JP5235487B2 - Method for producing inorganic particle-containing microporous membrane - Google Patents

Method for producing inorganic particle-containing microporous membrane Download PDF

Info

Publication number
JP5235487B2
JP5235487B2 JP2008121805A JP2008121805A JP5235487B2 JP 5235487 B2 JP5235487 B2 JP 5235487B2 JP 2008121805 A JP2008121805 A JP 2008121805A JP 2008121805 A JP2008121805 A JP 2008121805A JP 5235487 B2 JP5235487 B2 JP 5235487B2
Authority
JP
Japan
Prior art keywords
plasticizer
mass
microporous membrane
inorganic particles
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008121805A
Other languages
Japanese (ja)
Other versions
JP2009270013A (en
Inventor
一洋 大海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008121805A priority Critical patent/JP5235487B2/en
Publication of JP2009270013A publication Critical patent/JP2009270013A/en
Application granted granted Critical
Publication of JP5235487B2 publication Critical patent/JP5235487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、無機粒子含有微多孔膜の製造方法、及び無機粒子含有微多孔膜からなる蓄電池セパレータに関する。   The present invention relates to a method for producing an inorganic particle-containing microporous membrane and a storage battery separator comprising the inorganic particle-containing microporous membrane.

微多孔膜は、様々な孔径、孔形状、孔数を有し、その特異な構造により発現され得る特性から幅広い分野に利用されている。リチウムイオン二次電池や電気二重層キャパシタなどの蓄電池には、正負極間の接触を防ぎ、イオンを透過させる機能を有するセパレータと呼ばれる電解液を保持した多孔膜が正負極間に設けられている。近年、リチウムイオン二次電池の性能競争激化に伴い、セパレータとして用いられるポリオレフィン製微多孔膜に対する要求も厳しく、かつ多岐に亘りつつある。
このような事情のもと、例えば特許文献1には、高密度ポリエチレン100質量部に対し、硫酸バリウム、あるいは炭酸カルシウム等の無機フィラーが50〜400質量部、25℃以上で固体で且つ沸点が140℃以上の常温固体可塑剤が1〜30質量部配合された多孔性フィルムが開示されている。
Microporous membranes have various pore diameters, pore shapes, and numbers of pores, and are used in a wide range of fields because of their characteristics that can be manifested by their unique structures. In storage batteries such as lithium ion secondary batteries and electric double layer capacitors, a porous film holding an electrolytic solution called a separator having a function of preventing contact between positive and negative electrodes and transmitting ions is provided between the positive and negative electrodes. . In recent years, with the intensification of performance competition for lithium ion secondary batteries, demands for polyolefin microporous membranes used as separators have become severe and widespread.
Under such circumstances, for example, Patent Document 1 discloses that an inorganic filler such as barium sulfate or calcium carbonate is 50 to 400 parts by mass, solid at 25 ° C. and has a boiling point with respect to 100 parts by mass of high-density polyethylene. A porous film containing 1 to 30 parts by mass of a normal temperature solid plasticizer at 140 ° C. or higher is disclosed.

特開2005−343930号公報JP 2005-343930 A

ここで、近年の電池組立の高速化に伴い、微多孔膜の更なる強度向上が求められている。強度の向上により、電池組立時の破膜は減少し、歩留まりが改善される方向となる。特に最近は、電池の高容量化に向け、セパレータを薄膜化することが検討されており、より一層の強度向上が望まれている。
しかしながら、従来の微多孔膜はいずれも、微多孔膜の引張強度や引張弾性率の点でなお改良の余地があった。本発明は、良好な引張強度と良好な引張弾性率とを備える微多孔膜の製造方法を提供することを目的としている。
Here, with the recent increase in battery assembly speed, further improvement in the strength of the microporous membrane is required. By improving the strength, the film breakage at the time of battery assembly is reduced, and the yield is improved. Recently, in order to increase the capacity of batteries, it has been studied to reduce the thickness of the separator, and further improvement in strength is desired.
However, all of the conventional microporous membranes still have room for improvement in terms of tensile strength and tensile modulus of the microporous membrane. An object of the present invention is to provide a method for producing a microporous membrane having good tensile strength and good tensile modulus.

本発明者らは、検討を重ねた結果、ポリオレフィン樹脂、無機粒子及び可塑剤を含む樹脂組成物を溶融混練してシート状に成形し、可塑剤を抽出して無機粒子含有微多孔膜を得る、いわゆる湿式法による微多孔膜の製造方法を採用するに際し、特定の可塑剤を組み合わせて用いることにより、引張強度や引張弾性率に優れる微多孔膜を与えることを見出し、本発明を為すに至った。   As a result of repeated studies, the present inventors have melt-kneaded a resin composition containing a polyolefin resin, inorganic particles, and a plasticizer to form a sheet, and extracted the plasticizer to obtain a microporous film containing inorganic particles. In adopting a so-called wet method for producing a microporous membrane, it has been found that by using a specific plasticizer in combination, a microporous membrane having excellent tensile strength and tensile elastic modulus can be obtained, and the present invention has been achieved. It was.

すなわち、本発明は以下の通りである。
[1]
ポリオレフィン樹脂、無機粒子及び可塑剤を含む樹脂組成物を溶融混練し、シート状に成形し二軸延伸した後、可塑剤を抽出して微多孔膜を得る無機粒子含有微多孔膜の製造方法であって、
前記無機粒子の、ポリオレフィン樹脂と無機粒子と可塑剤との総量中に占める割合が20
質量%以下であり、前記可塑剤が、SP値が7.5以上8.5未満である可塑剤(I)と、SP値が8.5以上9.9未満である可塑剤(II)とを含む混合可塑剤であり、前記可塑剤抽出後の微多孔膜中に占める無機粒子の残存割合が30〜60質量%であることを特徴とする無機粒子含有微多孔膜の製造方法。

前記可塑剤(I)の、前記混合可塑剤中に占める割合が60〜90質量%である[記載の製造方法。

前記可塑剤(I)の、前記混合可塑剤中に占める割合が20〜55質量%である[記載の製造方法。

前記無機粒子が珪素酸化物である請求項[1]〜[]のいずれかに記載の製造方法。[
[1]〜[]のいずれかに記載の製造方法により得られる無機粒子含有微多孔膜からなる蓄電池セパレータ。
That is, the present invention is as follows.
[1]
A method for producing a microporous membrane containing inorganic particles, in which a resin composition containing a polyolefin resin, inorganic particles and a plasticizer is melt-kneaded, formed into a sheet and biaxially stretched, and then the plasticizer is extracted to obtain a microporous membrane Because
The proportion of the inorganic particles in the total amount of polyolefin resin, inorganic particles, and plasticizer is 20
A plasticizer (I) having an SP value of 7.5 or more and less than 8.5, and a plasticizer (II) having an SP value of 8.5 or more and less than 9.9. mixed plasticizers der is, the production method of the inorganic particles-containing microporous membrane remaining ratio of the inorganic particles occupying in the microporous film after the plasticizer extraction and wherein 30 to 60% by mass Rukoto including.
[ 2 ]
The production method according to [ 1 ], wherein a proportion of the plasticizer (I) in the mixed plasticizer is 60 to 90% by mass.
[ 3 ]
The manufacturing method as described in [ 1 ] whose ratio which the said plasticizer (I) accounts in the said mixed plasticizer is 20-55 mass%.
[ 4 ]
The manufacturing method according to any one of claims [1] to [ 3 ], wherein the inorganic particles are silicon oxide. [ 5 ]
A storage battery separator comprising an inorganic particle-containing microporous membrane obtained by the production method according to any one of [1] to [ 4 ].

本発明は、良好な引張強度と良好な引張弾性率とを備える微多孔膜の製造方法を提供することができる。   The present invention can provide a method for producing a microporous membrane having good tensile strength and good tensile elastic modulus.

