 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP2010024463A (en) * 2009-11-04 2010-02-04 Teijin Solfill Kk Method for producing polyolefin microporous film, and method for manufacturing separator for battery
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
JP2010053245A (en) * 2008-08-28 2010-03-11 Teijin Ltd Polyolefin microporous membrane
WO2011118735A1 (en) * 2010-03-24 2011-09-29 帝人株式会社 Polyolefin microporous membrane, method for producing same, separator for nonaqueous secondary battery and nonaqueous secondary battery
CN102473887A (en) * 2010-03-23 2012-05-23 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
WO2012137847A1 (en) * 2011-04-05 2012-10-11 ダブル・スコープ株式会社 Porous membrane and method for producing same
JPWO2018043331A1 (en) * 2016-08-29 2019-06-24 東レ株式会社 Microporous membrane, lithium ion secondary battery and method of producing microporous membrane
CN114649636A (en) * 2022-01-06 2022-06-21 李鑫 Dry-process pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228718A (en) * 1994-02-16 1995-08-29 Tonen Chem Corp Microporous polyolefin film
WO1999048959A1 (en) * 1998-03-24 1999-09-30 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyolefin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228718A (en) * 1994-02-16 1995-08-29 Tonen Chem Corp Microporous polyolefin film
WO1999048959A1 (en) * 1998-03-24 1999-09-30 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyolefin film

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892672B2 (en) 2007-06-06 2011-02-22 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
KR100971110B1 (en) * 2007-06-06 2010-07-20 데이진 가부시키가이샤 Separator for nonaqueous secondary battery and nonaqueous secondary battery
WO2008149895A1 (en) * 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
CN101779311B (en) * 2007-06-06 2013-11-20 帝人株式会社 Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JPWO2008149895A1 (en) * 2007-06-06 2010-08-26 帝人株式会社 Polyolefin microporous membrane substrate for non-aqueous secondary battery separator, production method thereof, non-aqueous secondary battery separator and non-aqueous secondary battery
JP4460028B2 (en) * 2007-06-06 2010-05-12 帝人株式会社 Polyolefin microporous membrane substrate for non-aqueous secondary battery separator, production method thereof, non-aqueous secondary battery separator and non-aqueous secondary battery
JP2010092882A (en) * 2008-08-19 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery
KR20110050517A (en) * 2008-08-19 2011-05-13 데이진 가부시키가이샤 Separator for nonaqueous secondary battery
JP4550936B2 (en) * 2008-08-19 2010-09-22 帝人株式会社 Non-aqueous secondary battery separator
KR101716907B1 (en) * 2008-08-19 2017-03-15 데이진 가부시키가이샤 Separator for nonaqueous secondary battery
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
US8815435B2 (en) 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
JP2010053245A (en) * 2008-08-28 2010-03-11 Teijin Ltd Polyolefin microporous membrane
JP2010024463A (en) * 2009-11-04 2010-02-04 Teijin Solfill Kk Method for producing polyolefin microporous film, and method for manufacturing separator for battery
CN102473887A (en) * 2010-03-23 2012-05-23 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
US9680142B2 (en) 2010-03-23 2017-06-13 Teijin Limited Polyolefin microporous membrane, separator for non-aqueous secondary battery, non-aqueous secondary battery and method of producing polyolefin microporous membrane
KR101287467B1 (en) 2010-03-24 2013-07-19 데이진 가부시키가이샤 Polyolefin microporous membrane, method for producing same, separator for nonaqueous secondary battery and nonaqueous secondary battery
US9034509B2 (en) 2010-03-24 2015-05-19 Teijin Limited Polyolefin microporous membrane and method of producing the same, separator for non-aqueous secondary battery and non-aqueous secondary battery
US9178202B2 (en) 2010-03-24 2015-11-03 Teijin Limited Polyolefin microporous membrane and method of producing the same, separator for non-aqueous secondary battery and non-aqueous secondary battery
US9281509B2 (en) 2010-03-24 2016-03-08 Teijin Limited Polyolefin microporous membrane and method of producing the same, separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2011118735A1 (en) * 2010-03-24 2011-09-29 帝人株式会社 Polyolefin microporous membrane, method for producing same, separator for nonaqueous secondary battery and nonaqueous secondary battery
WO2012137847A1 (en) * 2011-04-05 2012-10-11 ダブル・スコープ株式会社 Porous membrane and method for producing same
JPWO2018043331A1 (en) * 2016-08-29 2019-06-24 東レ株式会社 Microporous membrane, lithium ion secondary battery and method of producing microporous membrane
JP7047382B2 (en) 2016-08-29 2022-04-05 東レ株式会社 Polyolefin microporous membrane, lithium ion secondary battery and polyolefin microporous membrane manufacturing method
CN114649636A (en) * 2022-01-06 2022-06-21 李鑫 Dry-process pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm
CN114649636B (en) * 2022-01-06 2023-08-18 北京沐昱新能源科技有限公司 Dry pole piece with liquid-solid two-phase hot-pressing bonding performance and oil-containing diaphragm

Similar Documents

Publication Publication Date Title
JP4494637B2 (en) Polyolefin microporous membrane and method for producing the same
JP4997278B2 (en) Polyethylene microporous membrane and method for producing the same
JP2010024463A (en) Method for producing polyolefin microporous film, and method for manufacturing separator for battery
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
TWI393735B (en) Microporous polyolefin membrane and the method for preparing the same
JP4121846B2 (en) Polyolefin microporous membrane and production method and use thereof
JP5005387B2 (en) Method for producing polyolefin microporous membrane
JPH0554495B2 (en)
JPH06240036A (en) Microporous polyolefin film and its production
WO2006104165A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
JPS63273651A (en) Production of fine porous membrane of polyolefin having ultra-high molecular weight
JP4234392B2 (en) Microporous membrane, production method and use thereof
JP2002194132A (en) Polyolefin fine porous film and method of manufacturing the same
JP2005343957A (en) Method for producing polyethylene fine porous film, fine porous film and use of the same
JPWO2006106786A1 (en) Method for producing polyolefin microporous membrane and microporous membrane
JP2002128943A (en) Polyolefin microporous film and its manufacturing method
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JP7380570B2 (en) Polyolefin microporous membrane, battery separator, secondary battery, and manufacturing method of polyolefin microporous membrane
JPH07228718A (en) Microporous polyolefin film
JP2006111712A (en) Polyolefin microporous film
JP3072163B2 (en) Polyolefin microporous membrane, method for producing the same, and battery separator using the same
JPH05222236A (en) Production of polyolefinic microporous film
TW201840666A (en) Microporous polyolefin membrane and battery including same
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JPH0653826B2 (en) Polyethylene microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025