JPH08232043A - Steel for large heat input welding at heat input of 500kj/ cm or more and its production - Google Patents

Steel for large heat input welding at heat input of 500kj/ cm or more and its production

Info

Publication number
JPH08232043A
JPH08232043A JP7038061A JP3806195A JPH08232043A JP H08232043 A JPH08232043 A JP H08232043A JP 7038061 A JP7038061 A JP 7038061A JP 3806195 A JP3806195 A JP 3806195A JP H08232043 A JPH08232043 A JP H08232043A
Authority
JP
Japan
Prior art keywords
steel
heat input
less
welding
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7038061A
Other languages
Japanese (ja)
Other versions
JP3256401B2 (en
Inventor
Masanori Nishimori
正徳 西森
Kiyoshi Uchida
清 内田
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP03806195A priority Critical patent/JP3256401B2/en
Priority to KR1019960004587A priority patent/KR100260578B1/en
Priority to CN96105706A priority patent/CN1071802C/en
Priority to TW085102255A priority patent/TW389793B/en
Publication of JPH08232043A publication Critical patent/JPH08232043A/en
Application granted granted Critical
Publication of JP3256401B2 publication Critical patent/JP3256401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Abstract

PURPOSE: To produce a steel for welded structure, excellent in toughness in a weld heat-affected zone even if subjected to large heat input welding. CONSTITUTION: This steel has a composition consisting of, by weight, 0.10-0.20% C, <0.10% Si, 0.4-2.0% Mn, 0.01 to <0.04% Al, 0.002-0.020% Ti, 0.003-0.030% REM, <0.0040% N, 0.0003-<0.0020% B, and the balance essentially Fe with inevitable impurities. Moreover, This steel has a structure in which precipitated B is regulated to <0.0015% and also the oxides and sulfides of REM or Ca and TiN are separately dispersed in the steel, respectively, and further, this steel can contain one or >=2 kinds among 0.05-0.5% Cu, 0.05-1.0% Ni, 0.05-0.5% Mo, 0.005-0.10% Nb, 0.005-0.15% V, and 0.05-0.5% Cr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築、橋梁、造船、圧
力容器などに用いられる溶接構造用鋼材に係わり、特に
入熱500kJ/cm以上の大入熱溶接用鋼およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welded structural steel material used for construction, bridges, shipbuilding, pressure vessels, etc., and particularly to a large heat input welding steel having a heat input of 500 kJ / cm or more and a method for producing the same. Is.

【0002】[0002]

【従来の技術】一般に溶接部の靱性は、主として母材の
熱影響部とくに溶接ボンド部の靱性によって定まる。す
なわちボンド部は溶融点直下の高温に加熱されるために
結晶粒は非常に粗大化して焼入性が増し、引き続いての
冷却により、フェライト変態がしにくくなるため、脆弱
な上部ベイナイト組織が生成したり、島状マルテンサイ
トが生成され、切欠靱性が低下するからであり、とくに
エレクトロスラグ溶接や多電極サブマージアーク溶接な
どのいわゆる大入熱溶接による溶接熱影響部ではこの傾
向が顕著である。
2. Description of the Related Art Generally, the toughness of a welded part is mainly determined by the toughness of a heat-affected zone of a base metal, particularly a welded bond. That is, since the bond part is heated to a high temperature just below the melting point, the crystal grains become extremely coarse and hardenability increases, and subsequent cooling makes it difficult for ferrite transformation to occur, so that a fragile upper bainite structure is formed. This is because the island-like martensite is generated and the notch toughness is reduced, and this tendency is particularly remarkable in the welding heat affected zone by so-called large heat input welding such as electroslag welding and multi-electrode submerged arc welding.

【0003】このような溶接ボンド部の靱性向上対策と
して、低C 当量化や P、S といった不純物元素の低減と
ともに、TiN 、BNといった窒化物の微細析出物を析出さ
せて固溶N の固定をはかるとともに微細フェライトを析
出させる方法が採られている。例えば、特開昭51-41621
号公報および特開昭51-43309号公報では、CaまたはLa、
CeとTiの複合添加により、微細TiN を鋼材中に分散さ
せ、これをフェライトの変態核として大入熱溶接ボンド
部を(フェライト+パーライト)組織とすることにより
靱性の改善をはかっている。さらに、Nb、V 、B の窒化
物を加えると効果をより安定化させるとされている。
As measures for improving the toughness of such welded joints, a low C equivalent and reduction of impurity elements such as P and S, as well as precipitation of fine precipitates of nitrides such as TiN and BN to fix solid solution N. A method of measuring and precipitating fine ferrite is adopted. For example, JP-A-51-41621
In JP and JP-A-51-43309, Ca or La,
By adding Ce and Ti in combination, fine TiN is dispersed in the steel material, and by using this as a transformation nucleus of ferrite, the high heat input welded bond part has a (ferrite + pearlite) structure to improve toughness. Furthermore, it is said that the addition of Nb, V, and B nitrides stabilizes the effect.

【0004】しかし、入熱500kJ/cm以上の溶接ボンド部
では、高温にさらされる時間は長くなりオーステナイト
結晶粒はますます粗大化し、その後の冷却もはなはだ遅
くなるため微細なフェライト生成は困難となり、粗大な
粒界フェライトが析出して靱性改善効果がなくなる。ま
たフェライト形成元素であるSiを多量添加する方法も考
えられるが、島状マルテンサイトが生成し、やはり靱性
改善効果がなくなる。
However, in a weld bond portion with a heat input of 500 kJ / cm or more, the time of exposure to high temperature becomes longer, the austenite crystal grains become coarser, and the subsequent cooling becomes slower, so that it becomes difficult to form fine ferrite. Coarse grain boundary ferrite precipitates and the toughness improving effect disappears. Although a method of adding a large amount of Si, which is a ferrite-forming element, can be considered, island martensite is formed and the effect of improving toughness is lost.