以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態の製造方法は、ポリオレフィン樹脂、無機粒子、及び可塑剤を含む樹脂組成物を溶融混練してシート状に成形し、可塑剤を抽出して微多孔膜を得る無機粒子含有微多孔膜の製造方法であって、可塑剤が、SP値が7.5以上8.5未満である可塑剤(I)と、SP値が8.5以上9.9未満である可塑剤(II)との混合物(混合可塑剤)であることを特徴とする。
The best mode for carrying out the present invention (hereinafter abbreviated as “embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
The manufacturing method of the present embodiment is a method comprising melt-kneading a resin composition containing a polyolefin resin, inorganic particles, and a plasticizer to form a sheet, and extracting the plasticizer to obtain a microporous film. A method for producing a film, wherein the plasticizer is an plasticizer (I) having an SP value of 7.5 or more and less than 8.5, and a plasticizer (II) having an SP value of 8.5 or more and less than 9.9 And a mixture (mixed plasticizer).

前記ポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形等に使用するポリオレフィン樹脂をいい、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテン等のホモ重合体及び共重合体、多段重合体等を使用することができる。また、これらのホモ重合体及び共重合体、多段重合体の群から選んだポリオレフィンを単独、もしくは混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられ、これらを単独、もしくは混合して使用することが出来る。本実施の形態の微多孔膜を蓄電池セパレータとして使用する場合に、良好なフューズ特性と良好な突刺強度を実現する観点から、前記ポリオレフィン樹脂としては特に高密度ポリエチレンを含有することが好ましい。
ここで、高密度ポリエチレンが、前記ポリオレフィン樹脂中に占める割合としては、好ましくは10〜70質量%、より好ましくは15〜65質量%である。
The polyolefin resin refers to a polyolefin resin used for ordinary extrusion, injection, inflation, blow molding and the like, and includes ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene. Homopolymers and copolymers such as, multistage polymers and the like can be used. In addition, polyolefins selected from the group of these homopolymers, copolymers, and multistage polymers can be used alone or in combination. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, ethylene propylene rubber, and the like. These can be used alone or in combination. When the microporous membrane of the present embodiment is used as a storage battery separator, it is particularly preferable that the polyolefin resin contains high-density polyethylene from the viewpoint of realizing good fuse characteristics and good puncture strength.
Here, the proportion of the high-density polyethylene in the polyolefin resin is preferably 10 to 70% by mass, more preferably 15 to 65% by mass.

前記ポリオレフィン樹脂または微多孔膜の粘度平均分子量は、5万以上1000万未満が好ましい。粘度平均分子量が5万以上であれば、溶融成形の際のメルトテンションが大きくなり成形性が向上しやすい上に、十分な絡み合いを付与しやすく高強度となりやすいので好ましい。粘度平均分子量が1000万未満であれば、均一な溶融混練を得やすい傾向があり、シートの成形性、特に厚み安定性に優れる傾向があるので好ましい。より好ましい粘度領域は10万以上200万未満であり、さらには50万以上100万未満である。200万未満であれば高ポリマー濃度での溶融混練が容易な傾向であり生産性向上が期待できるばかりか、熱収縮が低減する傾向にあるために好ましい。例えば、単独で粘度平均分子量200万未満のポリオレフィンを使用する代わりに、粘度平均分子量が200万のポリエチレンと27万の混合物とし、混合物の粘度平均分子量を200万未満としてもよい。   The polyolefin resin or the microporous membrane preferably has a viscosity average molecular weight of 50,000 or more and less than 10 million. A viscosity average molecular weight of 50,000 or more is preferable because the melt tension at the time of melt molding is increased and the moldability is easily improved, and sufficient entanglement is easily imparted and the strength is easily increased. If the viscosity average molecular weight is less than 10 million, it tends to be easy to obtain uniform melt-kneading and is preferable because it tends to be excellent in sheet formability, particularly thickness stability. A more preferable viscosity region is 100,000 or more and less than 2 million, and further 500,000 or more and less than 1 million. If it is less than 2 million, melt kneading at a high polymer concentration tends to be easy and productivity improvement can be expected, and heat shrinkage tends to be reduced, which is preferable. For example, instead of using a polyolefin having a viscosity average molecular weight of less than 2 million alone, a mixture of polyethylene having a viscosity average molecular weight of 2 million and 270,000 may be used, and the viscosity average molecular weight of the mixture may be less than 2 million.

耐熱性の観点から、前記ポリオレフィン樹脂はポリプロピレンを含むことが好ましい。特に高密度ポリエチレンとポリプロピレンとを混合して使用することが、高突刺強度と耐熱性とを共に向上させ得る観点から好ましい。
ポリプロピレンが、前記ポリオレフィン樹脂中に占める割合としては、好ましくは1〜50質量%であり、より好ましくは5〜40質量%であり、更に好ましくは20〜30質量%である。当該割合を1質量%以上とすることは、良好な耐熱性が得る観点から好ましく、50質量%以下とすることは、延伸性を向上させ、また、微多孔膜の高突刺強度を実現する観点から好ましい。
From the viewpoint of heat resistance, the polyolefin resin preferably contains polypropylene. In particular, it is preferable to use a mixture of high-density polyethylene and polypropylene from the viewpoint of improving both high puncture strength and heat resistance.
As a ratio for which a polypropylene accounts in the said polyolefin resin, Preferably it is 1-50 mass%, More preferably, it is 5-40 mass%, More preferably, it is 20-30 mass%. Setting the proportion to 1% by mass or more is preferable from the viewpoint of obtaining good heat resistance, and setting it to 50% by mass or less improves the stretchability and realizes high puncture strength of the microporous membrane. To preferred.

前記可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であることが好ましい。また、好ましくは常温において液体である。
SP値が7.5以上8.5未満の可塑剤(可塑剤(I))としては、例えば、流動パラフィン(「LP」と略記することがある。SP値8.4)、プロセスオイル等の鉱物油、キシレン、デカリン等の炭化水素油等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
一方、SP値が8.5以上9.9未満の可塑剤(可塑剤(II))としては、例えば、フタル酸ジブチル(「DBP」と略記することがある。SP値9.4、融点−35℃)、フタル酸ジー2ーエチルヘキシル(「DOP」と略記することがある。SP値8.9、融点−55℃)等のフタル酸エステル、セバシン酸ジオクチル(「DOS」と略記することがある。SP値8.6、融点−62℃)等のセバシン酸エステル、アジピン酸ジオクチル(「DOA」と略記することがある。SP値8.6、融点−70℃)等のアジピン酸エステル、トリメリット酸トリオクチル(「TOTM」と略記することがある。SP値9.5、融点−30℃)等のトリメリット酸エステル、リン酸トリオクチル、(「TOP」と略記することがある。SP値9.2、融点−70℃)等のリン酸エステルが挙げられる。これらは1種を単独で、又は2種以上を併用することができる。
The plasticizer is preferably a non-volatile solvent capable of forming a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin. Moreover, it is preferably a liquid at normal temperature.
As a plasticizer (plasticizer (I)) having an SP value of 7.5 or more and less than 8.5, for example, liquid paraffin (abbreviated as “LP”, SP value 8.4), process oil, etc. Examples thereof include hydrocarbon oils such as mineral oil, xylene, and decalin. These can be used alone or in combination of two or more.
On the other hand, as a plasticizer (plasticizer (II)) having an SP value of 8.5 or more and less than 9.9, for example, dibutyl phthalate (“DBP”) may be abbreviated as SP value 9.4, melting point − 35 ° C.), di-2-ethylhexyl phthalate (may be abbreviated as “DOP”, SP value 8.9, melting point −55 ° C.) and the like, and dioctyl sebacate (“DOS”). A sebacic acid ester such as SP value 8.6, melting point −62 ° C., adipic acid ester such as dioctyl adipate (“DOA”, SP value 8.6, melting point −70 ° C.), Trioctyl trimellitic acid (sometimes abbreviated as “TOTM”, SP value 9.5, melting point −30 ° C.) and other trimellitic acid esters, trioctyl phosphate, (sometimes abbreviated as “TOP”, SP value) 9. , And phosphate with a melting point of -70 ° C.) and the like. These can be used alone or in combination of two or more.