【0005】特開昭61-190016 号公報にもTiN とBNの利
用による微細フェライト析出と、Nの固定による溶接ボ
ンド部の靱性改善が開示されているが、微細フェライト
析出のためにC 当量に制限が必要な上、やはり入熱500k
J/cm以上の溶接ボンド部では上記と同様な問題が生じ
る。ことにBNは溶接時の加熱により固溶し、冷却中にγ
粒界に再析出するため、粗大な粒界フェライトの析出核
として作用し、悪影響を及ぼす。
Japanese Patent Laid-Open No. 61-190016 also discloses fine ferrite precipitation by using TiN and BN and improvement of toughness of weld bond part by fixing N. Heat input is 500k
The same problem as above occurs at the weld bond area of J / cm or more. In particular, BN forms a solid solution due to heating during welding, and γ
Since it re-precipitates at the grain boundaries, it acts as precipitation nuclei for coarse grain boundary ferrite and has an adverse effect.

【0006】特開昭59-159968 号公報では、REM の酸・
硫化物およびTiN 分散鋼において、粒界固溶B により網
目状の粗大な粒界フェライトの析出を防止するとされて
いるが、通常では固溶B の存在はボンド部より少し離れ
た、 800〜1000℃の加熱部において島状マルテンサイト
が生成し、靱性を害する。
In Japanese Patent Laid-Open No. 59-159968, REM acid
In sulfide and TiN dispersed steel, it is said that precipitation of network-like coarse grain boundary ferrite is prevented by grain boundary solid solution B, but normally the presence of solid solution B is 800 to 1000 Island-like martensite is generated in the heating portion at ℃, which impairs toughness.

【0007】[0007]

【発明が解決しようとする課題】近年、溶接施工の高能
率化とそのコストダウンへの要望はますます高く、従来
には殆ど適用されなかった500kJ/cm以上というさらに大
入熱の溶接の採用を増加させようという気運がある。し
かし、この場合には溶接ボンド部が高温にさらされる時
間はさらに長くなり、オーステナイト結晶粒はますます
粗大化し、その後の冷却もはなはだ遅くなるために、脆
弱な上部ベイナイト組織や島状マルテンサイトの生成も
さらに容易となる。このため、500kJ/cm程度に満たない
入熱を対象としている上記の従来法によっては、溶接熱
影響部の靱性改善効果は充分とはいえない。
[Problems to be Solved by the Invention] In recent years, there has been an increasing demand for higher efficiency of welding work and cost reduction thereof. Adoption of welding with a larger heat input of 500 kJ / cm or more, which was hardly applied in the past. There is a desire to increase. However, in this case, the time for the weld bond to be exposed to high temperatures becomes longer, the austenite grains become coarser, and the subsequent cooling becomes slower, resulting in the fragile upper bainite structure and island martensite. Generation is also easier. For this reason, the effect of improving the toughness of the weld heat affected zone cannot be said to be sufficient by the above-mentioned conventional method, which targets heat input of less than about 500 kJ / cm.

【0008】本発明は、このような問題を解決し、従来
の大入熱溶接よりもさらに入熱の大きな500kJ/cm以上の
大入熱溶接においても、その溶接熱影響部の靱性が良好
な溶接構造用鋼およびその製造方法を提供することを目
的とするものである。
The present invention solves such a problem, and even in the large heat input welding of 500 kJ / cm or more, which has a larger heat input than the conventional large heat input welding, the toughness of the welding heat affected zone is excellent. It is an object of the present invention to provide a welded structural steel and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明者らは、500kJ/cm
以上の大入熱溶接熱影響部で良好な靱性を有する鋼材を
種々検討した結果、利用すべき靱性改善メカニズムが、
高々300kJ/cm程度までの入熱を対象としている従来鋼と
異なると結論するに至った。すなわち、TiN とREM の酸
・硫化物を分散させることにより、溶接ボンド部旧γ粒
径を250 μm 以下に微細化することは必要であるが、こ
れら分散粒子がフェライト変態核として作用すると、50
0kJ/cm以上の大入熱溶接のように冷却速度が遅い場合、
粗大フェライトが析出し、却って靱性を害する。そこ
で、これを防止するためには、TiNとREM の酸・硫化物
を複合化させず、別個に分散させ、またさらにフェライ
ト形成元素であるSi量を0.10重量%(以下単に%と表示
する。)以下に低減することが必要であることを見出し
た。
[Means for Solving the Problems] The present inventors have found that 500 kJ / cm
As a result of various examinations of steel materials having good toughness in the above-mentioned large heat input welding heat affected zone, the toughness improvement mechanism to be used is
It was concluded that it is different from the conventional steel that has heat input up to about 300 kJ / cm. That is, it is necessary to reduce the old γ grain size of the weld bond to 250 μm or less by dispersing TiN and REM acid / sulfide, but if these dispersed grains act as ferrite transformation nuclei,
When the cooling rate is slow, such as high heat input welding of 0 kJ / cm or more,
Coarse ferrite precipitates, which adversely affects toughness. Therefore, in order to prevent this, TiN and REM acid / sulfide are not compounded but dispersed separately, and the amount of Si, which is a ferrite-forming element, is 0.10% by weight (hereinafter simply referred to as%). ) It was found necessary to reduce the following.

【0010】また、本発明者らは、粗大な粒界フェライ
ト防止のためにさらに微量のB を利用できるが、0.0015
%以上の析出B は却って粗大な粒界フェライトの析出核
となるので、析出B は0.0015%未満とすることと、この
場合も低Si化の効果により、800 〜1000℃の加熱部の島
状マルテンサイトの析出は防止され、その靱性劣化防止
に有効なことを見出した。
Further, the present inventors can use a trace amount of B to prevent coarse grain boundary ferrite, but 0.0015
% Or more of the precipitation B becomes a precipitation nucleus of coarse grain boundary ferrite on the contrary, the precipitation B is set to less than 0.0015%, and in this case as well, due to the effect of low Si, the island shape of the heating part at 800 to 1000 ° C is formed. It has been found that the precipitation of martensite is prevented and it is effective in preventing the deterioration of toughness.