特にポリオレフィン樹脂がポリエチレンの場合、流動パラフィンとフタル酸ジー2ーエチルヘキシルの組み合わせは、該混合可塑剤が、ポリエチレンと無機粒子との混合物に対して相溶性が高く、延伸時にポリエチレンと無機粒子と可塑剤との界面剥離が起こりにくいために均一な延伸を実施しやすく、従って、高強度及び高弾性率を有する微多孔膜を実現する観点から好ましい。   In particular, when the polyolefin resin is polyethylene, the combination of liquid paraffin and di-2-ethylhexyl phthalate is highly compatible with the mixture of polyethylene and inorganic particles, and the polyethylene and inorganic particles are plasticized during stretching. Since the interfacial peeling with the agent is unlikely to occur, uniform stretching is easy to implement, and is therefore preferable from the viewpoint of realizing a microporous film having high strength and high elastic modulus.

前記可塑剤(I)と可塑剤(II)との組み合わせにおいて、前記可塑剤(I)の、前記混合可塑剤中に占める割合としては、好ましくは10〜90質量%、より好ましくは20〜80質量%である。当該質量分率が10質量%以上の場合、ポリオレフィン樹脂と無機粒子の分散が行われやすい傾向があるので好ましい。一方、90質量%以下の場合、無機粒子の凝集が起こりにくく均一な延伸が行われやすい傾向があるので好ましい。
ここで、得られる微多孔膜の突刺し強度を向上させる観点から、前記可塑剤(I)の、前記混合可塑剤中に占める割合としては、好ましくは60〜90質量%、より好ましくは60〜80質量%である。
一方、得られる微多孔膜の引張弾性率を向上させる観点から、前記可塑剤(I)の、前記混合可塑剤中に占める割合としては、好ましくは20〜55質量%、より好ましくは25〜50質量%である。
In the combination of the plasticizer (I) and the plasticizer (II), the proportion of the plasticizer (I) in the mixed plasticizer is preferably 10 to 90% by mass, more preferably 20 to 80%. % By mass. When the said mass fraction is 10 mass% or more, since there exists a tendency for dispersion | distribution of polyolefin resin and an inorganic particle to be performed, it is preferable. On the other hand, the content of 90% by mass or less is preferable because aggregation of inorganic particles hardly occurs and uniform stretching tends to be performed.
Here, from the viewpoint of improving the puncture strength of the obtained microporous membrane, the proportion of the plasticizer (I) in the mixed plasticizer is preferably 60 to 90% by mass, and more preferably 60 to 90%. 80% by mass.
On the other hand, from the viewpoint of improving the tensile elastic modulus of the obtained microporous membrane, the proportion of the plasticizer (I) in the mixed plasticizer is preferably 20 to 55% by mass, more preferably 25 to 50%. % By mass.

なお、本実施の形態でいう「SP値」とは、溶解度パラメータ:秋山三郎らによる、ポリマーブレンド 125頁〜(1981年 シーエムシー刊)に記載されている方法や、SmallによるJournal of AppliedChemistry 第3巻 71頁〜(1953年)の方法により計算される値である。   The “SP value” as used in the present embodiment is a solubility parameter: a method described in Saburo Akiyama et al., Polymer Blends, page 125 to (published by CMC, 1981), Journal of Applied Chemistry 3rd by Small. It is a value calculated by the method of Volume 71-(1953).

本実施の形態の製造方法においては、上述したポリオレフィン樹脂と可塑剤に、更に無機粒子が配合される。無機粒子は、ポリオレフィン樹脂に対して不活性であるものが好ましい。
また、無機粒子としては、室温における電気抵抗率が10−2Ω・cm以上の無機粒子が好ましい。より好ましくは1014Ω・cm以上である。電気抵抗率が10−2Ω・cm以上の無機粒子を用いることは、微多孔膜を蓄電デバイス用セパレータとして用いた場合に、電極間において電子絶縁性を向上させる観点から好ましい。
In the manufacturing method of the present embodiment, inorganic particles are further blended with the above-described polyolefin resin and plasticizer. The inorganic particles are preferably inert to the polyolefin resin.
As the inorganic particles, inorganic particles having an electrical resistivity at room temperature of 10 −2 Ω · cm or more are preferable. More preferably, it is 10 14 Ω · cm or more. The use of inorganic particles having an electrical resistivity of 10 −2 Ω · cm or more is preferable from the viewpoint of improving the electronic insulation between the electrodes when the microporous film is used as a separator for an electricity storage device.

無機粒子としてより具体的には、例えば、珪素、アルミニウム、チタン、マグネシウムなどの酸化物や窒化物、カルシウム、バリウムなどの炭酸塩や硫酸塩が好ましい。これらは1種を単独で、又は2種以上を併用することができる。珪素酸化物は、軽量化、低コスト化の点で優れる。また、アルミニウム酸化物は耐薬品性に優れ、特に非水電池用セパレータとして使用した場合に生じる可能性のあるフッ酸との反応性が低い点で優れる。チタン酸化物は高透過性の微多孔膜が得られやすい点で優れる。
また、適宜、表面処理を施した無機粒子を用いることが出来る。例えば、水系溶媒を使用したろ過用途向け微多孔膜や水系電解液蓄電デバイス用セパレータを製造する場合は、親水性処理を施した無機粒子が好適であり、非水系電解液蓄電デバイス用セパレータを製造する場合は、疎水処理を施した無機粒子が好適である。
More specifically, the inorganic particles are preferably oxides and nitrides such as silicon, aluminum, titanium, and magnesium, and carbonates and sulfates such as calcium and barium. These can be used alone or in combination of two or more. Silicon oxide is excellent in terms of weight reduction and cost reduction. In addition, aluminum oxide is excellent in chemical resistance, and particularly excellent in that it has low reactivity with hydrofluoric acid that may occur when used as a separator for nonaqueous batteries. Titanium oxide is excellent in that a highly permeable microporous film can be easily obtained.
Moreover, the inorganic particle which performed the surface treatment suitably can be used. For example, when producing microporous membranes for filtration applications using aqueous solvents and separators for aqueous electrolyte storage devices, hydrophilic particles are suitable, and separators for nonaqueous electrolyte storage devices are manufactured. In this case, inorganic particles that have been subjected to hydrophobic treatment are suitable.

無機粒子の形状としては、球状、棒状、針状、板状といかなる形状であっても構わない。耐熱性の観点から、球状、棒状、針状が好ましい。無機粒子の構造は、例えば多孔構造、層状構造、無孔構造であっても構わない。好ましくは無孔構造である。無孔構造とは、一次粒子内部に内部表面積を実質的に有さない、すなわち、一次粒子自身に微細な細孔を実質的に有さない構造である。一次粒子自身に微細な細孔を実質的に有さない粒子とは、多孔度(P/S)が0.1から3.0の範囲にある粒子をいう。P/Sとは、一次粒子径D(単位:μm)と粒子を構成する物質の密度d(単位:g/cm)から算出される単位重量あたりの表面積Sに対する、比表面積Pの比である。粒子が球形である場合には、粒子1個あたりの表面積はπD×10−12(単位:m)であり、粒子1個の重量は(πDd/6)×10−12(単位:g)であるので、単位重量あたりの表面積Sは、S=6/(Dd)(単位:m/g)となる。比表面積Pは、−196℃における窒素吸着等温線からBET式に基づいて求められる。このような粒子を用いると例えば非水電解液電池用セパレータとして用いた場合に容量低下等の性能劣化を起こし難い傾向がある。理由は定かではないが、一次粒子内部に微細な細孔を実質的に有していなければ、通常の乾燥工程において容易に吸着水等を除去できるために、水分混在による容量低下を引き起こし難いと推測される。さらに、ポリオレフィン樹脂を含む微多孔膜に無孔構造である粒子を用いると耐熱性に優れた微多孔膜が得られる傾向にある。 The shape of the inorganic particles may be any shape such as a spherical shape, a rod shape, a needle shape, or a plate shape. From the viewpoint of heat resistance, a spherical shape, a rod shape, and a needle shape are preferable. The structure of the inorganic particles may be, for example, a porous structure, a layered structure, or a nonporous structure. A non-porous structure is preferred. The non-porous structure is a structure that does not substantially have an internal surface area inside the primary particles, that is, has substantially no fine pores in the primary particles themselves. The particles having substantially no fine pores in the primary particles themselves are particles having a porosity (P / S) in the range of 0.1 to 3.0. P / S is the ratio of the specific surface area P to the surface area S per unit weight calculated from the primary particle diameter D (unit: μm) and the density d (unit: g / cm 3 ) of the substance constituting the particles. is there. When the particles are spherical, the surface area per particle is πD 2 × 10 −12 (unit: m 2 ), and the weight of one particle is (πD 3 d / 6) × 10 −12 (unit). : G), the surface area S per unit weight is S = 6 / (Dd) (unit: m 2 / g). The specific surface area P is obtained from a nitrogen adsorption isotherm at −196 ° C. based on the BET equation. When such particles are used, for example, when used as a separator for a non-aqueous electrolyte battery, there is a tendency that performance deterioration such as capacity reduction is difficult to occur. The reason is not clear, but if it does not substantially have fine pores inside the primary particles, it is easy to remove adsorbed water etc. in the normal drying process, so it is difficult to cause capacity reduction due to moisture mixing. Guessed. Furthermore, when particles having a nonporous structure are used for a microporous membrane containing a polyolefin resin, a microporous membrane excellent in heat resistance tends to be obtained.

無機粒子の粒径としては、1nm以上200nm未満であることが好ましく、6nm以上100nm未満がより好ましく、10nm以上60nm未満が更に好ましい。粒径は走査型電子顕微鏡や透過型電子顕微鏡にて計測できる。粒径が200nm未満の場合は、延伸等を施した場合でもポリオレフィンと粒子間での剥離が生じにくいためにマクロボイドの発生を抑制出来る傾向にあり高強度となりやすい。また粒子がポリオレフィン中に分散し融着した状態となるために耐熱性においても優れる傾向がある。   The particle size of the inorganic particles is preferably 1 nm or more and less than 200 nm, more preferably 6 nm or more and less than 100 nm, still more preferably 10 nm or more and less than 60 nm. The particle size can be measured with a scanning electron microscope or a transmission electron microscope. When the particle size is less than 200 nm, even when stretching or the like is performed, peeling between the polyolefin and the particles is difficult to occur, so that generation of macrovoids tends to be suppressed and high strength tends to be obtained. Further, since the particles are dispersed and fused in the polyolefin, the heat resistance tends to be excellent.

無機粒子が、ポリオレフィン樹脂と無機粒子と可塑剤との総量中に占める割合としては、好ましくは6質量%以上55質量%以下である。より好ましくは7質量%以上50質量%以下であり、さらに好ましくは7質量%以上45質量%未満である。6質量%以上の場合は、ポリオレフィン樹脂を含有する微多孔膜において耐熱性に優れた微多孔膜が得られやすい。55質量%以下であれば、高強度が得られやすい。また電池用セパレータとして使用した際に高温保存時の容量低下が起こり難く、信頼性に優れる。特に、20質量%以下である場合、当該傾向が顕著となり好ましい。   The proportion of the inorganic particles in the total amount of the polyolefin resin, the inorganic particles, and the plasticizer is preferably 6% by mass or more and 55% by mass or less. More preferably, it is 7 mass% or more and 50 mass% or less, More preferably, it is 7 mass% or more and less than 45 mass%. When the content is 6% by mass or more, a microporous film having excellent heat resistance can be easily obtained in a microporous film containing a polyolefin resin. If it is 55 mass% or less, high intensity | strength will be easy to be obtained. Further, when used as a battery separator, the capacity is hardly lowered during high-temperature storage, and the reliability is excellent. In particular, when the content is 20% by mass or less, the tendency becomes remarkable, which is preferable.

なお、前記ポリオレフィン樹脂には必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の添加剤を混合して使用できる。   In addition, the polyolefin resin, if necessary, antioxidants such as phenolic, phosphorus and sulfur, metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, Additives such as antifogging agents and coloring pigments can be mixed and used.

本実施の形態の製造方法は、例えば以下の(1)〜(4)各工程、
(1)ポリオレフィン樹脂と、可塑剤(I)と、可塑剤(II)と、無機粒子とを含む樹脂組成物を溶融混練する工程、
(2)(1)の工程により得られた溶融混練物からシートを成形し、冷却固化する工程、
(3)(2)の工程により得られたシートを、例えば面倍率が20倍以上100倍未満で少なくとも一軸方向に延伸する工程、
(4)(3)の工程により得られた延伸物から可塑剤を抽出し、微多孔膜を作製する工程、
を含む。
The manufacturing method of the present embodiment includes, for example, the following steps (1) to (4):
(1) a step of melt-kneading a resin composition containing a polyolefin resin, a plasticizer (I), a plasticizer (II), and inorganic particles;
(2) A step of forming a sheet from the melt-kneaded product obtained by the step (1) and cooling and solidifying it,
(3) A step of stretching the sheet obtained by the step (2) at least in a uniaxial direction with a surface magnification of 20 times or more and less than 100 times,
(4) A step of extracting a plasticizer from the stretched product obtained in the step (3) to produce a microporous membrane,
including.

(1)の工程において、使用される可塑剤の比率については、均一な溶融混練が可能な比率であり、シート状の微多孔膜前駆体を成形し得るのに充分な比率であり、かつ生産性を損なわない程度であることが好ましい。
当該可塑剤の、ポリオレフィン樹脂と可塑剤と無機粒子との総量中に占める割合としては、好ましくは30〜80質量%、更に好ましくは40〜70質量%である。可塑剤の質量分率が80質量%以下の場合、溶融成形時のメルトテンションが不足しにくく成形性が向上する傾向があるので好ましい。一方、質量分率が30質量%以上の場合は、延伸倍率の増大に伴い厚み方向に薄くなり、薄膜を得ることが可能であるので好ましい。また可塑化効果が十分なために結晶状の折り畳まれたラメラ晶を効率よく引き伸ばすことができる。高倍率の延伸を施した場合においてもポリオレフィン鎖の切断が起こらず均一かつ微細な孔構造となり強度も増加しやすい。
ポリオレフィン樹脂と無機粒子と可塑剤とを溶融混練する方法は、該混合物を押出機、ニーダー等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と無機粒子と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法が好ましい。
In the step (1), the ratio of the plasticizer used is a ratio that enables uniform melt-kneading, is a ratio sufficient to form a sheet-like microporous membrane precursor, and is produced. It is preferable that it is a grade which does not impair property.
The proportion of the plasticizer in the total amount of the polyolefin resin, the plasticizer, and the inorganic particles is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass. When the plasticizer has a mass fraction of 80% by mass or less, the melt tension at the time of melt molding is hardly insufficient and the moldability tends to be improved, which is preferable. On the other hand, when the mass fraction is 30% by mass or more, it is preferable because the film becomes thinner in the thickness direction as the draw ratio increases and a thin film can be obtained. Further, since the plasticizing effect is sufficient, the crystalline folded lamellar crystals can be efficiently stretched. Even when stretched at a high magnification, the polyolefin chain is not broken and the pore structure is uniform and fine, and the strength is likely to increase.
A method of melt-kneading a polyolefin resin, inorganic particles, and a plasticizer is performed by introducing the mixture into a resin kneading apparatus such as an extruder or a kneader, and introducing a plasticizer at an arbitrary ratio while the resin is heated and melted. A method of obtaining a uniform solution by kneading a composition comprising inorganic particles and a plasticizer is preferred.