【0011】以上のようにして、大入熱溶接後の溶接ボ
ンド部の旧γ粒径を250 μm 以下、かつ島状マルテンサ
イトを含まないベイナイトを主体とし、粒界フェライト
を20%以下に抑えることができ、500kJ/cm以上の大入熱
溶接熱影響部の靱性改善に成功した。すなわち、本発明
は、重量%で、C:0.10%超0.20%以下、Si:0.10 %未
満、Mn:0.4〜2.0 %、Al:0.010%超0.04%未満、Ti:0.0
02〜0.020 %、REM:0.003 〜0.030 %、N:0.0040%未
満、B:0.0003%以上0.0020%未満を含有し、残部は実質
的にFeと不可避的不純物の組成からなり、ただし析出B
は0.0015%未満であり、鋼中にREM の酸・硫化物とTiN
が各々別個に分散している組織を有することを特徴とす
る入熱500kJ/cm以上の大入熱溶接用鋼であり、また、本
発明は、重量%で、C:0.10%超0.20%以下、Si:0.10 %
未満、Mn:0.4〜2.0 %、Al:0.010%超0.04%未満、Ti:
0.002〜0.020 %、Ca:0.001〜0.005 %、N:0.0040%未
満、B:0.0003%以上0.0020%未満を含有し、残部は実質
的にFeと不可避的不純物の組成からなり、ただし析出B
は0.0015%未満であり、鋼中にCaの酸・硫化物とTiN が
各々別個に分散している組織を有することを特徴とする
入熱500kJ/cm以上の大入熱溶接用鋼であり、また、本発
明は、上記発明記載の組成・組織の鋼に、さらに重量%
で、Cu:0.05 〜0.5 %、Ni:0.05 〜1.0 %、Mo:0.05 〜
0.5 %、Nb:0.005〜0.10%、V:0.005 〜0.15%、Cr:0.0
5 〜0.5 %の1種または2種以上を含有することを特徴
とする入熱500kJ/cm以上の大入熱溶接用鋼であり、ま
た、本発明は、上記発明記載の組成の鋼を鋳造後、Ac3
変態点以上に加熱し、圧延仕上げ温度 800〜1000℃かつ
累積圧下率50%以上となる熱間圧延を行い、その後鋼板
組織が(フェライト+パーライト)および/またはベイ
ナイトとなる冷却速度で空冷または加速冷却を行うこと
を特徴とする入熱500kJ/cm以上の大入熱溶接用鋼の製造
方法である。
As described above, the old γ grain size of the weld bond portion after high heat input welding is 250 μm or less, and bainite containing no island martensite is mainly contained, and grain boundary ferrite is suppressed to 20% or less. It was possible to improve the toughness of the heat-affected zone with a large heat input of 500 kJ / cm or more. That is, the present invention, by weight%, C: 0.10% more than 0.20% or less, Si: 0.10%, Mn: 0.4-2.0%, Al: 0.010% more than 0.04%, Ti: 0.0
02 to 0.020%, REM: 0.003 to 0.030%, N: less than 0.0040%, B: 0.0003% to less than 0.0020%, the balance consisting essentially of Fe and unavoidable impurities, except for the precipitation B
Is less than 0.0015%, and REM acid / sulfide and TiN are contained in the steel.
Is a large heat input welding steel having a heat input of 500 kJ / cm or more, each having a structure in which they are separately dispersed, and the present invention is, by weight%, C: more than 0.10% and 0.20% or less. , Si: 0.10%
Less than, Mn: 0.4 to 2.0%, Al: more than 0.010% and less than 0.04%, Ti:
0.002 to 0.020%, Ca: 0.001 to 0.005%, N: less than 0.0040%, B: 0.0003% to less than 0.0020%, the balance consisting essentially of Fe and unavoidable impurities, but with the precipitation B
Is less than 0.0015%, is a steel for large heat input welding with a heat input of 500 kJ / cm or more, characterized by having a structure in which Ca acid / sulfide and TiN are separately dispersed in the steel, In addition, the present invention provides the steel having the composition and structure described in the above invention, further comprising:
, Cu: 0.05-0.5%, Ni: 0.05-1.0%, Mo: 0.05-
0.5%, Nb: 0.005-0.10%, V: 0.005-0.15%, Cr: 0.0
A steel for high heat input welding having a heat input of 500 kJ / cm or more, characterized by containing 5 to 0.5% of one kind or two or more kinds, and the present invention is to cast a steel having the composition described in the above invention. After that, Ac 3
After heating to the transformation point or higher, hot rolling is performed at a rolling finishing temperature of 800 to 1000 ° C and a cumulative reduction of 50% or more, and then air cooling or acceleration is performed at a cooling rate at which the steel sheet structure becomes (ferrite + pearlite) and / or bainite This is a method for producing a steel for high heat input welding with a heat input of 500 kJ / cm or more, which is characterized by cooling.

【0012】[0012]

【作用】まず、本発明の大入熱溶接用鋼の組成の限定理
由について説明する。 C:0.10%超0.20%以下 C は0.10%以下では、低Si化の影響もあり、所期の母材
強度を確保するのが難しく、また、0.20%を超えると、
溶接後の冷却で島状マルテンサイトを生成させ、溶接部
の靱性の確保ができない。また、さらに小入熱溶接時に
は著しい硬化を起こし、溶接割れ感受性を高める。
First, the reasons for limiting the composition of the steel for high heat input welding of the present invention will be described. C: more than 0.10% and 0.20% or less When C is 0.10% or less, it is difficult to secure the desired base metal strength due to the influence of low Si, and when it exceeds 0.20%,
It is not possible to secure the toughness of the welded part by producing island martensite by cooling after welding. In addition, it causes remarkable hardening during welding with small heat input, increasing the susceptibility to welding cracks.

【0013】Mn:0.4〜2.0 % Mnは、C と同様に強度向上に寄与する元素であり、溶接
構造用鋼として必要な強度を確保するためには0.4 %以
上必要とするが、2.0 %を超えて添加すると溶接時の割
れ感受性を高めるとともに、溶接部の靱性への悪影響が
大きくなるので、0.4 〜2.0 %の範囲とした。
Mn: 0.4 to 2.0% Mn is an element that contributes to the improvement of strength, similar to C. It is required to be 0.4% or more to secure the strength required for welded structural steel, but 2.0% is required. If added in excess, the crack susceptibility during welding will be increased and the toughness of the weld will be adversely affected, so the content was made 0.4 to 2.0%.