(2)の工程は、溶融混練物を移送し、シート状に成形し、冷却固化させて微多孔膜前駆体を製造する工程である。当該工程は、ポリオレフィン樹脂、無機粒子、可塑剤の均一溶液を、Tダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行うことが好ましい。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身等が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込むと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するためより好ましい。
Tダイよりシート状に押出す際のダイリップ間隔は400μm以上3000μm以下が好ましく、500μm以上2500μmがさらに好ましい。ダイリップ間隔が400μm以上の場合には、メヤニ等が低減され、スジや欠点など膜品位への影響が少なく、その後の延伸工程に於いて膜破断などを防げるので好ましい。3000μm以下の場合は、冷却速度が速く冷却ムラを防げるほか、厚みの安定性を維持できるので好ましい。
The step (2) is a step of manufacturing the microporous membrane precursor by transferring the melt-kneaded material, forming it into a sheet, and cooling and solidifying it. The process involves extruding a uniform solution of polyolefin resin, inorganic particles, and plasticizer into a sheet form through a T-die, etc., and contacting with a heat conductor to cool to a temperature sufficiently lower than the crystallization temperature of the resin. Preferably it is done. As the heat conductor used for cooling and solidification, metal, water, air, plasticizer itself, or the like can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Further, it is more preferable that the metal roll is sandwiched between the rolls because the heat conduction efficiency is further increased, the sheet is oriented and the film strength is increased, and the surface smoothness of the sheet is also improved.
The die lip interval when extruding into a sheet form from a T die is preferably 400 μm or more and 3000 μm or less, and more preferably 500 μm or more and 2500 μm. A die lip spacing of 400 μm or more is preferable because it reduces the meander and the like, has less influence on the film quality such as streaks and defects, and prevents film breakage in the subsequent stretching process. A thickness of 3000 μm or less is preferable because the cooling rate is high and uneven cooling can be prevented and the thickness stability can be maintained.

(3)の工程において、延伸方向は少なくとも一軸延伸である。二軸方向に高倍率延伸した場合、面方向に分子配向するため裂けにくく安定な構造となり高い突刺強度が得られる。延伸方法は同時二軸延伸、逐次二軸延、多段延伸、多数回延伸等のいずれの方法を単独もしくは併用することも構わないが、延伸方法が同時二軸延伸であることが突刺強度の増加や膜厚均一化の観点から最も好ましい。ここでいう同時二軸延伸とは機械方向(又は長さ方向。以下、「MD方向」と略記することがある)の延伸とTD方向(幅方向。以下、「TD方向」と略記することがある)の延伸が同時に施される手法であり、各方向の変形率は異なっても良い。逐次二軸延伸とは、MD方向、またはTD方向の延伸が独立して施される手法であり、MD方向、またはTD方向に延伸がなされている際は、他方向が非拘束状態、または定長に固定されている状態にある。   In the step (3), the stretching direction is at least uniaxial stretching. When the film is stretched at a high magnification in the biaxial direction, it has a stable structure that is difficult to tear because of molecular orientation in the plane direction, and a high puncture strength is obtained. The stretching method may be simultaneous biaxial stretching, sequential biaxial stretching, multi-stage stretching, multiple stretching, etc., either alone or in combination, but if the stretching method is simultaneous biaxial stretching, the piercing strength is increased. And from the viewpoint of uniform film thickness. The term “simultaneous biaxial stretching” as used herein refers to stretching in the machine direction (or length direction, hereinafter abbreviated as “MD direction”) and TD direction (width direction, hereinafter abbreviated as “TD direction”). Is a method in which stretching is performed simultaneously, and the deformation rate in each direction may be different. Sequential biaxial stretching is a technique in which stretching in the MD direction or TD direction is performed independently. When stretching is performed in the MD direction or TD direction, the other direction is unconstrained or fixed. It is in a state of being fixed to the length.

延伸倍率としては、面倍率で20倍以上100倍未満の範囲であることが好ましく、20倍以上80倍以下がより好ましく、25倍以上50倍以下の範囲がさらに好ましい。
各軸方向の延伸倍率はMD方向に4倍以上10倍以下、TD方向に4倍以上10倍以下の範囲が好ましく、MD方向に5倍以上8倍以下、TD方向に5倍以上8倍以下の範囲がさらに好ましい。総面積倍率が20倍以上の場合は、膜に十分な突刺強度を付与でき、100倍未満では膜破断を防ぎ、高い生産性が得られるので好ましい。MD方向に4倍以上およびTD方向に4倍以上延伸した場合は、MD方向、TD方向共に膜厚ムラが小さい製品が得られやすいために好ましい。10倍以下では捲回性に優れる傾向となるため好ましい。
The draw ratio is preferably in the range of 20 times to less than 100 times, more preferably 20 times to 80 times, and still more preferably 25 times to 50 times in terms of surface magnification.
The stretching ratio in each axial direction is preferably 4 to 10 times in the MD direction, preferably 4 to 10 times in the TD direction, 5 to 8 times in the MD direction, and 5 to 8 times in the TD direction. The range of is more preferable. When the total area magnification is 20 times or more, sufficient puncture strength can be imparted to the film, and when it is less than 100 times, film breakage is prevented and high productivity is obtained, which is preferable. When the film is stretched 4 times or more in the MD direction and 4 times or more in the TD direction, it is preferable because a product with small film thickness unevenness is easily obtained in both the MD direction and the TD direction. Ten times or less is preferable because the winding property tends to be excellent.

また、延伸温度としては、ポリオレフィンの融点温度−50℃以上、融点温度未満が好ましく、ポリオレフィンの融点温度−30℃以上、融点温度−2℃以下がより好ましく、ポリオレフィンの融点温度−15℃以上、融点温度−3℃以下がさらに好ましい。ポリオレフィンの融点温度−50℃以上では、ポリオレフィンと無機粒子間もしくはポリオレフィンと可塑剤間の界面剥離が生じにくく耐熱性に優れる傾向がある。ポリオレフィンの融点温度未満では高突刺強度が得られやすく、さらに延伸ムラが低減出来るために好ましい。例えば高密度ポリエチレンを用いた場合は、110℃以上132℃以下が好適である。複数のポリオレフィンを混合し用いた場合は、その融解熱量が大きい方のポリオレフィンの融点を基準にすればよい。   Further, the stretching temperature is preferably a melting point temperature of polyolefin of −50 ° C. or higher and lower than the melting point temperature, more preferably a melting point temperature of polyolefin of −30 ° C. or higher, and a melting point temperature of −2 ° C. or lower, The melting point temperature is more preferably −3 ° C. or lower. When the melting point temperature of the polyolefin is −50 ° C. or higher, interfacial peeling between the polyolefin and the inorganic particles or between the polyolefin and the plasticizer hardly occurs, and the heat resistance tends to be excellent. Less than the melting point temperature of polyolefin is preferable because high puncture strength can be easily obtained and uneven stretching can be reduced. For example, when high density polyethylene is used, 110 ° C. or higher and 132 ° C. or lower is preferable. When a plurality of polyolefins are mixed and used, the melting point of the polyolefin having the larger heat of fusion may be used as a reference.

(4)の工程は、(3)の工程の前に実施しても良いが、高突刺強度の観点から(3)の工程の後に行うことが好ましい。
可塑剤を抽出する方法はバッチ式、連続式のいずれでもよいが、抽出溶剤に微多孔膜を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を微多孔膜から実質的に除去することが好ましい。微多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に微多孔膜の端部を拘束することが好ましい。
なお、抽出後の微多孔膜中の可塑剤残存量は1質量%未満にすることが好ましい。
また、抽出後の微多孔膜中に占める無機粒子の残存割合は、好ましくは15〜85質量%、より好ましくは30〜60質量%である。
The step (4) may be performed before the step (3), but is preferably performed after the step (3) from the viewpoint of high piercing strength.
The method of extracting the plasticizer may be either a batch type or a continuous type. However, the plasticizer is extracted by immersing the microporous membrane in an extraction solvent and sufficiently dried, so that the plasticizer is substantially removed from the microporous membrane. It is preferable to remove. In order to suppress shrinkage of the microporous membrane, it is preferable to constrain the end of the microporous membrane during a series of steps of immersion and drying.
The residual amount of plasticizer in the microporous membrane after extraction is preferably less than 1% by mass.
Moreover, the residual ratio of the inorganic particles in the microporous membrane after extraction is preferably 15 to 85% by mass, more preferably 30 to 60% by mass.

抽出溶剤は、ポリオレフィン樹脂、無機粒子に対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、ハイドロフロロエーテルやハイドロフロロカーボン等の非塩素系ハロゲン化溶剤、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンやメチルエチルケトン等のケトン類が挙げられる。   The extraction solvent is a poor solvent for the polyolefin resin and inorganic particles and a good solvent for the plasticizer, and it is desirable that the boiling point is lower than the melting point of the polyolefin microporous membrane. Examples of such an extraction solvent include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, and non-chlorine-based solvents such as hydrofluoroether and hydrofluorocarbon. Examples thereof include halogenated solvents, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, and ketones such as acetone and methyl ethyl ketone.

なお、(4)の工程の後に更に延伸を実施する場合は、少なくとも可塑剤抽出後の延伸倍率が面倍率として4倍未満とすることが好ましく、3倍未満がさらに好ましい。面倍率が4倍未満であれば、マクロボイドの発生や突刺強度低下を抑制できるために好ましい。
また、上記延伸の後に、熱固定や熱緩和等の熱処理工程を実施することは、微多孔膜の収縮をさらに抑制する効果があり好ましい。
更に、本実施の形態の利点を損なわない範囲で、界面活性剤等による親水化処理や、電離性放射線等による架橋処理、といった後処理を実施することも可能である。
In addition, when further extending | stretching after the process of (4), it is preferable that the draw ratio after extraction of a plasticizer shall be less than 4 times as a surface magnification, and more preferably less than 3 times. A surface magnification of less than 4 is preferable because generation of macrovoids and reduction in puncture strength can be suppressed.
In addition, it is preferable to carry out a heat treatment step such as heat setting or heat relaxation after the stretching because of the effect of further suppressing the shrinkage of the microporous membrane.
Furthermore, it is also possible to carry out post-treatments such as a hydrophilic treatment with a surfactant or the like, or a crosslinking treatment with ionizing radiation or the like within a range that does not impair the advantages of the present embodiment.

製造される微多孔膜の最終的な膜厚としては、2μm以上100μm以下の範囲が好ましく、5μm以上80μm以下の範囲がより好ましく、10μm以上50μm以下の範囲がさらに好ましい。膜厚が2μm以上であれば機械強度が十分であり、また、100μm以下であればセパレータの占有体積が減るため、電池の高容量化の点において有利となる傾向があるので好ましい。
また、気孔率は、好ましくは25%以上90%以下、より好ましくは40%以上80%以下、さらに好ましくは50%以上80%以下の範囲である。気孔率が25%以上では、透過性が低下しにくく、一方90%以下では電池セパレータとして使用した場合に自己放電の可能性が少なく信頼性があるので好ましい。なお、上記気孔率は、前記(3)の工程における延伸温度、延伸倍率を調整する及び/または、前記(5)の工程の温度等を調整する方法等により調節可能である。
The final film thickness of the produced microporous film is preferably in the range of 2 μm to 100 μm, more preferably in the range of 5 μm to 80 μm, and still more preferably in the range of 10 μm to 50 μm. When the film thickness is 2 μm or more, the mechanical strength is sufficient, and when the film thickness is 100 μm or less, the occupied volume of the separator is reduced, which tends to be advantageous in terms of increasing the capacity of the battery.
The porosity is preferably in the range of 25% to 90%, more preferably 40% to 80%, and still more preferably 50% to 80%. When the porosity is 25% or more, the permeability is hardly lowered, while when the porosity is 90% or less, there is little possibility of self-discharge when used as a battery separator, which is preferable. The porosity can be adjusted by adjusting the stretching temperature and stretching ratio in the step (3) and / or adjusting the temperature and the like in the step (5).

製造される微多孔膜の透気度は、好ましくは10秒以上1000秒以下、より好ましくは20秒以上500秒以下、さらに好ましくは40秒以上400秒以下の範囲である。透気度が10秒以上では電池用セパレータとして使用した際に自己放電が少なく、1000秒以下では良好な充放電特性が得られるので好ましい。なお、上記透気度は、前記(5)の工程の温度等を調整する方法等により調節可能である。
突刺強度は、好ましくは1.2N/20μm以上20N/20μm以下、より好ましくは2.0N/20μm以上10N/20μm以下、さらに好ましくは2.4N/20μm以上6.0N/20μm以下の範囲である。突刺強度が1.2N/20μm以上では電池用セパレータとして使用した際に、電極と共に捲回する際に破膜等の不具合が起こりにくく捲回性に優れ、20N/20μm以下では、良好な耐熱性が得られるので好ましい。なお、上記突刺し強度は、ポリエチレン分子量、ポリオレフィン樹脂の割合、及び、前記(3)の工程における延伸温度、延伸倍率を調整する方法等により調節可能である。
The air permeability of the produced microporous membrane is preferably in the range of 10 seconds to 1000 seconds, more preferably 20 seconds to 500 seconds, and still more preferably 40 seconds to 400 seconds. When the air permeability is 10 seconds or more, self-discharge is small when used as a battery separator, and when it is 1000 seconds or less, good charge / discharge characteristics are obtained, which is preferable. In addition, the said air permeability can be adjusted with the method etc. which adjust the temperature etc. of the process of said (5).
The puncture strength is preferably 1.2 N / 20 μm or more and 20 N / 20 μm or less, more preferably 2.0 N / 20 μm or more and 10 N / 20 μm or less, and further preferably 2.4 N / 20 μm or more and 6.0 N / 20 μm or less. . When the pin puncture strength is 1.2 N / 20 μm or more, when used as a battery separator, when wound together with the electrode, defects such as film breakage hardly occur and excellent winding property, and at 20 N / 20 μm or less, good heat resistance Is preferable. The piercing strength can be adjusted by a method of adjusting the polyethylene molecular weight, the ratio of the polyolefin resin, the stretching temperature and the stretching ratio in the step (3), and the like.