【0014】Al:0.010%超0.04%未満 Alは通常の製鋼過程において脱酸のために少なくとも0.
010 %を超える添加含有が必要であるが、一方0.04%以
上の含有は却って溶接熱影響部のみならず溶接金属の靱
性も劣化させるので、0.010 %超0.04%未満の範囲とし
た。 Ti:0.002〜0.020 %、N:0.0040%未満 TiとN は、TiN を生成し、REM またはCaの硫・酸化物に
よる効果を補完し、溶接による加熱時にオーステナイト
結晶粒の粗大化を防ぐ。ここで、靱性改善効果を発揮す
るためには、Tiは0.002 %以上、N は望ましくは0.002
%以上必要である。ただし、0.0040%以上のN を含有す
ると固溶N により却って鋼の靱性を害する上、粒界にBN
として析出し、粒界粗大フェライト析出の原因となるた
め、N 含有量の上限は0.0040%未満とし、さらにこの場
合、0.020 %を超えるTiを含有しても、その効果はない
ばかりでなく、むしろN 量に対してバランスを欠いた過
剰なTiは靱性を害すると考えられる上、TiN とREM また
はCaの硫・酸化物の複合化とそれによる粗大フェライト
析出の原因となるので、Ti含有量の上限を0.020 %とし
た。
Al: more than 0.010% and less than 0.04% Al is at least 0 due to deoxidation in the ordinary steelmaking process.
Although it is necessary to add more than 010%, on the other hand, the content of 0.04% or more rather deteriorates not only the weld heat affected zone but also the toughness of the weld metal. Therefore, the range is set to more than 0.010% and less than 0.04%. Ti: 0.002 to 0.020%, N: less than 0.0040% Ti and N form TiN, which complements the effect of sulfur oxides of REM or Ca and prevents coarsening of austenite grains during heating by welding. Here, in order to exert the effect of improving toughness, Ti is 0.002% or more, and N is preferably 0.002% or more.
% Or more is required. However, if 0.0040% or more of N is contained, the solid solution N will adversely affect the toughness of the steel, and the BN will be present at grain boundaries.
As it causes the precipitation of coarse grain boundary ferrite, the upper limit of the N content is less than 0.0040%, and in this case, even if Ti exceeding 0.020% is contained, the effect is not only obtained, but rather Excessive Ti that is unbalanced with respect to the amount of N is considered to impair toughness, and also causes the formation of coarse ferrite precipitates due to the formation of a composite of TiN and REM or Ca sulfur oxides, which causes precipitation of Ti content. The upper limit was 0.020%.

【0015】B:0.0003%以上0.0020%未満 B は、溶接による加熱時にオーステナイト粒界に偏析
し、靱性に悪影響を及ぼす粗大な粒界フェライトの析出
を抑制する。特に本発明が対象としているような従来の
範疇を越える、さらに大きな入熱の溶接における熱影響
部の靱性改善のために、REM およびTiによるγ粒細粒化
を利用するためには、これらと併せての添加が必要であ
る。このためには0.0003%以上の添加が必要である。し
かし、0.0020%以上添加しても効果が飽和し却って粒界
に析出したBNにより粗大な粒界フェライトを析出させる
弊害を伴うため0.0020%未満の範囲とした。
B: 0.0003% or more and less than 0.0020% B segregates at the austenite grain boundaries during heating by welding and suppresses precipitation of coarse grain boundary ferrite which adversely affects toughness. In order to improve the toughness of the heat-affected zone in welding with a large heat input, which exceeds the conventional category as specifically targeted by the present invention, in order to utilize γ grain refinement by REM and Ti, It is necessary to add them together. For this purpose, 0.0003% or more must be added. However, even if added in an amount of 0.0020% or more, the effect saturates and there is the adverse effect of precipitating coarse grain boundary ferrite due to BN precipitated at the grain boundaries, so the range was made less than 0.0020%.

【0016】REM:0.003 〜0.030 % REM は硫・酸化物として析出し、それ自体にもγ粒の粗
大化防止効果がある。従来の大入熱溶接よりもさらに入
熱の大きい500kJ/cm以上の大入熱溶接熱影響部の靱性改
善のためには0.003 %以上を前記Tiと併せて添加するこ
とが必要である。しかしながら0.030 %を超える添加は
鋼の清浄性を害するために0.003 〜0.030 %の範囲とし
た。
REM: 0.003 to 0.030% REM precipitates as sulfur oxides and also has an effect of preventing γ grains from coarsening. It is necessary to add 0.003% or more together with Ti in order to improve the toughness of the heat-affected zone with a large heat input of 500 kJ / cm or more, which has a larger heat input than the conventional large heat input welding. However, the addition of more than 0.030% impairs the cleanliness of the steel, so the range was made 0.003 to 0.030%.

【0017】Ca:0.001〜0.005 % CaはREM と同様の効果を有するが、0.001 %以上の含有
が必要であり、また0.005 %を超えて添加すると鋼の清
浄度を害するために、添加範囲を0.001 〜0.005 %とし
た。 Si:0.10 %未満 Siは、強度を上昇させることから通常添加されるが、本
発明においては靱性に有害な粗大フェライト析出防止の
ため、ならびに島状マルテンサイト析出防止のために、
0.10%未満に低減することが必須である。これなくして
は、他成分の作用をいかに利用しても、粗大フェライト
の析出と島状マルテンサイトの析出により、入熱500kJ/
cm以上の大入熱溶接熱影響部の靱性改善は達成できな
い。
Ca: 0.001 to 0.005% Ca has the same effect as REM, but it must be contained in an amount of 0.001% or more, and if added in excess of 0.005%, the cleanliness of steel is impaired. It was set to 0.001 to 0.005%. Si: less than 0.10% Si is usually added because it increases the strength, but in the present invention, to prevent coarse ferrite precipitation which is harmful to toughness, and to prevent island martensite precipitation,
It is essential to reduce it to less than 0.10%. Without this, no matter how the effects of other components are utilized, the heat input will be 500 kJ / due to the precipitation of coarse ferrite and the precipitation of island martensite.
Improvement of toughness in heat-affected zone with large heat input of cm or more cannot be achieved.

【0018】図1に、REM とTi、B を適正量を含有させ
た0.14C −1.3Mn −0.025Al −0.015REM−0.01Ti−0.00
25B −0.003N鋼の場合における、入熱800kJ/cm相当の大
入熱溶接ボンド部を模擬した再現溶接熱影響部(HAZ) の
vE0 と鋼中Si量の関係を示す。なお、Si低減による強度
低下は、他の強度改善元素の添加、または制御圧延や加
速冷却などの製造方法により補うことができる。
In FIG. 1, 0.14C-1.3Mn-0.025Al-0.015REM-0.01Ti-0.00 containing appropriate amounts of REM, Ti, and B.
In the case of 25B-0.003N steel, a simulated welding heat affected zone (HAZ) simulating a large heat input weld bond equivalent to a heat input of 800 kJ / cm.
The relationship between vE 0 and the amount of Si in steel is shown. The decrease in strength due to the reduction of Si can be compensated by adding another strength improving element or by a manufacturing method such as controlled rolling or accelerated cooling.