製造される微多孔膜の引張破断強度は、好ましくは10MPa以上200MPa以下、より好ましくは20MPa以上150MPa以下、さらに好ましくは40MPa以上130MPa以下の範囲である。引張破断強度が10MPa以上では電池用セパレータとして使用した際に、電極と共に捲回する際に破膜等の不具合が起こり難く捲回性に優れ、200MPa以下では、良好な耐熱収縮性が得られるので好ましい。なお、上記引張破断強度は、ポリエチレン分子量、ポリオレフィン樹脂の割合、及び、前記(3)の工程における延伸温度、延伸倍率を調整する方法等により調節可能である。
引張弾性率は、好ましくは10MPa以上600MPa以下、より好ましくは20MPa以上550MPa以下、さらに好ましくは40MPa以上500MPa以下の範囲である。引張弾性率が10MPa以上では電池用セパレータとして使用した際に、電極と共に捲回する際に破膜等の不具合が起こり難く捲回性に優れ、600MPa以下では、捲回後に巻締まり等の不具合が起こり難いので好ましい。なお、上記引張弾性率は、ポリエチレン分子量、ポリオレフィン樹脂の割合、及び、前記(3)の工程における延伸温度、延伸倍率を調整する方法等により調節可能である。
The tensile fracture strength of the produced microporous membrane is preferably in the range of 10 MPa to 200 MPa, more preferably 20 MPa to 150 MPa, and still more preferably 40 MPa to 130 MPa. When the tensile breaking strength is 10 MPa or more, when used as a battery separator, when wound together with the electrode, defects such as a film breakage hardly occur, and excellent winding resistance is obtained at 200 MPa or less. preferable. The tensile strength at break can be adjusted by a method of adjusting the polyethylene molecular weight, the ratio of the polyolefin resin, the stretching temperature and the stretching ratio in the step (3), and the like.
The tensile modulus is preferably in the range of 10 MPa to 600 MPa, more preferably 20 MPa to 550 MPa, and still more preferably 40 MPa to 500 MPa. When the tensile elastic modulus is 10 MPa or more, when used as a battery separator, when wound together with the electrode, defects such as a film breakage hardly occur and excellent winding properties. When the tensile elastic modulus is 600 MPa or less, there are problems such as winding tightening after winding. It is preferable because it hardly occurs. The tensile elastic modulus can be adjusted by a method of adjusting the polyethylene molecular weight, the ratio of the polyolefin resin, the stretching temperature and the stretching ratio in the step (3), and the like.

以上、本実施の形態によれば、引張強度及び引張弾性率に優れるを微多孔膜の製造方法が提供される。製造される微多孔膜の高引張強度及び高引張弾性率は、捲回時のハンドリング性を向上させることができるため、電池の生産性を向上させ得る。
本実施の形態により得られる微多孔膜は、電池用、特に、非水電解液電池といった蓄電池用のセパレータ等として好適である。
As mentioned above, according to this Embodiment, the manufacturing method of a microporous film which is excellent in tensile strength and a tensile elasticity modulus is provided. The high tensile strength and high tensile elastic modulus of the manufactured microporous membrane can improve the handleability at the time of winding, and thus can improve the productivity of the battery.
The microporous membrane obtained by the present embodiment is suitable as a separator for batteries, particularly for storage batteries such as non-aqueous electrolyte batteries.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.

(1)粘度平均分子量(Mv)
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求める。ポリエチレンのMvは次式により算出した。
[η]=6.77×10−4Mv0.67
(1) Viscosity average molecular weight (Mv)
Based on ASTM-D4020, the intrinsic viscosity [η] at 135 ° C. in a decalin solvent is determined. Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67

(2)膜厚
東洋精機製の微小測厚器、KBM(商標)用いて室温23±2℃で測定した。
(2) Film thickness The film thickness was measured at a room temperature of 23 ± 2 ° C. using a micro thickness gauge manufactured by Toyo Seiki, KBM (trademark).

(3)気孔率
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
気孔率(%)=(体積−質量/混合組成物の密度)/体積×100
なお、混合組成物の密度は、用いたポリオレフィン樹脂、無機粒子の各々の密度と混合比より計算で求められる値を用いた。
(3) Porosity A sample of 10 cm × 10 cm square was cut out from the microporous membrane, its volume (cm 3 ) and mass (g) were determined, and calculated from these and the film density (g / cm 3 ) using the following formula: did.
Porosity (%) = (volume-mass / density of mixed composition) / volume × 100
In addition, the value calculated | required by calculation from the density and mixing ratio of each used polyolefin resin and an inorganic particle was used for the density of a mixed composition.

(4)透気度
JIS P−8117準拠のガーレー式透気度計(東洋精機製)にて測定した。
(4) Air permeability It measured with the Gurley type air permeability meter (made by Toyo Seiki) based on JIS P-8117.

(5)突刺強度
カトーテック製、商標、KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重を突刺強度(N)とした。
(5) Puncture strength Using Kato Tech, trademark, KES-G5 handy compression tester, a puncture test is performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. (N).

(6)引張弾性率(MPa)、引張破断強度(MPa)
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG−A型(商標)を用いて、MD及びTDサンプル(形状;幅10mm×長さ100mm)について測定した。また、サンプルはチャック間を50mmとした。
引張破断伸度(%)は、破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して、100を乗じることにより求めた。
引張破断強度(MPa)は、破断時の強度を、試験前のサンプル断面積で除することで求めた。なお、測定は、温度23±2℃、チャック圧0.30MPa、引張速度200mm/分で行った。
引張弾性率は伸度が1〜4%間の傾きで評価した。
(6) Tensile modulus (MPa), tensile strength at break (MPa)
Based on JIS K7127, it measured about MD and TD sample (shape; width 10mm x length 100mm) using the tensile tester by Shimadzu Corporation, and autograph AG-A type (trademark). In addition, the sample had a chuck spacing of 50 mm.
The tensile elongation at break (%) was obtained by dividing the amount of elongation (mm) up to rupture by the distance between chucks (50 mm) and multiplying by 100.
The tensile strength at break (MPa) was determined by dividing the strength at break by the cross-sectional area of the sample before the test. The measurement was performed at a temperature of 23 ± 2 ° C., a chuck pressure of 0.30 MPa, and a tensile speed of 200 mm / min.
The tensile elastic modulus was evaluated by an inclination between 1 to 4% in elongation.

[実施例1]
粘度平均分子量(Mv)200万の超高分子量ポリエチレン「UH−850」(商標 旭化成ケミカルズ(株)製)を28質量部、Mv27万の高密度ポリエチレン「SH−800」(商標 旭化成ケミカルズ(株)製)を42質量部、平均一次粒径が13nmであるアルミナ「AluC」(商標、Degussa製 疎水処理未実施、比重3.2g/cm)を30質量部、可塑剤としてDOPとLPとの混合物(質量比にてDOP/LP=50/50)を150質量部、酸化防止剤としてペンタエリスリチルーテトラキスー[3−(3,5−ジーt−ブチルー4−ヒドロキシフェニル)プロピオネート]を0.3質量部の割合で添加したものを東洋精機製作所社製プラストミルを用いて加熱混合した。加熱混合は、プラストミルの温度を200℃、回転数を50rpmに設定して10分間行った。溶融した混合物をプラストミルから取り出して冷却し、得られた固化物をポリイミドフィルムを介して金属板の間に挟み、200℃に設定した熱プレス機を用い10MPaで圧縮し、厚さ1000μmのシートを作成した。得られたシートを岩本製作所社製二軸延伸機を用いて115℃で縦方向に7倍、横方向に7倍で同時二軸延伸した。次にステンレスの枠で四方を固定した状態で塩化メチレン中で可塑剤を除去した後、室温で乾燥し微多孔膜を得た。製膜条件及び膜特性を表1に示す。
[Example 1]
28 parts by mass of ultra high molecular weight polyethylene “UH-850” (trademark manufactured by Asahi Kasei Chemicals Co., Ltd.) with a viscosity average molecular weight (Mv) of 2 million, high density polyethylene “SH-800” (trademark Asahi Kasei Chemicals Co., Ltd.) with a Mv of 270,000 Made of alumina (AluC) (trademark, manufactured by Degussa, hydrophobic treatment not performed, specific gravity 3.2 g / cm 3 ) 30 parts by mass, plasticizer with DOP and LP 150 parts by mass of the mixture (DOP / LP = 50/50 in mass ratio), 0 as pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant What was added at a ratio of 3 parts by mass was heated and mixed using a plast mill manufactured by Toyo Seiki Seisakusho. The heating and mixing were performed for 10 minutes with the temperature of the plastmill set to 200 ° C. and the rotation speed set to 50 rpm. The molten mixture was taken out from the plastmill and cooled, and the obtained solidified product was sandwiched between metal plates via a polyimide film, and compressed at 10 MPa using a hot press set at 200 ° C. to prepare a sheet having a thickness of 1000 μm. . The obtained sheet was simultaneously biaxially stretched 7 times in the longitudinal direction and 7 times in the transverse direction at 115 ° C. using a biaxial stretching machine manufactured by Iwamoto Seisakusho. Next, the plasticizer was removed in methylene chloride with the four sides fixed with a stainless steel frame, and then dried at room temperature to obtain a microporous membrane. Table 1 shows the film forming conditions and film characteristics.