【0019】上記した基本成分に加えて、さらに強度を
上昇させる元素として、Cu:0.05 〜0.5 %、Ni:0.05 〜
1.0 %、Mo:0.05 〜0.5 %、Nb:0.005〜0.10%、V:0.00
5 〜0.15%、Cr:0.05 〜0.5 %の中から1種または2種
以上を含有することができるが、Cuは、過剰に添加する
と熱間加工性を害するとともに、溶接割れ感受性が増大
するために、NiおよびMoは、高価な元素であり、過剰の
添加は経済性を損なうために、それぞれ上限を0.5 %、
1.0 %および0.5 %とした。さらにMoは、過剰に添加す
ると溶接熱影響部の硬化性を高め、溶接割れ感受性を高
めるために、その点からも上限を0.5 %とした。NbとV
は、過剰に添加すると母材や溶接熱影響部に多量の析出
物を生成して析出脆化を引き起こすために、それぞれ上
限を0.10%、0.15%とした。また、Crは、過剰の添加は
溶接性を害するため、上限を0.5%とした。
In addition to the basic components described above, Cu: 0.05-0.5%, Ni: 0.05-
1.0%, Mo: 0.05-0.5%, Nb: 0.005-0.10%, V: 0.00
5 to 0.15% and Cr: 0.05 to 0.5% may be contained in one kind or two or more kinds. However, if Cu is added excessively, the hot workability is impaired and the weld cracking sensitivity is increased. In addition, Ni and Mo are expensive elements, and excessive addition impairs economic efficiency.
It was set to 1.0% and 0.5%. Further, Mo is added to an excessive amount to enhance the hardenability of the heat-affected zone of the weld and the susceptibility to weld cracking. From that point as well, the upper limit was made 0.5%. Nb and V
In order to cause precipitation embrittlement by forming a large amount of precipitates in the base metal and the weld heat affected zone when added excessively, the upper limits were made 0.10% and 0.15%, respectively. Further, Cr has an upper limit of 0.5%, because excessive addition of Cr impairs weldability.

【0020】また、これら強化元素のそれぞれの下限
は、強化作用を現すのに望ましい最小量を示している。
次に本発明鋼の組織についての限定理由を述べる。 析出B は0.0015%未満 析出B は、BNまたはFe23(C,B)6として、主にオーステナ
イト粒界に析出する。これら析出B は粗大な粒界フェラ
イトを析出させる弊害を伴い、析出B 量が0.0015%以上
となると、溶接熱影響部靱性を著しく低下させるため、
その範囲を0.0015%未満とした。
The lower limit of each of these strengthening elements indicates the minimum amount desired to exert a strengthening effect.
Next, the reasons for limiting the structure of the steel of the present invention will be described. Precipitated B is less than 0.0015% Precipitated B as BN or Fe 23 (C, B) 6 mainly precipitates at austenite grain boundaries. These precipitates B have the adverse effect of precipitating coarse grain boundary ferrite, and when the amount of precipitates B is 0.0015% or more, the toughness of the heat-affected zone of the weld is significantly reduced.
The range was set to less than 0.0015%.

【0021】REM の酸・硫化物とTiN の各々別個の分散 REM の酸・硫化物とTiN が複合化して存在すると、その
分散粒子が粗大化し、オーステナイト粒粗大化防止効果
を減じる。また、この複合分散粒子は、50kJ/cm 以上の
大入熱溶接熱影響部において、オーステナイト粒内に存
在しても粒内フェライト析出促進効果を示さないが、オ
ーステナイト粒界に存在すると、析出Bと同様に粗大な
粒界フェライト析出の原因となり、熱影響部靱性を低下
させる。このため、REM の酸・硫化物とTiN は各々別個
に分散させるものとした。
Dispersion of REM Acid / Sulfide and TiN Separately When the REM acid / sulfide and TiN are present in a complex form, the dispersed particles become coarse and the austenite grain coarsening preventing effect is reduced. Further, the composite dispersed particles, in the large heat input welding heat affected zone of 50 kJ / cm or more, does not show the intragranular ferrite precipitation promoting effect even if it exists in the austenite grains, but if it exists in the austenite grain boundaries, precipitation B Similarly, causes coarse grain boundary ferrite precipitation and reduces the toughness of the heat affected zone. Therefore, REM acid / sulfide and TiN were separately dispersed.

【0022】Caの酸・硫化物とTiN の各々別個の分散 Caの酸・硫化物とTiN が複合化して存在すると、その分
散粒子が粗大化し、オーステナイト粒粗大化防止効果を
減じる。また、この複合分散粒子は、50kJ/cm以上の大
入熱溶接熱影響部において、オーステナイト粒内に存在
しても粒内フェライト析出促進効果を示さないが、オー
ステナイト粒界に存在すると、析出B と同様に粗大な粒
界フェライト析出の原因となり、熱影響部靱性を低下さ
せる。このため、Caの酸・硫化物とTiN は各々別個に分
散させるものとした。
Dispersion of Ca Acid / Sulfide and TiN Separately When the Ca acid / sulfide and TiN are present in a complex state, the dispersed particles become coarse and the austenite grain coarsening preventing effect is reduced. Further, the composite dispersed particles, in the large heat input welding heat affected zone of 50 kJ / cm or more, does not show an intragranular ferrite precipitation promoting effect even if present in the austenite grains, but when present in the austenite grain boundaries, precipitation B Similarly, causes coarse grain boundary ferrite precipitation and reduces the toughness of the heat affected zone. Therefore, the Ca acid / sulfide and TiN were separately dispersed.