実施例2、参考実施例3〜4、実施例5、参考実施例6〜7及び比較例1〜9は表1に記載した条件で、実施例1と同様に微多孔膜の製膜を実施した。その結果を表1に示す。 Example 2 , Reference Examples 3 to 4, Example 5, Reference Examples 6 to 7 and Comparative Examples 1 to 9 were carried out in the same manner as Example 1 under the conditions described in Table 1. did. The results are shown in Table 1.

Figure 0005235487
Figure 0005235487

本発明によれば、引張強度と引張弾性率に優れる無機粒子含有微多孔膜の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the inorganic particle containing microporous film which is excellent in tensile strength and a tensile elasticity modulus can be provided.

Claims (5)

ポリオレフィン樹脂、無機粒子及び可塑剤を含む樹脂組成物を溶融混練し、シート状に成形し二軸延伸した後、可塑剤を抽出して微多孔膜を得る無機粒子含有微多孔膜の製造方法であって、
前記無機粒子の、ポリオレフィン樹脂と無機粒子と可塑剤との総量中に占める割合が20質量%以下であり、前記可塑剤が、SP値が7.5以上8.5未満である可塑剤(I)と、SP値が8.5以上9.9未満である可塑剤(II)とを含む混合可塑剤であり、前記可塑剤抽出後の微多孔膜中に占める無機粒子の残存割合が30〜60質量%であることを特徴とする無機粒子含有微多孔膜の製造方法。
A method for producing a microporous membrane containing inorganic particles, in which a resin composition containing a polyolefin resin, inorganic particles and a plasticizer is melt-kneaded, formed into a sheet and biaxially stretched, and then the plasticizer is extracted to obtain a microporous membrane Because
The proportion of the inorganic particles in the total amount of polyolefin resin, inorganic particles, and plasticizer is 20% by mass or less, and the plasticizer has a SP value of 7.5 or more and less than 8.5 (I ) and, Ri mixed plasticizer der containing a plasticizer SP value is less than 8.5 or more 9.9 (II), the residual ratio of the inorganic particles occupying in the microporous film after the plasticizer extraction 30 method of producing an inorganic particle-containing microporous membrane, wherein 60% by mass Rukoto.
前記可塑剤(I)の、前記混合可塑剤中に占める割合が60〜90質量%である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a proportion of the plasticizer (I) in the mixed plasticizer is 60 to 90% by mass. 前記可塑剤(I)の、前記混合可塑剤中に占める割合が20〜55質量%である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein a proportion of the plasticizer (I) in the mixed plasticizer is 20 to 55 mass%. 前記無機粒子が珪素酸化物である請求項1〜のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 3 , wherein the inorganic particles are silicon oxide. 請求項1〜のいずれかに記載の製造方法により得られる無機粒子含有微多孔膜からなる蓄電池セパレータ。 The storage battery separator which consists of an inorganic particle containing microporous film obtained by the manufacturing method in any one of Claims 1-4 .
JP2008121805A 2008-05-08 2008-05-08 Method for producing inorganic particle-containing microporous membrane Active JP5235487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121805A JP5235487B2 (en) 2008-05-08 2008-05-08 Method for producing inorganic particle-containing microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121805A JP5235487B2 (en) 2008-05-08 2008-05-08 Method for producing inorganic particle-containing microporous membrane

Publications (2)

Publication Number Publication Date
JP2009270013A JP2009270013A (en) 2009-11-19
JP5235487B2 true JP5235487B2 (en) 2013-07-10

Family

ID=41436864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121805A Active JP5235487B2 (en) 2008-05-08 2008-05-08 Method for producing inorganic particle-containing microporous membrane

Country Status (1)

Country Link
JP (1) JP5235487B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184429B2 (en) 2009-08-25 2015-11-10 Asahi Kasei E-Materials Corporation Microporous membrane winding and method for manufacturing the same
WO2013042235A1 (en) * 2011-09-22 2013-03-28 株式会社日立製作所 Electrochemical device separator, manufacturing method therefor and electrochemical device
JPWO2013042235A1 (en) * 2011-09-22 2015-03-26 株式会社日立製作所 Electrochemical element separator, method for producing the same, and electrochemical element
KR101370674B1 (en) 2012-03-12 2014-03-04 가부시키가이샤 히타치세이사쿠쇼 Separator for electrochemical device, method for producing the same, and electrochemical device
CN104508027A (en) 2012-07-27 2015-04-08 Dic株式会社 Modified cellulose nanofiber-containing polyethylene microporous membrane, separator, and lithium cell using same
JP7013773B2 (en) * 2017-09-29 2022-02-01 三洋電機株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059332A (en) * 1991-07-05 1993-01-19 Asahi Chem Ind Co Ltd Homogeneous microporous film made of ultrahigh-molecular weight polyethylene and its production
JP3121047B2 (en) * 1991-07-08 2000-12-25 旭化成工業株式会社 Homogeneous polyethylene microporous membrane and method for producing the same
JP2002012694A (en) * 2000-06-30 2002-01-15 Tonen Chem Corp Method for producing fine porous membrane of thermoplastic resin
JP4074116B2 (en) * 2002-03-29 2008-04-09 旭化成ケミカルズ株式会社 Method for producing microporous membrane

Also Published As

Publication number Publication date
JP2009270013A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
US9293752B2 (en) Multilayer porous membrane and production method thereof
JP4753446B2 (en) Polyolefin microporous membrane
JP5196780B2 (en) Multilayer porous membrane and method for producing the same
JP5172683B2 (en) Polyolefin microporous membrane and non-aqueous electrolyte battery separator
JP4397121B2 (en) Polyolefin microporous membrane
JP5005387B2 (en) Method for producing polyolefin microporous membrane
JP5403932B2 (en) Polyolefin microporous membrane
WO2014196551A1 (en) Process for producing cellulose-nanofiber-filled microporous stretched polyolefin film, microporous cellulose-nanofiber composite film, and separator for non-aqueous secondary battery
JP7045862B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JPWO2009123015A1 (en) Polyolefin microporous membrane and wound product
JP5235487B2 (en) Method for producing inorganic particle-containing microporous membrane
JP4964565B2 (en) Polyethylene microporous membrane
JP5008422B2 (en) Polyolefin microporous membrane
JPWO2018179810A1 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP6864762B2 (en) Polyolefin microporous membrane
JP2016191006A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP5164396B2 (en) Polyolefin microporous membrane
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2018154834A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
JP5545928B2 (en) Method for producing polyolefin microporous membrane
JPWO2019151220A1 (en) Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film
JP7470297B2 (en) Polyolefin microporous membrane and its manufacturing method
KR20240035788A (en) Polyolefin multilayer microporous membrane, laminated polyolefin multilayer microporous membrane, battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350