【0023】次に本発明での大入熱溶接用鋼の製造方法
における限定理由を述べる。 Ac3変態点以上に加熱 鋳造ままの状態で存在する粗大なB 析出物は、そのまま
では溶接加熱時に充分に固溶せず、熱影響部靱性に悪影
響を及ぼす可能性があるので、これを固溶させるため
に、また、Nb、V 等の強化元素を添加した場合、これら
を充分に固溶させるためにも、鋳造後Ac3変態点以上に
加熱する。
Next, the reasons for limitation in the method of manufacturing steel for high heat input welding according to the present invention will be described. Heating above the Ac 3 transformation point Coarse B precipitates that exist in the as-cast state as they are cannot be sufficiently solid-solved during welding heating as they are, and may adversely affect the toughness of the heat-affected zone. In order to dissolve them, and when strengthening elements such as Nb and V are added, they are heated to a temperature higher than the Ac 3 transformation point after casting in order to sufficiently dissolve them.

【0024】圧延仕上げ温度 800〜1000℃ 500kJ/cm以上の大入熱溶接が適用される鋼板は板厚40mm
以上の厚肉となるが、この場合圧延仕上げ温度が1000℃
を超えると、母材結晶粒の細粒化が不充分となり、母材
靱性確保が困難となる。また、圧延仕上げ温度が 800℃
未満では、圧延歪や転位の導入により、B の析出が促進
されて析出B 量が0.0015%以上となる恐れがある。この
ため圧延仕上げ温度は 800〜1000℃とした。
Rolling finishing temperature 800-1000 ℃ Steel plate to which large heat input welding of 500 kJ / cm or more is applied has a plate thickness of 40 mm
The thickness is above the above, but in this case the rolling finish temperature is 1000 ° C.
If it exceeds, the grain refinement of the base material becomes insufficient and it becomes difficult to secure the toughness of the base material. The rolling finish temperature is 800 ℃.
If the amount is less than the above, the precipitation of B may be promoted by the introduction of rolling strain or dislocation, and the amount of precipitated B may be 0.0015% or more. For this reason, the rolling finishing temperature was set to 800 to 1000 ° C.

【0025】熱間圧延の累積圧下率50%以上 厚肉鋼板の製造の場合、板厚中心部まで結晶粒を細粒化
し、母材靱性を確保するために、累積圧下率を50%以上
とした。熱間圧延後の冷却速度を鋼板組織が(フェライ
ト+パーライト)および/またはベイナイトとなる空冷
または加速冷却とすること 大入熱溶接が適用される構造材料として、必要な母材強
度を確保するために、熱間圧延後の冷却速度は、鋼板組
織が(フェライト+パーライト)および/またはベイナ
イトとなるようにする。
Cumulative reduction of hot rolling of 50% or more In the case of manufacturing a thick steel plate, the cumulative reduction of 50% or more is used to refine the crystal grains up to the center of the plate thickness and to secure the toughness of the base material. did. To set the cooling rate after hot rolling to air cooling or accelerated cooling where the steel sheet structure is (ferrite + pearlite) and / or bainite, to secure the necessary base metal strength as a structural material to which high heat input welding is applied. In addition, the cooling rate after hot rolling is such that the steel sheet structure is (ferrite + pearlite) and / or bainite.

【0026】[0026]

【実施例】表1に試作鋼の化学組成を示す。試作鋼の強
度レベルは400 〜490MPa級鋼である。これらの鋼を鋳造
後、1150℃に再加熱し、圧延仕上げ温度900 ℃で板厚80
mmにし、かつ1000℃以下の累積圧下率62%の熱間圧延を
した後、 1.5℃/sの加速冷却を行った。なお、各供試鋼
のAc3変態点はいずれも 890℃以下であった。
EXAMPLES Table 1 shows the chemical composition of trial steels. The strength level of the prototype steel is 400 to 490 MPa class steel. After casting these steels, they are reheated to 1150 ° C and rolled at a finishing temperature of 900 ° C and a plate thickness of 80.
mm, and hot rolling at a cumulative rolling reduction of 62% at 1000 ° C or less was performed, followed by accelerated cooling at 1.5 ° C / s. The Ac 3 transformation point of each of the test steels was 890 ° C or lower.

【0027】実施例A〜H、比較例I〜Lいずれも析出
B は0.0015%未満を満足しているが、比較例Mは析出B
量が過剰となっている。実施例A〜Eは、REM の酸・硫
化物とTiN が各々別個に分散している組織を有し、ま
た、実施例F〜Hは、Caの酸・硫化物とTiN が各々別個
に分散している組織を有しているのに対し、比較例J
は、REM の酸・硫化物とTiN が複合化していた。
All of Examples A to H and Comparative Examples I to L were deposited.
B is less than 0.0015%, but Comparative Example M is precipitated B
There is an excessive amount. Examples A to E have a structure in which REM acid / sulfide and TiN are separately dispersed, and Examples F to H are Ca acid / sulfide and TiN separately dispersed. Comparative Example J, while having a texture
Was complexed with REM acid / sulfide and TiN.

【0028】[0028]

【表1】 [Table 1]

【0029】表2に表1の鋼の引張強さ(T.S.)および入
熱800kJ/cm相当の溶接再現熱サイクルによる溶接ポンド
部の0℃におけるシャルピー吸収エネルギー(vE0 )値と
ボンド部の金属組織を示す。なお、vE0 は3本試験を実
施して得られた値の平均値である。
Table 2 shows the tensile strength (TS) of the steels in Table 1 and the Charpy absorbed energy (vE 0 ) value at 0 ° C. of the weld pond and the metal of the bond by a simulated weld heat cycle corresponding to a heat input of 800 kJ / cm. Indicates an organization. Note that vE 0 is the average value of the values obtained by carrying out the three tests.

【0030】[0030]

【表2】 [Table 2]

【0031】鋼A〜Hは実施例であり、低Si−低N −RE
M −Ti−B 処理または低Si−低N −Ca−Ti−B 処理によ
り溶接熱影響部の旧γ粒が細粒化された上に、粗大フェ
ライトや島状マルテンサイトの生成も抑制された結果、
良好な靱性を示している。鋼I〜Lは比較鋼である。鋼
IはBの添加量が少ないため、粗大フェライトが形成さ
れており、鋼JはTiの含有量が過剰であるために溶接熱
影響部においてその靱性が実施例に比較して低いものと
なっている。鋼KはAl含有量が多すぎるために、鋼の内
質が劣化するとともに過剰N による悪影響により溶接熱
影響部の靱性が劣化したものと考えられる。鋼L はSi含
有量が多すぎるために、やはり溶接熱影響部の靱性が実
施例に比較して低いものとなっている。これは、溶接熱
影響部において生成した島状マルテンサイトが靱性に悪
影響を及ぼしているためと考えられる。
Steels A to H are examples, low Si-low N-RE.
The M-Ti-B treatment or low Si-low N-Ca-Ti-B treatment refined the old γ grains in the heat-affected zone of the weld, and also suppressed the formation of coarse ferrite and island martensite. result,
It shows good toughness. Steels I to L are comparative steels. Steel I has a small amount of B added, so that coarse ferrite is formed, and Steel J has a lower toughness in the weld heat-affected zone as compared with the examples because the Ti content is excessive. ing. It is considered that since the steel K contains too much Al, the internal quality of the steel deteriorates and the toughness of the weld heat affected zone deteriorates due to the adverse effect of excess N 2. Since the steel L has an excessively high Si content, the toughness of the weld heat affected zone is lower than that of the example. It is considered that this is because the island martensite generated in the weld heat affected zone adversely affects the toughness.

【0032】[0032]

【発明の効果】この発明により、建築、橋梁、造船およ
び圧力容器などの構造物の製作に、入熱500kJ/cm以上の
大入熱溶接を用いることができ、溶接施工の大幅な能率
向上とその大幅なコストダウンが図られる。
According to the present invention, large heat input welding with a heat input of 500 kJ / cm or more can be used for manufacturing structures such as buildings, bridges, shipbuilding and pressure vessels. The cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】Si含有量と、入熱1000kJ/cm 相当の大入熱溶接
ボンド部を模擬した再現HAZ のvE0 との関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between Si content and vE 0 of a reproduced HAZ simulating a large heat input welded bond portion having a heat input of 1000 kJ / cm 2.

フロントページの続き (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内Front page continuation (72) Inventor Akihiro Matsuzaki 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Inside the Technical Research Laboratory, Kawasaki Steel Co., Ltd. (72) Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Kawasaki Steel Technical Research Institute Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.10%超0.20%以下、Si:
0.10 %未満、Mn:0.4〜2.0 %、Al:0.010%超0.04%未
満、Ti:0.002〜0.020 %、REM:0.003 〜0.030%、N:0.0
040%未満、B:0.0003%以上0.0020%未満を含有し、残
部は実質的にFeと不可避的不純物の組成からなり、ただ
し析出B は0.0015%未満であり、鋼中にREM の酸・硫化
物とTiN が各々別個に分散している組織を有することを
特徴とする入熱500kJ/cm以上の大入熱溶接用鋼。
1. By weight%, C: more than 0.10% and 0.20% or less, Si:
Less than 0.10%, Mn: 0.4 to 2.0%, Al: more than 0.010% and less than 0.04%, Ti: 0.002 to 0.020%, REM: 0.003 to 0.030%, N: 0.0
040% or less, B: 0.0003% or more and less than 0.0020%, the balance consisting essentially of Fe and inevitable impurities, except that the precipitation B is less than 0.0015%, and REM acid / sulfide in steel is A steel for large heat input welding with a heat input of 500 kJ / cm or more, which has a structure in which TiN and TiN are dispersed separately.
【請求項2】 重量%で、C:0.10%超0.20%以下、Si:
0.10 %未満、Mn:0.4〜2.0 %、Al:0.010%超0.04%未
満、Ti:0.002〜0.020 %、Ca:0.001〜0.005 %、N:0.00
40%未満、B:0.0003%以上0.0020%未満を含有し、残部
は実質的にFeと不可避的不純物の組成からなり、ただし
析出B は0.0015%未満であり、鋼中にCaの酸・硫化物と
TiN が各々別個に分散している組織を有することを特徴
とする入熱500kJ/cm以上の大入熱溶接用鋼。
2. By weight%, C: more than 0.10% and 0.20% or less, Si:
Less than 0.10%, Mn: 0.4 to 2.0%, Al: more than 0.010% and less than 0.04%, Ti: 0.002 to 0.020%, Ca: 0.001 to 0.005%, N: 0.00
Less than 40%, B: 0.0003% or more and less than 0.0020%, the balance consists essentially of Fe and unavoidable impurities, but the precipitation B is less than 0.0015%, and Ca acid / sulfide in steel When
Steel for large heat input welding with a heat input of 500 kJ / cm or more, characterized by having a structure in which TiN is dispersed separately.
【請求項3】 請求項1又は2記載の組成・組織の鋼
に、さらに重量%で、Cu:0.05 〜0.5 %、Ni:0.05 〜1.
0 %、Mo:0.05 〜0.5 %、Nb:0.005〜0.10%、V:0.005
〜0.15%、Cr:0.05 〜0.5 %の1種または2種以上を含
有することを特徴とする入熱500kJ/cm以上の大入熱溶接
用鋼。
3. A steel having the composition and structure according to claim 1 or 2, further comprising Cu: 0.05-0.5% and Ni: 0.05-1.
0%, Mo: 0.05-0.5%, Nb: 0.005-0.10%, V: 0.005
~ 0.15%, Cr: 0.05-0.5% 1 type or 2 types or more, The high heat input welding steel of 500 kJ / cm or more of heat input characterized by the above-mentioned.
【請求項4】 請求項1、2又は3記載の組成の鋼を鋳
造後、Ac3変態点以上に加熱し、圧延仕上げ温度 800〜
1000℃かつ累積圧下率50%以上となる熱間圧延を行い、
その後鋼板組織が(フェライト+パーライト)および/
またはベイナイトとなる冷却速度で空冷または加速冷却
を行うことを特徴とする入熱500kJ/cm以上の大入熱溶接
用鋼の製造方法。
4. A steel having the composition according to claim 1, 2 or 3 is cast and then heated to an Ac 3 transformation point or higher, and a rolling finishing temperature of 800 to
Perform hot rolling at 1000 ° C and cumulative reduction of 50% or more,
After that, the steel sheet structure is (ferrite + pearlite) and /
Alternatively, a method for producing steel for high heat input welding having a heat input of 500 kJ / cm or more, characterized by performing air cooling or accelerated cooling at a bainite cooling rate.
JP03806195A 1995-02-27 1995-02-27 High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same Expired - Fee Related JP3256401B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03806195A JP3256401B2 (en) 1995-02-27 1995-02-27 High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same
KR1019960004587A KR100260578B1 (en) 1995-02-27 1996-02-26 The manufacturing method for welding steel and same product
CN96105706A CN1071802C (en) 1995-02-27 1996-02-27 Large-heat input welding steel with heat input 500 KJ/cm above and its manufacture method
TW085102255A TW389793B (en) 1995-02-27 1996-02-27 A large heat input welding steel with a heat input of 500 Kj/cm or more, and a method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03806195A JP3256401B2 (en) 1995-02-27 1995-02-27 High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08232043A true JPH08232043A (en) 1996-09-10
JP3256401B2 JP3256401B2 (en) 2002-02-12

Family

ID=12514990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03806195A Expired - Fee Related JP3256401B2 (en) 1995-02-27 1995-02-27 High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same

Country Status (4)

Country Link
JP (1) JP3256401B2 (en)
KR (1) KR100260578B1 (en)
CN (1) CN1071802C (en)
TW (1) TW389793B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003042420A1 (en) * 2001-11-16 2003-05-22 Posco Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
JP2007056279A (en) * 2005-08-22 2007-03-08 Nippon Steel Corp STEEL FOR WELDED STRUCTURE HAVING 590 N/mm2 CLASS TENSILE STRENGTH AND EXCELLENT IN TOUGHNESS IN BASE MATERIAL AND HEAT AFFECTED ZONE, AND ITS MANUFACTURING METHOD
CN102080194A (en) * 2011-03-08 2011-06-01 南京钢铁股份有限公司 Large-deformation-preventing pipeline steel with excellent aging resistance and production method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428579B1 (en) * 1999-12-27 2004-04-28 주식회사 포스코 Low-Carbon Steel Plate Having Excellent Toughness of Heat Affected zone and A Method for Manufacturing It
KR100431610B1 (en) * 1999-12-27 2004-05-17 주식회사 포스코 Shipbuilding steel for ultra high heat input welding and manufacturing therefor
KR100362679B1 (en) * 2000-07-04 2003-01-24 주식회사 포스코 steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100362680B1 (en) * 2000-07-06 2003-01-24 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same, welding fabric using the same
KR100362681B1 (en) * 2000-07-13 2002-11-27 주식회사 포스코 steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100362682B1 (en) * 2000-07-14 2003-01-24 주식회사 포스코 High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same
KR100380750B1 (en) * 2000-10-24 2003-05-09 주식회사 포스코 Method for high strength steel plate having superior toughness in weld heat-affected zone
KR100470053B1 (en) * 2000-11-23 2005-02-04 주식회사 포스코 Steel plate to be precipitating TiN and complex oxide of Mg-Ti, method for manufacturing the same, welding fabric using the same
KR100470054B1 (en) * 2000-11-24 2005-02-04 주식회사 포스코 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same
KR100482188B1 (en) * 2000-11-28 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling
KR100709521B1 (en) * 2001-11-13 2007-04-20 제이에프이 스틸 가부시키가이샤 Welding joint of large heat input welding and welding method thereof
KR100568359B1 (en) * 2001-12-24 2006-04-05 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing thereof
KR20110127289A (en) * 2008-10-27 2011-11-24 신닛뽄세이테쯔 카부시키카이샤 Fire-resistant steel excellent in low-temperature toughness and reheat embrittlement resistance of welding heat affected zone and process for production of the same
CN101476080B (en) * 2008-12-26 2011-01-26 首钢总公司 Low welding crack sensitivity, quenching and tempering, high rigid plate and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190016A (en) * 1985-02-19 1986-08-23 Kobe Steel Ltd Production of steel for large heat input welded construction
JPH0578740A (en) * 1991-09-19 1993-03-30 Nippon Steel Corp Manufacture of steel excellent in low temperature toughness in weld heat affected zone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
WO2003042420A1 (en) * 2001-11-16 2003-05-22 Posco Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
US7105066B2 (en) 2001-11-16 2006-09-12 Posco Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
US7396423B2 (en) 2001-11-16 2008-07-08 Posco Method for manufacturing steel plate having superior toughness in weld heat-affected zone
JP2007056279A (en) * 2005-08-22 2007-03-08 Nippon Steel Corp STEEL FOR WELDED STRUCTURE HAVING 590 N/mm2 CLASS TENSILE STRENGTH AND EXCELLENT IN TOUGHNESS IN BASE MATERIAL AND HEAT AFFECTED ZONE, AND ITS MANUFACTURING METHOD
JP4523893B2 (en) * 2005-08-22 2010-08-11 新日本製鐵株式会社 Steel for welded structure having a tensile strength of 590 N / mm2 and excellent in toughness of base metal and weld heat-affected zone, and method for producing the same
CN102080194A (en) * 2011-03-08 2011-06-01 南京钢铁股份有限公司 Large-deformation-preventing pipeline steel with excellent aging resistance and production method thereof

Also Published As

Publication number Publication date
JP3256401B2 (en) 2002-02-12
CN1071802C (en) 2001-09-26
TW389793B (en) 2000-05-11
CN1157859A (en) 1997-08-27
KR960031635A (en) 1996-09-17
KR100260578B1 (en) 2000-07-01

Similar Documents

Publication Publication Date Title
JP3256401B2 (en) High heat input welding steel having heat input of 500 kJ / cm or more and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4222073B2 (en) H-section steel with excellent fillet part toughness and method for producing the same
WO2015151521A1 (en) Welded joint
JP7410438B2 (en) steel plate
JPS6352090B2 (en)
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP6153747B2 (en) Structural high-strength cast steel
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP2020204091A (en) High strength steel sheet for high heat input welding
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP3390234B2 (en) Steel with excellent heat input welding characteristics
JP2007084912A (en) 60 kg/mm2 class steel excellent in weldability and toughness at weld heat-affected zone
JP2962110B2 (en) Manufacturing method of low yield ratio high strength steel sheet for box column
JP2526719B2 (en) Manufacturing method of high strength stainless steel
JP2020204092A (en) High strength steel sheet for high heat input welding
JP3526702B2 (en) Steel plate for high tensile welded structure excellent in fatigue strength of welded joint and method for producing the same
JP2005194586A (en) Method for manufacturing steel plate with composite structure excellent in fatigue characteristic
JP2001335883A (en) High tensile steel sheet excellent in weldability
JP2014156652A (en) High strength cast steel material and method of producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees