JPH08225834A - Production of low yield ratio high tensile strength steel plate - Google Patents

Production of low yield ratio high tensile strength steel plate

Info

Publication number
JPH08225834A
JPH08225834A JP5371295A JP5371295A JPH08225834A JP H08225834 A JPH08225834 A JP H08225834A JP 5371295 A JP5371295 A JP 5371295A JP 5371295 A JP5371295 A JP 5371295A JP H08225834 A JPH08225834 A JP H08225834A
Authority
JP
Japan
Prior art keywords
less
temperature
transformation point
yield ratio
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5371295A
Other languages
Japanese (ja)
Other versions
JP3325146B2 (en
Inventor
Toshinaga Hasegawa
俊永 長谷川
Shuichi Jinushi
修一 地主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05371295A priority Critical patent/JP3325146B2/en
Publication of JPH08225834A publication Critical patent/JPH08225834A/en
Application granted granted Critical
Publication of JP3325146B2 publication Critical patent/JP3325146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a low yield ratio high tensile strength steel plate having sufficient performance as a steel for welding structures by subjecting a slab having a specified componental compsn. in which the total content of P and N and the contents of Mg, Ca and Y are prescribed to heating under specified conditions and executing hot rolling. CONSTITUTION: A slab having a compsn. contg., by weight, 0.01 to 0.20% C, 0.03 to 1.0% Si, 0.30 to 2.0% Mn, <=0.008%. P, <=0.005% S, 0.005 to 0.1% Al, 0.001 to 0.006% N, 0.005 to 0.020% Ti and 0.001 to 0.010% O, in which the total content of P and N is regulated to <=0.01%, furthermore added with total 0.002 to 0.01% of one or more kinds among Mg, Ca nad Y, and the balance iron with inevitable impurities is prepd. This slab is heated to the Ac3 transformation point or above to 1250 deg.C, and hot rolling is finished at the Ar3 transformation point or above. Thus, the steel plate low in a yield ratio and excellent in plastic deformability can be obtd. at a reduced production cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶接構造用鋼としての十
分な性能を有し、降伏比が低く塑性変形能に優れた低降
伏比高張力鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high yield steel plate having a low yield ratio and having a sufficient performance as a steel for welded structure, a low yield ratio and an excellent plastic deformability.

【0002】[0002]

【従来の技術】従来の低降伏比鋼の製造方法は、焼入れ
と焼戻し熱処理の間にフェライト(α)+オーステナイ
ト(γ)二相域に加熱する、中間熱処理を施す方法(以
降、QLT処理)に代表されるように、基本的には軟質
相としてのαと硬質相としての、ベイナイトあるいはマ
ルテンサイトを混在させることを目的としている。そし
て、全体の強度レベルおよび降伏比は、これらの相の混
在比率を変えることによって制御されてきた。
2. Description of the Related Art A conventional method for producing a low yield ratio steel is a method of applying an intermediate heat treatment (hereinafter referred to as QLT treatment) of heating in a ferrite (α) + austenite (γ) two-phase region between quenching and tempering heat treatments. As represented by, the purpose is basically to mix α as a soft phase and bainite or martensite as a hard phase. And the overall strength level and yield ratio have been controlled by varying the mixing ratio of these phases.

【0003】この軟質相と硬質相の混合組織を得るため
の製造方法は従来から種々提案されており、例えば、特
開昭53−23817号公報には鋼板を再加熱焼入れし
た後、Ac1変態点とAc3変態点の間に再加熱してγとα
の二相としてから空冷する方法が示されており、また、
特開平4−314824号公報には同様に二相域に再加
熱した後、焼入れる方法が開示されている。また、再加
熱処理を施さずにオンラインで製造する方法としては、
例えば、特開昭63−286517号公報にはγ域から
二相域にかけて熱間圧延を施した後、Ar3変態点より2
0〜100℃低い温度まで空冷してα相を生成させ、そ
の後、急冷する方法が開示されている。
Various manufacturing methods for obtaining the mixed structure of the soft phase and the hard phase have been proposed in the past. For example, Japanese Unexamined Patent Publication No. 53-23817 discloses that the steel sheet is reheat-quenched and then the A c1 transformation is performed. Between the A c3 transformation point and γ and α
The method of air-cooling as two phases is shown,
Japanese Unexamined Patent Publication No. 4-314824 similarly discloses a method of reheating to a two-phase region and then quenching. Also, as a method of manufacturing online without performing reheating treatment,
For example, after performing hot rolling toward two-phase region from γ zone in JP 63-286517, 2 from A r3 transformation point
A method is disclosed in which the α phase is generated by air cooling to a temperature 0 to 100 ° C. lower, and then rapidly cooled.

【0004】しかしながら、以上のような二相組織鋼を
得るための従来の技術は、一般的に複雑であり、生産性
の低下を生じやすい。すなわち、上記のQLT処理では
工程が増加するため、製造コストの増加および生産性の
低下を招く。また、もう一つの代表的な製造方法とし
て、熱間圧延後、直接焼入れする、いわゆるDQ工程に
おいて、圧延後、直ちに焼入れせずに、αが一定量生成
するまで放冷した後、焼入れて二相組織とする方法(以
降DLT処理)が挙げられる。
However, the conventional techniques for obtaining the dual phase steel as described above are generally complicated, and the productivity is likely to decrease. That is, since the number of steps is increased in the above-mentioned QLT processing, manufacturing cost is increased and productivity is decreased. Further, as another typical manufacturing method, in a so-called DQ process in which hot rolling is performed and then direct quenching is performed, after rolling, the steel is not immediately quenched, but allowed to cool until a certain amount of α is formed and then quenched. A method of forming a phase structure (hereinafter referred to as DLT treatment) can be mentioned.

【0005】しかし、この方法ではQLT処理に比べて
中間熱処理は省略できるものの、圧延から焼入れまでの
待ち時間が長くなるため、生産性の低下は避けられな
い。また、待ち時間が長いため板内の温度不均一が生じ
やすく、そのため、材質の板内変動が大きくなりがちで
ある。さらに、このようなプロセスで生じるαや硬質第
二相は粗大になりやすく靱性の劣化を招きやすい。
However, in this method, the intermediate heat treatment can be omitted as compared with the QLT treatment, but the waiting time from the rolling to the quenching becomes long, so that the reduction in productivity cannot be avoided. In addition, since the waiting time is long, temperature nonuniformity in the plate is likely to occur, which tends to cause a large variation in the material within the plate. Further, α and the hard second phase produced in such a process are likely to become coarse, and toughness is likely to be deteriorated.

【0006】[0006]

【発明が解決しようとする課題】従来の、軟質相である
αと硬質相であるマルテンサイトやベイナイトの比率を
変えることにより、低降伏比化を図る限りは以下の2点
で大きな問題を有する。すなわち、第1点は、オンライ
ンプロセスによるにせよ、再加熱プロセスによるにせ
よ、αを生成させるためにはα/γ二相域での徐冷ある
いは保持過程が必須になるため、生産性が著しく阻害さ
れる点である。第2点はこのようなプロセスによって製
造される場合は、αが粗大になりやすく、また、第二相
も同様に粗大化しやすく、靱性の確保が容易でない点で
ある。
As long as a low yield ratio is achieved by changing the conventional ratio of α which is a soft phase and martensite or bainite which is a hard phase, there are the following two major problems. . That is, the first point is that the productivity is remarkably increased because the slow cooling or holding process in the α / γ two-phase region is indispensable for producing α regardless of whether it is an online process or a reheating process. That is the point of hindrance. The second point is that when manufactured by such a process, α tends to be coarse, and the second phase is also likely to be coarse, so that it is not easy to secure toughness.

【0007】本発明は、α相と硬質相の二相組織におい
て、その組織比率により降伏比を変化させる従来の技術
によらない、全く新しい視点からの低降伏比化により従
来技術の持っている上記の問題点を解決して、溶接構造
用鋼としての十分な性能を有し、降伏比が低く塑性変形
能に優れた低降伏比高張力鋼板を安価に製造する方法を
見いだしたものである。
The present invention has a low yield ratio from a completely new point of view, which does not depend on the conventional technique of changing the yield ratio depending on the structure ratio in the two-phase structure of α phase and hard phase, and has the prior art. By solving the above problems, having a sufficient performance as a welded structural steel, a low yield ratio low plasticity of low yield ratio high tensile strength steel sheet to find a method of manufacturing at low cost. .

【0008】[0008]

【課題を解決するための手段】複合組織鋼においては、
硬質相の割合が少ない場合は、降伏応力は軟質相の降伏
応力にほぼ支配される。また、単相鋼においてもマトリ
クスであるα相の特性が降伏応力に大きな影響を及ぼす
と考えられる。本発明者らはα相の降伏応力自体を低下
させることにより低降伏比化を図ることが可能となれ
ば、複合組織鋼に限定されずに組織形態によらない低降
伏比化が図れると考え、本発明を知見するに至った。
[Means for Solving the Problems] In the composite structure steel,
When the proportion of the hard phase is small, the yield stress is almost dominated by the yield stress of the soft phase. Also, in single-phase steel, the characteristics of the α phase, which is the matrix, are considered to have a large effect on the yield stress. The present inventors believe that if it is possible to achieve a low yield ratio by lowering the yield stress of the α phase itself, it is possible to achieve a low yield ratio independent of the microstructure without being limited to composite microstructure steel. The inventors have come to discover the present invention.

【0009】α相自体の降伏応力を支配する因子として
は、結晶粒径、固溶元素、転位密度、析出状態が挙げら
れる。結晶粒径に関しては、粒径を粗大化すれば降伏応
力の低下が図れるが、その場合には靱性の劣化も同時に
生じるため、一般的に採用できる手段ではない。転位強
化、析出強化はいずれも降伏応力に大きな影響を及ぼす
が、製造履歴や鋼の化学成分により大きく変化するた
め、安定した低降伏比化の手段にはなり難いと考えられ
る。
Factors that control the yield stress of the α phase itself include crystal grain size, solid solution element, dislocation density, and precipitation state. Regarding the crystal grain size, if the grain size is made coarse, the yield stress can be reduced, but in that case, deterioration of the toughness also occurs at the same time, so this is not a generally applicable means. Both dislocation strengthening and precipitation strengthening have a large effect on the yield stress, but since they greatly change depending on the manufacturing history and the chemical composition of the steel, it is considered difficult to provide a stable means of lowering the yield ratio.

【0010】これらに対して、固溶強化は組織や製造履
歴によらず安定して効果を有する強化手段である。逆に
言えば、通常の製造条件では不可避的に生じている固溶
強化を何らかの手段で無効化することにより降伏応力の
低下が、他の特性の劣化や製造条件の複雑化を招かずに
達成できると考えられる。もちろん、固溶強化量の大き
い、PやSiの量自体を低減すれば降伏応力の低下は当
然可能であるが、このような手段では製鋼工程に負荷を
かけ、結果として製造コストの上昇を招くので到底採用
できる手段とはならない。
On the other hand, solid solution strengthening is a strengthening means having a stable effect regardless of the structure and manufacturing history. Conversely, by reducing the solid solution strengthening, which is unavoidable under normal manufacturing conditions, by some means, the yield stress is reduced without deteriorating other properties or complicating manufacturing conditions. It is thought to be possible. Of course, if the amount of P or Si, which has a large amount of solid solution strengthening, is reduced, it is possible to lower the yield stress, but such means imposes a load on the steelmaking process, resulting in an increase in manufacturing cost. Therefore, it is not a method that can be adopted at all.

【0011】侵入型元素のC,Nは特に大きな固溶強化
を示し、例えば、Cの場合、数十ppm程度固溶するだ
けで降伏応力は100MPa程度上昇し得る。通常の鋼
板の製造工程においては、いずれの工程でも微量ではあ
ってもC,Nの固溶は避けられず、従って、通常測定さ
れる降伏応力はこれらの不可避的に固溶しているC,N
による固溶強化分をすでに含んでいるものと考えられ
る。従って、これら不可避的に含有されるC,N、さら
には、不純物としてのPを降伏応力上昇に対して無効化
できれば降伏応力の低下とその結果としての低降伏比化
が図れると考えられる。
The interstitial elements C and N exhibit particularly large solid solution strengthening. For example, in the case of C, the yield stress can be increased by about 100 MPa only by solid solution of several tens of ppm. In the ordinary steel plate manufacturing process, solid solution of C and N is inevitable even in a small amount in any of the processes, and therefore, the normally measured yield stress is the unavoidable solid solution of C and N. N
It is considered that the solid solution strengthening component due to is already included. Therefore, it is considered that if the inevitable inclusion of C and N, and further P as an impurity, can be canceled against the increase of the yield stress, the yield stress can be reduced and the resulting yield ratio can be reduced.

【0012】上記に示すような考えに基づき、鋼のα母
地の降伏応力自体を低下させて低降伏比化するための手
段を実験、考察した結果、α母地中に適切な酸化物を分
散させることにより、熱間圧延および冷却、熱処理条件
に依存せず、降伏応力を上昇させている不可避的に含ま
れる固溶元素を該酸化物を生成核として析出させること
が可能となり、母地中での固溶元素量が低減するため、
鋼の微視組織によらずに降伏応力が低下できることを知
見することにより、本発明を開発するに至った。その発
明の要旨とする所は、以下に示す通りである。
[0012] Based on the above idea, as a result of experimenting and studying means for lowering the yield stress itself of the α matrix of steel to lower the yield ratio, a suitable oxide was found in the α matrix. By dispersing, it becomes possible to precipitate the solid solution element contained inevitably contained in the oxide, which increases the yield stress, as the production nucleus without depending on the conditions of hot rolling, cooling and heat treatment. Since the amount of solid solution elements in the
The present invention has been developed by finding that the yield stress can be reduced regardless of the microstructure of steel. The gist of the invention is as follows.

【0013】第1の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、PとNの含有
量の合計が0.01%以下で、さらにMg,Ca,Yの
1種また2種以上を添加量の合計として、0.002〜
0.01%添加した残部鉄および不可避不純物よりなる
鋼片を、Ac3変態点以上、1250℃以下の温度に加熱
し、Ar3変態点以上の温度で熱間圧延を終了することを
特徴とする低降伏比高張力鋼板の製造方法。
The first aspect of the present invention is C: 0.01% by weight.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: 0.001 to 0.010% is contained, the total content of P and N is 0.01% or less, and one or two or more of Mg, Ca, Y is added as the total of the added amount, 0.002-
The steel slab consisting balance iron and unavoidable impurities added 0.01%, A c3 transformation point or higher, then heated to a temperature of 1250 ° C. or less, and characterized in that to terminate the hot rolling at a temperature not lower than A r3 transformation point A method for manufacturing a high-strength steel plate having a low yield ratio.

【0014】第2の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、Cr:0.0
1〜0.50%,Ni:0.01〜3.0%,Mo:
0.01〜0.50%,Cu:0.01〜1.5%,
V:0.005〜0.20%,Nb:0.003〜0.
05%,B:0.0003〜0.0020%の1種また
は2種以上を含有し、PとNの含有量の合計が0.01
%以下で、さらにMg,Ca,Yの1種または2種以上
を添加量の合計として、0.002〜0.01%添加し
た残部鉄および不可避不純物よりなる鋼片を、Ac3変態
点以上、1250℃以下の温度に加熱し、Ar3変態点以
上の温度で熱間圧延を終了することを特徴とする低降伏
比高張力鋼板の製造方法。
A second aspect of the invention is C: 0.01% by weight.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: contains 0.001 to 0.010%, Cr: 0.0
1 to 0.50%, Ni: 0.01 to 3.0%, Mo:
0.01 to 0.50%, Cu: 0.01 to 1.5%,
V: 0.005 to 0.20%, Nb: 0.003 to 0.
05%, B: 0.0003 to 0.0020% of 1 type or 2 types or more, and the total content of P and N is 0.01.
% Or less, and a steel slab composed of the balance iron and unavoidable impurities added with 0.002 to 0.01% as a total of the addition amount of one or more of Mg, Ca, and Y is not less than the A c3 transformation point. A method for producing a high-strength steel sheet having a low yield ratio, which comprises heating to a temperature of 1250 ° C. or lower and ending hot rolling at a temperature of an Ar 3 transformation point or higher.

【0015】第3の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、PとNの含有
量の合計が0.01%以下で、さらにMg,Ca,Yの
1種または2種以上を添加量の合計として、0.002
〜0.01%添加した残部鉄および不可避不純物よりな
る鋼片を、Ac3変態点以上、1250℃以下の温度に加
熱し、Ar3変態点以上の温度で熱間圧延を終了した後、
5℃/秒以上の冷却速度で加速冷却し、650〜500
℃の範囲で加速冷却を終了することを特徴とする低降伏
比高張力鋼板の製造方法。
The third invention is, by weight%, C: 0.01 to.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: 0.001 to 0.010% is contained, the total content of P and N is 0.01% or less, and one or two or more of Mg, Ca, Y is added as the total amount of addition, 0.002
After heating a steel slab consisting of the balance iron added to 0.01% to unavoidable impurities to a temperature of A c3 transformation point or more and 1250 ° C. or less and finishing hot rolling at a temperature of A r3 transformation point or more,
Accelerated cooling at a cooling rate of 5 ° C / sec or more, 650-500
A method for producing a high-strength steel plate with a low yield ratio, which comprises accelerating cooling in the range of ° C.

【0016】第4の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、Cr:0.0
1〜0.50%,Ni:0.01〜3.0%,Mo:
0.01〜0.50%,Cu:0.01〜1.5%,
V:0.005〜0.20%,Nb:0.003〜0.
05%,B:0.0003〜0.0020%の1種また
は2種以上を含有し、PとNの含有量の合計が0.01
%以下で、さらにMg,Ca,Yの1種または2種以上
を添加量の合計として、0.002〜0.01%添加し
た残部鉄および不可避不純物よりなる鋼片を、Ac3変態
点以上、1250℃以下の温度に加熱し、Ar3変態点以
上の温度で熱間圧延を終了した後、5℃/秒以上の冷却
速度で加速冷却し、650〜500℃の範囲で加速冷却
を終了することを特徴とする低降伏比高張力鋼板の製造
方法。
A fourth invention is, in% by weight, C: 0.01 to.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: contains 0.001 to 0.010%, Cr: 0.0
1 to 0.50%, Ni: 0.01 to 3.0%, Mo:
0.01 to 0.50%, Cu: 0.01 to 1.5%,
V: 0.005 to 0.20%, Nb: 0.003 to 0.
05%, B: 0.0003 to 0.0020% of 1 type or 2 types or more, and the total content of P and N is 0.01.
% Or less, and a steel slab composed of the balance iron and unavoidable impurities added with 0.002 to 0.01% as a total of the addition amount of one or more of Mg, Ca, and Y is not less than the A c3 transformation point. After heating to a temperature of 1250 ° C. or lower and finishing hot rolling at a temperature of Ar 3 transformation point or higher, accelerated cooling is performed at a cooling rate of 5 ° C./sec or higher, and accelerated cooling is completed in the range of 650 to 500 ° C. A method for producing a high-strength steel sheet having a low yield ratio, which comprises:

【0017】第5の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、PとNの含有
量の合計が0.01%以下で、さらにMg,Ca,Yの
1種または2種以上を添加量の合計として、0.002
〜0.01%添加した残部鉄および不可避不純物よりな
る鋼片を、Ac3変態点以上、1250℃以下の温度に加
熱し、Ar3変態点以上の温度で熱間圧延を終了した後、
5℃/秒以上の冷却速度で650℃以下まで加速冷却し
た後、500℃以上、Ac1変態点以下に焼戻すことを特
徴とする低降伏比高張力鋼板の製造方法。
A fifth aspect of the present invention is C: 0.01% by weight.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: 0.001 to 0.010% is contained, the total content of P and N is 0.01% or less, and one or two or more of Mg, Ca, Y is added as the total amount of addition, 0.002
After heating a steel slab consisting of the balance iron added to 0.01% to unavoidable impurities to a temperature of A c3 transformation point or more and 1250 ° C. or less and finishing hot rolling at a temperature of A r3 transformation point or more,
A method for producing a high-strength steel sheet having a low yield ratio, which comprises accelerating cooling to 650 ° C. or lower at a cooling rate of 5 ° C./sec or more, and then tempering to 500 ° C. or more and A c1 transformation point or less.

【0018】第6の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、Cr:0.0
1〜0.50%,Ni:0.01〜3.0%,Mo:
0.01〜0.50%,Cu:0.01〜1.5%,
V:0.005〜0.20%,Nb:0.003〜0.
05%,B:0.0003〜0.0020%の1種また
は2種以上を含有し、PとNの含有量の合計が0.01
%以下で、さらにMg,Ca,Yの1種または2種以上
を添加量の合計として、0.002〜0.01%添加し
た残部鉄および不可避不純物よりなる鋼片を、Ac3変態
点以上、1250℃以下の温度に加熱し、Ar3変態点以
上の温度で熱間圧延を終了した後、5℃/秒以上の冷却
速度で650℃以下まで加速冷却した後、500℃以
上、Ac1変態点以下に焼戻すことを特徴とする低降伏比
高張力鋼板の製造方法。
A sixth aspect of the present invention is C: 0.01% by weight.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: contains 0.001 to 0.010%, Cr: 0.0
1 to 0.50%, Ni: 0.01 to 3.0%, Mo:
0.01 to 0.50%, Cu: 0.01 to 1.5%,
V: 0.005 to 0.20%, Nb: 0.003 to 0.
05%, B: 0.0003 to 0.0020% of 1 type or 2 types or more, and the total content of P and N is 0.01.
% Or less, and a steel slab composed of the balance iron and unavoidable impurities added with 0.002 to 0.01% as a total of the addition amount of one or more of Mg, Ca, and Y is not less than the A c3 transformation point. After heating to a temperature of 1250 ° C. or lower and terminating hot rolling at a temperature of A r3 transformation point or higher, accelerated cooling to 650 ° C. or lower at a cooling rate of 5 ° C./sec or higher, then 500 ° C. or higher, A c1 A method for producing a high-strength steel sheet having a low yield ratio, which comprises tempering to a temperature not higher than a transformation point.

【0019】第7の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、PとNの含有
量の合計が0.01%以下で、さらにMg,Ca,Yの
1種または2種以上を添加量の合計として、0.002
〜0.01%添加した残部鉄および不可避不純物よりな
る鋼片を熱間圧延により鋼板とした後、、Ac3変態点以
上、1000℃以下の温度に再加熱して焼入れ処理を行
い、引き続き、500℃以上、AC1変態点以下に焼戻す
ことを特徴とする低降伏比高張力鋼板の製造方法。
The seventh aspect of the present invention is C: 0.01% by weight.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: 0.001 to 0.010% is contained, the total content of P and N is 0.01% or less, and one or two or more of Mg, Ca, Y is added as the total amount of addition, 0.002
After making a steel plate by hot rolling a steel slab consisting of the balance iron and unavoidable impurities added by 0.01% or less, it is reheated to a temperature not lower than the Ac3 transformation point and not higher than 1000 ° C. to carry out a quenching treatment. A method for producing a high-strength steel sheet having a low yield ratio, which comprises tempering at a temperature of 500 ° C or higher and a temperature of A C1 or lower.

【0020】第8の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、Cr:0.0
1〜0.50%,Ni:0.01〜3.0%,Mo:
0.01〜0.50%,Cu:0.01〜1.5%,
V:0.005〜0.20%,Nb:0.003〜0.
05%,B:0.0003〜0.0020%の1種また
は2種以上を含有し、PとNの含有量の合計が0.01
%以下で、さらにMg,Ca,Yの1種または2種以上
を添加量の合計として、0.002〜0.01%添加し
た残部鉄および不可避不純物よりなる鋼片を熱間圧延に
より鋼板とした後、Ac3変態点以上、1000℃以下の
温度に再加熱し焼入れ処理を行い、引き続き500℃以
上、Ac1変態点以下に焼戻すことを特徴とする低降伏比
高張力鋼板の製造方法。
The eighth aspect of the present invention is C: 0.01% by weight.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: contains 0.001 to 0.010%, Cr: 0.0
1 to 0.50%, Ni: 0.01 to 3.0%, Mo:
0.01 to 0.50%, Cu: 0.01 to 1.5%,
V: 0.005 to 0.20%, Nb: 0.003 to 0.
05%, B: 0.0003 to 0.0020% of 1 type or 2 types or more, and the total content of P and N is 0.01.
% Or less, and one or two or more of Mg, Ca, and Y as the total amount of addition, a steel slab composed of the remaining iron and unavoidable impurities added by 0.002 to 0.01% is formed into a steel plate by hot rolling. After that, it is reheated to a temperature of not less than A c3 transformation point and not more than 1000 ° C. to perform quenching treatment, and subsequently tempered at not less than 500 ° C. and not more than A c1 transformation point. .

【0021】第9の発明は、重量%で、C:0.01〜
0.20%,Si:0.03〜1.0%,Mn:0.3
0〜2.0%,P:0.008%以下,S:0.005
%以下,Al:0.005〜0.1%,N:0.001
〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、PとNの含有
量の合計が0.01%以下で、さらにMg,Ca,Yの
1種または2種以上を添加量の合計として、0.002
〜0.01%添加した残部鉄および不可避不純物よりな
る鋼片を熱間圧延により鋼板とした後、Ac3変態点以
上、1000℃以下の温度に再加熱して焼ならし処理を
行うことを特徴とする低降伏比高張力鋼板の製造方法。
The ninth aspect of the present invention is, by weight%, C: 0.01-.
0.20%, Si: 0.03 to 1.0%, Mn: 0.3
0 to 2.0%, P: 0.008% or less, S: 0.005
% Or less, Al: 0.005 to 0.1%, N: 0.001
~ 0.006%, Ti: 0.005-0.020%,
O: 0.001 to 0.010% is contained, the total content of P and N is 0.01% or less, and one or two or more of Mg, Ca, Y is added as the total amount of addition, 0.002
A steel slab consisting of the balance iron added to 0.01% and unavoidable impurities is hot-rolled into a steel plate, which is then reheated to a temperature not lower than the Ac3 transformation point and not higher than 1000 ° C to perform a normalizing treatment. A method for producing a high-strength steel sheet having a low yield ratio.

【0022】第10の発明は、重量%で、C:0.01
〜0.20%,Si:0.03〜1.0%,Mn:0.
30〜2.0%,P:0.008%以下,S:0.00
5%以下,Al:0.005〜0.1%,N:0.00
1〜0.006%,Ti:0.005〜0.020%,
O:0.001〜0.010%を含有し、Cr:0.0
1〜0.50%,Ni:0.01〜3.0%,Mo:
0.01〜0.50%,Cu:0.01〜1.5%,
V:0.005〜0.20%,Nb:0.003〜0.
05%,B:0.0003〜0.0020%の1種また
は2種以上を含有し、PとNの含有量の合計が0.01
%以下で、さらにMg,Ca,Yの1種または2種以上
を添加量の合計として、0.002〜0.01%添加し
た残部鉄および不可避不純物よりなる鋼片を熱間圧延に
より鋼板とした後、Ac3変態点以上、1000℃以下の
温度に再加熱し焼ならし処理を行うことを特徴とする低
降伏比高張力鋼板の製造方法。
The tenth aspect of the present invention is C: 0.01 in% by weight.
.About.0.20%, Si: 0.03 to 1.0%, Mn: 0.
30-2.0%, P: 0.008% or less, S: 0.00
5% or less, Al: 0.005 to 0.1%, N: 0.00
1 to 0.006%, Ti: 0.005 to 0.020%,
O: contains 0.001 to 0.010%, Cr: 0.0
1 to 0.50%, Ni: 0.01 to 3.0%, Mo:
0.01 to 0.50%, Cu: 0.01 to 1.5%,
V: 0.005 to 0.20%, Nb: 0.003 to 0.
05%, B: 0.0003 to 0.0020% of 1 type or 2 types or more, and the total content of P and N is 0.01.
% Or less, and one or two or more of Mg, Ca, and Y as the total amount of addition, a steel slab composed of the remaining iron and unavoidable impurities added by 0.002 to 0.01% is formed into a steel plate by hot rolling. After that, a method for producing a low-yield-ratio high-strength steel sheet, which comprises reheating to a temperature not lower than the A c3 transformation point and not higher than 1000 ° C. and performing normalizing treatment.

【0023】[0023]

【作用】本発明の最も重要な点は母相の固溶元素量の低
減にあるが、固溶元素の析出核としては、製造条件に依
存せず、活用できるものとして、熱的に安定な酸化物が
最も有効であると考えられる。そこで、脱酸元素を変え
ることによって鋼材中に分散させる酸化物の種類を変え
て引張特性との関係を調査した所、酸化物の種類によっ
ては組織が同じでも強度、特に降伏応力が変化し得るこ
とが知見された。
The most important point of the present invention is to reduce the amount of the solid solution element in the matrix phase. However, the precipitation nucleus of the solid solution element does not depend on the manufacturing conditions and can be utilized and is thermally stable. Oxides are considered to be the most effective. Therefore, by investigating the relationship with tensile properties by changing the type of oxide dispersed in the steel material by changing the deoxidizing element, the strength, especially the yield stress may change depending on the type of oxide even if the structure is the same. It was discovered.

【0024】すなわち、重量%で、C:0.12%,S
i:0.25%,Mn:1.4%,Al:0.03%,
Ti:0.015%を含有する鋼を小型真空溶解炉にお
いて溶製するに際して、出鋼前に種々の脱酸元素を単独
あるいは複合添加した後、鋼製鋳型に凝固させた。凝固
後のインゴットを1250℃に再加熱し、熱間圧延によ
り板厚20mmとした鋼板をさらに900〜1200℃
の種々の加熱温度で焼きならし処理を施した場合の、板
厚中心部で圧延方向に平行に採取した試験片の引張特性
を調査した結果を図1〜3に示す。なお、出鋼前に単独
あるいは複合添加した脱酸元素の添加量はその合計量で
0.002〜0.01%とした。熱間圧延後および焼き
ならし後の冷却はいずれも放冷とした。
That is, in% by weight, C: 0.12%, S
i: 0.25%, Mn: 1.4%, Al: 0.03%,
When steel containing Ti: 0.015% was melted in a small vacuum melting furnace, various deoxidizing elements were added alone or in combination before tapping, and then solidified in a steel mold. The ingot after solidification is reheated to 1250 ° C., and the steel plate having a plate thickness of 20 mm by hot rolling is further 900 to 1200 ° C.
1 to 3 show the results of examining the tensile properties of the test pieces taken in parallel with the rolling direction at the center of the plate thickness when the normalizing treatment was performed at various heating temperatures. The total amount of the deoxidizing elements added individually or in combination before tapping was 0.002 to 0.01%. Cooling after hot rolling and after normalizing was both allowed to cool.

【0025】図1〜3から明らかなように、通常の脱酸
に加えて、さらにMg,Ca,Yを単独または複合添加
した場合、これらの元素の添加を行わない場合に比べて
同一α粒径でも降伏応力が明らかに低下する。引張強度
はα相だけでなく第二相にも依存するため、添加元素に
よる明確な傾向は認められず、降伏応力が低下した分、
降伏比も低下する。この場合、溶鋼中への該元素の添加
以外には製造条件を変化させておらず、光学顕微鏡組織
も焼きならし温度の変化によりα粒径が変化する以外に
はパーライトの量、分布にも変化はない。それにも関わ
らず降伏応力のみが低下している。
As is clear from FIGS. 1 to 3, when Mg, Ca, and Y are added individually or in combination in addition to ordinary deoxidation, the same α-grains are obtained as compared with the case where these elements are not added. The yield stress also decreases significantly with diameter. Since the tensile strength depends not only on the α phase but also on the second phase, a clear tendency due to the additional element is not recognized, and the yield stress is reduced.
The yield ratio also decreases. In this case, the manufacturing conditions were not changed except for the addition of the element to the molten steel, and the optical microstructure also changed the α particle size due to the change in the normalizing temperature, and also the amount and distribution of pearlite. There is no change. Nevertheless, only the yield stress is reduced.

【0026】従って、この降伏応力の低下は従来の手段
のように組織を変化させることによって生じるものでは
なく、直接αの特性を変化させることによって生じたも
のである。Mg,Ca,Yの単独または複合添加により
これらの元素を含有する酸化物が鋼中に分散し、この酸
化物に固溶強化を生じるような元素が析出物として容易
に析出するため、降伏応力の低下が生じる。
Therefore, the decrease of the yield stress is not caused by changing the structure as in the conventional means, but is caused by directly changing the characteristic of α. The oxides containing these elements are dispersed in the steel by the addition of Mg, Ca, Y alone or in combination, and the elements that cause solid solution strengthening in these oxides are easily deposited as precipitates. Occurs.

【0027】本発明による降伏比の低下は組織変化を伴
わない手段であるため、組織によらず、図3で得られた
ような降伏応力の低下は焼きならしの場合だけでなく、
様々な製造方法、微視組織においても期待できると考え
られる。実際、焼きならしだけでなく、通常の圧延ま
ま、再加熱焼入れ焼戻し、直接焼入れ焼戻し、制御圧
延、制御冷却等、種々の製造方法によっても降伏応力の
低下が実際に認められた。以上が、全体的な本発明の要
旨であるが、以下、製造条件および化学成分等につい
て、個々に説明する。
Since the reduction of the yield ratio according to the present invention is a means which does not involve the change of the structure, the reduction of the yield stress as shown in FIG. 3 is not limited to the case of normalizing, regardless of the structure.
It is expected that various manufacturing methods and microstructures can be expected. Actually, not only the normalizing but also the reduction of the yield stress was actually observed by various manufacturing methods such as normal rolling, reheating quenching and tempering, direct quenching and tempering, controlled rolling and controlled cooling. The above is the outline of the present invention as a whole, but the manufacturing conditions, chemical components, and the like will be individually described below.

【0028】まず、製造条件に関して述べる。本発明に
おける製造条件上の第1の要点は溶鋼段階での脱酸にお
いて通常の脱酸に加えて、Mg,Ca,Yのうちの1種
または2種以上を添加することにある。これにより、酸
化物中に該元素を含有することにより、固溶により降伏
応力を上昇せしめている元素の析出が容易になる。M
g,Ca,Yはいずれも酸化物の組成変化および降伏応
力の低下に対して同等の効果を有するため、個々の添加
量は問わないが添加量の合計としては0.002〜0.
010%の範囲とすべきである。この範囲の下限未満の
添加では該元素を含有する酸化物が十分でないため、降
伏応力の明確な低下が安定して得られない。0.010
%を超える添加では効果が飽和して経済上不利であり、
また、酸化物が粗大化して靱性劣化の可能性が生じるた
め、添加は0.010%以下にする必要がある。
First, the manufacturing conditions will be described. The first point of the manufacturing conditions in the present invention is to add one or more of Mg, Ca and Y in addition to the normal deoxidation in the deoxidation at the molten steel stage. This facilitates the precipitation of the element that increases the yield stress due to solid solution due to the inclusion of the element in the oxide. M
Since g, Ca, and Y all have the same effect on the change in the composition of the oxide and the decrease in the yield stress, the total addition amount is 0.002 to 0.
It should be in the range of 010%. If the amount added is less than the lower limit of this range, the oxide containing the element is not sufficient, and a clear decrease in yield stress cannot be stably obtained. 0.010
%, The effect is saturated and it is economically disadvantageous.
Further, since the oxide becomes coarse and the toughness may deteriorate, it is necessary to add 0.010% or less.

【0029】製造条件上の第2の要点は上記溶鋼中への
Mg,Ca,Yの添加により生成した酸化物に固溶によ
り降伏応力を上昇せしめている元素が析出するに十分な
熱履歴とすることである。得られる微視組織に制約はな
いが、冷却条件あるいは焼戻し条件は規定する必要があ
る。
The second important point in the manufacturing conditions is that the heat history is sufficient to precipitate the element that increases the yield stress due to solid solution in the oxide formed by the addition of Mg, Ca, and Y in the molten steel. It is to be. There is no restriction on the microstructure obtained, but cooling conditions or tempering conditions need to be specified.

【0030】すなわち、製造方法としては、Ac3変態点
以上、1250℃以下の温度に加熱し、Ar3変態点以上
の温度で熱間圧延を終了する通常の熱間圧延や制御冷却
をともなわない制御圧延、あるいはAc3変態点以上、1
250℃以下の温度に加熱し、Ar3変態点以上の温度で
熱間圧延を終了した後、5℃/秒以上の冷却速度で加速
冷却し、一定温度範囲で加速冷却を終了する制御冷却、
あるいはAc3変態点以上、1250℃以下の温度に加熱
し、Ar3変態点以上の温度で熱間圧延を終了した後、5
℃/秒以上の冷却速度で650℃以下まで加速冷却した
後、焼戻しを施す直接焼入れ焼戻し、あるいは熱間圧延
により鋼板とした後、Ac3変態点以上、1000℃以下
の温度に再加熱して焼入れ処理を行い、引き続き焼戻し
を施す再加熱焼入れ焼戻し、あるいは熱間圧延により鋼
板とした後、Ac3変態点以上、1000℃以下の温度に
再加熱して焼きならし処理を行う等の方法を用いること
が可能であるが、同一製造条件で、他の特性を劣化させ
ずに低降伏比化するためには、熱間圧延まま、および制
御冷却を行わない制御圧延による場合は圧延後の冷却は
放冷以下の冷却速度で冷却する必要がある。
That is, as the manufacturing method, heating at a temperature of not less than A c3 transformation point and not more than 1250 ° C. and ending hot rolling at a temperature of not less than A r3 transformation point are not accompanied by ordinary hot rolling or controlled cooling. Controlled rolling or A c3 transformation point or higher, 1
Controlled cooling that heats to a temperature of 250 ° C. or lower, finishes hot rolling at a temperature of Ar 3 transformation point or higher, then accelerates cooling at a cooling rate of 5 ° C./sec or higher, and finishes accelerated cooling within a certain temperature range,
Alternatively A c3 transformation point or higher, then heated to a temperature of 1250 ° C. or less, after completion of the hot rolling at A r3 transformation point or higher, 5
After accelerated cooling to 650 ° C or lower at a cooling rate of ℃ / sec or higher, direct quenching and tempering for tempering or hot rolling to form a steel sheet, and then reheating to a temperature of not lower than the Ac3 transformation point and not higher than 1000 ° C. performs quenching and subsequently reheating quenching and tempering subjected to tempering or after the steel sheet by hot rolling,, a c3 transformation point or higher, a method for performing a reheating to normalizing treatment at a temperature of 1000 ° C. or less Although it can be used, in order to reduce the yield ratio without deteriorating other properties under the same manufacturing conditions, cooling after hot rolling as in hot rolling and when controlled rolling without controlled cooling is used. Needs to be cooled at a cooling rate equal to or lower than cooling.

【0031】また、焼きならし後の冷却も同様に放冷以
下の冷却速度で冷却する必要がある。また、制御冷却時
の冷却速度が5℃/秒以上の焼戻し処理を伴わない制御
冷却の場合は析出処理のため、冷却停止温度を650〜
500℃の範囲とする必要がある。650℃を超えた停
止温度では制御冷却本来の組織制御が達成できず、50
0℃未満で停止した場合は固溶元素の析出が十分でな
く、従って、降伏応力の低下も十分でない。さらに靱性
や延性の低下も懸念される。焼戻し処理を行う制御冷
却、直接焼入れ、再加熱焼入れの場合は、焼戻し条件を
規定することで降伏応力の低下が計れる。すなわち、焼
戻し温度が500℃未満では固溶元素の析出が不十分で
あり、Ac1変態点を超えると組織が大きく変化し、他の
特性劣化を生じるため、焼戻し温度は500℃以上、A
c1変態点以下に限定する。
Similarly, the cooling after normalizing must be performed at a cooling rate equal to or lower than the standing cooling. Further, in the case of controlled cooling at which the cooling rate during controlled cooling is 5 ° C./sec or more without tempering treatment, the cooling stop temperature is set to 650 because of precipitation treatment.
It must be in the range of 500 ° C. If the stop temperature exceeds 650 ° C, the original structure control of controlled cooling cannot be achieved.
If the heating is stopped below 0 ° C., the precipitation of the solid solution element is not sufficient, so that the yield stress is not sufficiently lowered. Furthermore, there is concern that the toughness and ductility may be reduced. In the case of controlled cooling for direct tempering, direct quenching, and reheat quenching, the yield stress can be reduced by defining the tempering conditions. That is, if the tempering temperature is lower than 500 ° C, the precipitation of the solid solution element is insufficient, and if it exceeds the A c1 transformation point, the structure is greatly changed and other characteristics are deteriorated.
c1 Limited to below the transformation point.

【0032】次いで、その他の製造条件上の限定理由を
述べる。まず、熱間圧延における鋼片の加熱温度はAc3
変態点以上、1250℃以下とするが、これは、成分の
容体化のためにはAc3変態点以上とする必要がある一
方、加熱温度が極端に高いと加熱γ粒径が粗大となっ
て、最終的な材質に悪影響を及ぼすため、上限を125
0℃とした。ただし、焼きならし処理および再加熱焼入
れ焼戻しの場合には、圧延後再加熱によりγ化するた
め、この圧延段階での加熱温度の限定は不要である。そ
のかわり、焼きならし処理および再加熱焼入れ焼戻し処
理により製造する場合は、γ単相として焼入れ性を確保
するために再加熱時の加熱温度はAc3変態点以上とする
必要があり、また、γ粒径の粗大化を防止するため、1
000℃以下に限定する必要がある。
Next, other reasons for limiting the manufacturing conditions will be described. First, the heating temperature of the billet in hot rolling is A c3.
The temperature is not lower than the transformation point and not higher than 1250 ° C., but this is required to be not lower than the transformation point A c3 for the purpose of embodying the components. , The upper limit is 125 because it adversely affects the final material.
It was set to 0 ° C. However, in the case of normalizing treatment and reheating, quenching and tempering, it is not necessary to limit the heating temperature in this rolling step, because γ is formed by reheating after rolling. Instead, in the case of manufacturing by normalizing treatment and reheating quenching and tempering treatment, the heating temperature at the time of reheating must be A c3 transformation point or more in order to secure hardenability as a γ single phase, and To prevent coarsening of the γ grain size, 1
It is necessary to limit the temperature to 000 ° C or lower.

【0033】また、焼きならし処理あるいは再加熱焼入
れ焼戻し以外の再加熱処理を伴わない製造方法の場合
は、熱間圧延の終了温度をAr3変態点以上とする必要が
ある。これは、熱間圧延をAr3変態点以下の二相域温度
まで行うとαが加工を受けるため、αの降伏応力が上昇
することにより降伏比が上昇して低降伏比化が困難にな
るためと、加工αを有すると靱性の劣化が生じるためで
ある。さらに、制御冷却あるいは直接焼入れを行う場合
は、所望の焼入れ組織を得て強度を確保するために、圧
延後の冷却速度は5℃/秒以上とすべきである。
Further, in the case of a manufacturing method which does not involve reheating treatment other than normalizing treatment or reheating quenching and tempering, it is necessary to set the end temperature of hot rolling to the Ar 3 transformation point or higher. This is because when hot rolling is carried out up to the temperature of the two-phase region below the Ar 3 transformation point, α is processed, so that the yield stress of α rises and the yield ratio rises, making it difficult to lower the yield ratio. This is because the toughness is deteriorated when the processing α is included. Further, in the case of performing controlled cooling or direct quenching, the cooling rate after rolling should be 5 ° C./sec or more in order to obtain a desired quenching structure and secure the strength.

【0034】以上が製造方法に関わる本発明の限定理由
であるが、溶接構造用鋼として十分な効力を発揮し、低
降伏比が低く塑性変形能に優れた低降伏比高張力鋼板を
製造するためには、化学成分も併せて規定する必要があ
る。以下に、それぞれの化学成分の限定理由を述べる。
The above are the reasons for limiting the present invention relating to the manufacturing method. However, a low yield ratio and high tensile strength steel plate that exhibits sufficient effect as a welded structural steel and has a low low yield ratio and an excellent plastic deformability is manufactured. In order to do so, it is necessary to specify the chemical composition as well. The reasons for limiting each chemical component will be described below.

【0035】まず、Cは鋼の強度を向上させる有効な成
分として添加するもので、0.01%未満では構造用鋼
に必要な強度の確保が困難であり、また、0.20%を
超える過剰の添加は靱性や耐溶接割れ性などを著しく低
下させるので、0.01〜0.20%の範囲とした。次
に、Siは脱酸元素として、また、母材の強度確保に有
効な元素である。0.03%未満の添加では脱酸が不十
分となり、また強度確保に不利である。逆に1.0%を
超える過剰の添加は粗大な酸化物を形成して延性や靱性
劣化を招く。そこで、Siの範囲は0.03〜1.0%
とした。また、Mnは母材の強度、靱性の確保に必要な
元素であり、最低限0.30%以上添加する必要がある
が、溶接部の靱性、割れ性など材質上許容できる範囲で
上限を2.0%とした。
First, C is added as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength required for structural steel, and if it exceeds 0.20%. Excessive addition significantly reduces toughness, weld crack resistance, etc., so the range was made 0.01 to 0.20%. Next, Si is an element effective as a deoxidizing element and for ensuring the strength of the base material. Addition of less than 0.03% results in insufficient deoxidation and is disadvantageous in securing strength. On the contrary, excessive addition of more than 1.0% forms a coarse oxide and causes ductility and toughness deterioration. Therefore, the range of Si is 0.03 to 1.0%
And Further, Mn is an element necessary for securing the strength and toughness of the base metal, and it is necessary to add at least 0.30% or more, but the upper limit is 2 within the allowable range of the material such as the toughness and crackability of the welded portion. It was set to 0.0%.

【0036】Pは固溶して低降伏比化も阻害するため、
極力低減することが好ましいが、本発明では酸化物によ
りPをP化物として析出せしめることが可能であるた
め、その許容量は本発明によらない場合に比べて緩和さ
れる。ただし、溶接熱影響部の靱性確保の点から上限を
0.008%とした。SはMnSを形成して延性値を劣
化させるため、本発明が対象としているような、塑性変
形能を確保する必要のある鋼板では特に低減が必要な元
素である。ただし、延性の劣化が大きくなく、実用的に
許容できる上限として、その含有量を0.005%以下
とする。
Since P forms a solid solution and hinders lowering of the yield ratio,
Although it is preferable to reduce the amount as much as possible, in the present invention, since P can be precipitated as a P compound by the oxide, the allowable amount is relaxed as compared with the case where the present invention is not used. However, the upper limit was made 0.008% from the viewpoint of ensuring the toughness of the heat affected zone. Since S forms MnS and deteriorates the ductility value, it is an element that needs to be reduced particularly in the steel plate which is required to secure the plastic deformability as the subject of the present invention. However, the content is 0.005% or less, which is the upper limit of ductility that is not significantly deteriorated and is practically acceptable.

【0037】Alは脱酸、γ粒径の細粒化等に有効な元
素であり、効果を発揮するためには0.005%以上含
有する必要があるが、0.1%を超えて過剰に添加する
と、粗大な酸化物を形成して延性を極端に劣化させるた
め、0.005〜1.0%の範囲に限定する必要があ
る。NはAlやTiと結びついてγ粒微細化に有効に働
くが、その効果が明確になるためには0.001%以上
含有させる必要がある一方、過剰に添加すると固溶Nが
増加して降伏比の増加や靱性の劣化につながる。溶接熱
影響部の靱性確保の観点から許容できる範囲として上限
を0.006%とする。ただし、低降伏比化の観点から
は、同様の悪影響を示すPの含有量と併せて考慮する必
要がある。本発明鋼では析出核として適切な酸化物を分
散させるが、P,Nの合計量が極端に多ければ、本発明
においても降伏応力の上昇を防ぐことは難しい。そこ
で、適切な酸化物を分散させた条件において、低降伏比
化が計れる範囲として、実験結果に基づいて、PとNの
合計量を0.01%以下に限定する。
Al is an element effective for deoxidizing, refining the γ grain size, etc., and must be contained in an amount of 0.005% or more to exert the effect, but if it exceeds 0.1%, it is excessive. If added to the alloy, a coarse oxide is formed and ductility is extremely deteriorated, so it is necessary to limit the content to 0.005 to 1.0%. N works effectively in γ grain refinement in combination with Al and Ti, but in order to clarify the effect, it is necessary to contain 0.001% or more, but if added in excess, the solid solution N increases. This leads to an increase in yield ratio and deterioration in toughness. From the viewpoint of ensuring the toughness of the heat affected zone, the upper limit is made 0.006%. However, from the viewpoint of lowering the yield ratio, it is necessary to consider it together with the content of P showing the same adverse effect. In the steel of the present invention, suitable oxides are dispersed as precipitation nuclei, but if the total amount of P and N is extremely large, it is difficult to prevent the yield stress from rising even in the present invention. Therefore, based on experimental results, the total amount of P and N is limited to 0.01% or less as a range in which a low yield ratio can be achieved under the condition that an appropriate oxide is dispersed.

【0038】さらに、本発明ではMg,Ca,Yを含有
した酸化物を分散させることが重要な点である。そのた
めには、まず図1〜3に示したように、溶鋼段階での脱
酸において通常の脱酸に加えて、Mg,Ca,Yのうち
の1種または2種以上を添加することにある。これによ
り、酸化物中に該元素を含有することにより、固溶によ
り降伏応力を上昇せしめている元素の析出が容易にな
る。Mg,Ca,Yはいずれも酸化物の組成変化および
降伏応力の低下に対して同等の効果を有するため、個々
の添加量は問わないが添加量の合計としては0.002
%〜0.010%の範囲とすべきである。この範囲の下
限未満の添加では該元素を含有する酸化物が十分でない
ため、降伏応力の明確な低下が安定して得られない。
0.010%を超える添加では効果が飽和して経済上不
利であり、また酸化物が粗大化して靱性劣化の可能性が
生じるため、添加は0.010%以下にする必要があ
る。
Further, in the present invention, it is an important point to disperse the oxide containing Mg, Ca, Y. For that purpose, first, as shown in FIGS. 1 to 3, in the deoxidation at the molten steel stage, one or more of Mg, Ca, and Y are added in addition to the normal deoxidation. . This facilitates the precipitation of the element that increases the yield stress due to solid solution due to the inclusion of the element in the oxide. Since Mg, Ca, and Y all have the same effect on the change in the composition of the oxide and the reduction of the yield stress, the total addition amount is 0.002 regardless of the individual addition amount.
It should be in the range of% -0.010%. If the amount added is less than the lower limit of this range, the oxide containing the element is not sufficient, and a clear decrease in yield stress cannot be stably obtained.
If the addition exceeds 0.010%, the effect is saturated and it is economically disadvantageous, and since the oxide becomes coarse and the toughness may deteriorate, the addition needs to be 0.010% or less.

【0039】以上のMg,Ca,Yの添加に加えて、酸
化物の全体量を確保するためには鋼中のO量を適正化す
る必要がある。詳細な実験結果によれば、降伏応力制御
のために十分な酸化物量を確保するためにはO量として
0.001%以上必要である。O量が多いほど安定した
効果が得られるが、O量が過剰になると、酸化物が粗大
化して靱性や局部延性を劣化させるため、低降伏比化の
効果が十分得られる範囲内でO量の上限を0.010%
とした。
In addition to the above additions of Mg, Ca and Y, it is necessary to optimize the amount of O in the steel in order to secure the total amount of oxides. According to the detailed experimental results, the amount of O must be 0.001% or more to secure a sufficient amount of oxide for controlling the yield stress. The more the O content is, the more stable the effect is obtained. However, when the O content is excessive, the oxide is coarsened and the toughness and local ductility are deteriorated. Upper limit of 0.010%
And

【0040】以上が本発明鋼の基本成分であるが、所望
の強度レベルに応じて母材強度の上昇の目的で、必要に
応じてCr,Ni,Mo,Cu,Ti,V,Nb,Bの
1種または2種以上を含有させることができる。
The above are the basic components of the steel of the present invention, but for the purpose of increasing the strength of the base material in accordance with the desired strength level, Cr, Ni, Mo, Cu, Ti, V, Nb, B are added as necessary. 1 type or 2 types or more of these can be contained.

【0041】まず、CrおよびMoはいずれも母材の強
度向上に有効な元素であるが、明瞭な効果を生じるため
には0.01%以上必要であり、一方、0.50%を超
えて添加すると、靱性が劣化する傾向を有するため、
0.01〜0.50%の範囲とする。また、Niは母材
の強度と靱性を同時に向上でき、非常に有効な元素であ
るが、効果を発揮させるためには0.01%以上含有さ
せる必要がある。含有量が多くなると強度、靱性は向上
するが3.0%を超えて添加しても効果が飽和するた
め、経済性も考慮して、上限を3.0%とする。
First, Cr and Mo are both effective elements for improving the strength of the base material, but 0.01% or more is necessary for producing a clear effect, while on the other hand, if over 0.50%. If added, the toughness tends to deteriorate,
The range is 0.01 to 0.50%. Further, Ni is a very effective element because it can improve the strength and toughness of the base material at the same time, but it is necessary to contain Ni in an amount of 0.01% or more in order to exert the effect. When the content is high, the strength and toughness are improved, but the effect is saturated even if added in excess of 3.0%. Therefore, considering the economical efficiency, the upper limit is made 3.0%.

【0042】次に、CuもほぼNiと同様の効果を有す
るが、1.5%超の添加では熱間加工性に問題を生じる
ため、0.01〜1.5%の範囲に限定する。TiはT
iNの形成によりγ粒を微細化して靱性向上に有効な元
素であるが、効果を発揮できるためには0.005%以
上の添加が必要である。一方、0.020%を超える
と、Alと同様、粗大な酸化物を形成して靱性や延性を
劣化させるため、上限を0.020%とする。
Next, Cu has almost the same effect as Ni, but addition of more than 1.5% causes a problem in hot workability, so the range is limited to 0.01 to 1.5%. Ti is T
Although it is an element effective in improving the toughness by making the γ grains fine by forming iN, 0.005% or more is required to be effective. On the other hand, if it exceeds 0.020%, similarly to Al, a coarse oxide is formed to deteriorate toughness and ductility, so the upper limit is made 0.020%.

【0043】VおよびNbはいずれも主として析出強化
により母材の強度向上に寄与するが、過剰の添加で靱性
が劣化する。従って、靱性の劣化を招かずに、効果を発
揮できる範囲として、Vは0.005〜0.20%、N
bは0.003〜0.05%とする。Bは0.0003
%以上のごく微量添加で鋼材の焼入性を高めて強度上昇
に非常に有効であるが、過剰に添加するとBNを形成し
て、逆に焼入性を落としたり、靱性を大きく劣化させる
ため、上限を0.0020%とする。
Both V and Nb mainly contribute to improving the strength of the base material by precipitation strengthening, but if added excessively, the toughness deteriorates. Therefore, V is 0.005 to 0.20% and N is a range in which the effect can be exhibited without causing deterioration of toughness.
b is 0.003 to 0.05%. B is 0.0003
% Is very effective in increasing the hardenability of steel and increasing the strength, but if added in excess, it forms BN, which adversely reduces the hardenability and greatly deteriorates the toughness. , The upper limit is 0.0020%.

【0044】[0044]

【実施例】次に、本発明の効果を実施例によってさらに
具体的に述べる。実施例に用いた供試鋼の化学成分を表
1に示す。各供試鋼は造塊後、分塊圧延によってか、あ
るいは連続鋳造によりスラブとなした。表1の内、鋼番
1〜13は本発明の化学成分範囲およびMg,Ca,Y
の添加条件を満足しており、鋼番14〜19は本発明の
化学成分範囲あるいはMg,Ca,Yの添加条件を満足
していないものである。
EXAMPLES Next, the effects of the present invention will be described more specifically by way of examples. Table 1 shows the chemical composition of the test steel used in the examples. Each of the test steels was made into a slab by slab rolling after continuous ingot casting or continuous casting. In Table 1, steel Nos. 1 to 13 are chemical composition ranges of the present invention and Mg, Ca, Y
The steel Nos. 14 to 19 do not satisfy the chemical composition range of the present invention or the addition conditions of Mg, Ca and Y of the present invention.

【0045】[0045]

【表1】 [Table 1]

【0046】表1のスラブを表2に示す圧延条件により
鋼板に製造し、次いで表3の条件で熱処理を行い引張特
性、シャルピー衝撃特性を調査した。試験片は全て板厚
中心部から圧延方向に採取した。引張試験は平行部径1
4mm、平行部長さ60mmの丸棒引張試験片により行
い、シャルピー衝撃試験はJIS4号標準試験片により
行い、特性は50%破面遷移温度(vTrs)で評価し
た。強度、靱性の試験結果を表4に示す。
The slabs shown in Table 1 were manufactured into steel sheets under the rolling conditions shown in Table 2, and then heat-treated under the conditions shown in Table 3 to examine the tensile properties and Charpy impact properties. All test pieces were sampled in the rolling direction from the center of the plate thickness. Tensile test for parallel part diameter 1
A round bar tensile test piece having a length of 4 mm and a parallel portion length of 60 mm was used, a Charpy impact test was performed using a JIS No. 4 standard test piece, and properties were evaluated at a 50% fracture surface transition temperature (vTrs). Table 4 shows the test results of strength and toughness.

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】表2,3,4において、試験No.A1〜
A26はいずれも本発明に従って製造した鋼板であり、
全て良好な伸びや靱性を備えた上で、比較例と同様の製
造条件、引張強度レベルのものに比べて降伏比の低減が
計られている。
In Tables 2, 3 and 4, the test No. A1-
A26 are all steel sheets manufactured according to the present invention,
All of them have good elongation and toughness, and the yield ratio is reduced as compared with those of the comparative example having the same manufacturing conditions and tensile strength levels.

【0051】一方、試験No.B1〜B10は比較例で
あり、いずれかの条件が本発明の限定範囲をはずれてい
るため、同じ引張強度レベルで比較した場合、降伏比が
高かったり、延性や靱性が溶接構造用鋼として必ずしも
十分でない。すなわち、試験No.B1,B2,B4,
B5はMg,Ca,Yの添加がなかったり、量が十分で
ないため、低降伏比化が十分でない。試験No.B3は
逆にこれらの元素の添加が過剰なため、低降伏比化は計
られているものの、延性や靱性が大きく劣化している。
On the other hand, the test No. B1 to B10 are comparative examples, and since any of the conditions deviates from the limited range of the present invention, when compared at the same tensile strength level, the yield ratio is high, and the ductility and the toughness are not necessarily as a welded structural steel. not enough. That is, the test No. B1, B2, B4
B5 does not have sufficient addition of Mg, Ca and Y, or its amount is not sufficient, so that the yield ratio is not sufficiently low. Test No. On the contrary, for B3, the addition of these elements is excessive, so that the yield ratio is reduced, but the ductility and toughness are greatly deteriorated.

【0052】試験No.B4は加えてC量が本発明の範
囲をはずれて過剰に添加されているため、延性や靱性も
劣る。また、試験No.B5はP,Nの量が多いため、
Mg,Ca,Yが適正に添加されているものの、降伏比
の低減が十分とは言い難い。試験No.B6はO量が過
剰であるため、延性および靱性の劣化が認められる。試
験No.B7,B8は用いたスラブは化学成分、Mg,
Ca,Yの添加条件とも適正であるが、圧延条件あるい
は熱処理条件が本発明の範囲を満足していないため、十
分な特性が得られていない。
Test No. In addition to B4, the C content deviates from the range of the present invention and is excessively added, so that the ductility and toughness are also poor. In addition, the test No. Since B5 has a large amount of P and N,
Although Mg, Ca, and Y are properly added, it cannot be said that the yield ratio is sufficiently reduced. Test No. Since B6 has an excessive O content, deterioration of ductility and toughness is observed. Test No. The slabs used for B7 and B8 are chemical components, Mg,
Although the addition conditions of Ca and Y are appropriate, sufficient characteristics have not been obtained because the rolling conditions or heat treatment conditions do not satisfy the scope of the present invention.

【0053】試験No.B9は焼入れ焼戻し処理により
製造された比較例であるが、本発明例の試験No.A1
8と比べて焼戻し温度が本発明の範囲を逸脱しているた
め、低降伏比化が十分でなく、靱性も劣る。試験No.
B10は焼きならしの温度が高すぎるため、靱性が劣
る。以上から、同一引張強度レベルで比較した場合、本
発明によれば従来技術に比べて、延性や靱性の劣化、生
産性の低下を招くことなく、低降伏比化が可能であるこ
とが明白である。
Test No. B9 is a comparative example manufactured by quenching and tempering treatment, but the test No. A1
Compared with No. 8, the tempering temperature is out of the range of the present invention, so that the yield ratio is not sufficiently reduced and the toughness is also poor. Test No.
B10 is inferior in toughness because the normalizing temperature is too high. From the above, when compared at the same tensile strength level, it is clear that, according to the present invention, a lower yield ratio can be achieved without causing deterioration of ductility and toughness and lowering of productivity, as compared with the prior art. is there.

【0054】[0054]

【発明の効果】本発明は高価な合金元素を用いたり、複
雑な熱履歴により生産性を低下させることなく、溶接構
造用鋼としての十分な性能を有し、降伏比が低く塑性変
形能に優れた低降伏比高張力鋼板を製造できる画期的な
方法であり、製造コストの低減、構造物としての安全性
の向上等、産業上の効果は極めて大きい。
INDUSTRIAL APPLICABILITY The present invention has sufficient performance as a welded structural steel without using expensive alloying elements or reducing productivity due to complicated heat history, and has a low yield ratio and plastic deformability. This is an epoch-making method capable of producing an excellent high-yield steel plate with a low yield ratio, and has an extremely great industrial effect such as reduction of production cost and improvement of safety as a structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼きならし材における降伏比とフェライト粒径
との関係に及ぼす添加元素の影響を示す図
FIG. 1 is a diagram showing the effect of additional elements on the relationship between the yield ratio and the ferrite grain size in a normalized material.

【図2】焼きならし材における引張強度とフェライト粒
径との関係に及ぼす添加元素の影響を示す図
FIG. 2 is a diagram showing the effect of additional elements on the relationship between the tensile strength and the ferrite grain size in a normalized material.

【図3】焼きならし材における降伏応力とフェライト粒
径との関係に及ぼす添加元素の影響を示す図
FIG. 3 is a diagram showing the effect of additional elements on the relationship between yield stress and ferrite grain size in a normalized material.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、PとNの含
有量の合計が0.01%以下で、さらにMg,Ca,Y
の1種または2種以上を添加量の合計として、0.00
2〜0.01%添加した残部鉄および不可避不純物より
なる鋼片を、Ac3変態点以上、1250℃以下の温度に
加熱し、Ar3変態点以上の温度で熱間圧延を終了するこ
とを特徴とする低降伏比高張力鋼板の製造方法。
1. By weight%, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: 0.001-0.010% is contained, P and N are contained. The total content of 0.01% or less, and further Mg, Ca, Y
The total amount of one or more of
A steel slab consisting of the balance iron and unavoidable impurities added by 2 to 0.01% is heated to a temperature of A c3 transformation point or more and 1250 ° C. or less, and hot rolling is finished at a temperature of A r3 transformation point or more. A method for producing a high-strength steel sheet having a low yield ratio.
【請求項2】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、 Cr:0.01〜0.50% Ni:0.01〜3.0% Mo:0.01〜0.50% Cu:0.01〜1.5% V :0.005〜0.20% Nb:0.003〜0.05% B :0.0003〜0.0020%の1種または2種
以上を含有し、PとNの含有量の合計が0.01%以下
で、さらにMg,Ca,Yの1種または2種以上を添加
量の合計として、0.002〜0.01%添加した残部
鉄および不可避不純物よりなる鋼片を、Ac3変態点以
上、1250℃以下の温度に加熱し、Ar3変態点以上の
温度で熱間圧延を終了することを特徴とする低降伏比高
張力鋼板の製造方法。
2. C .: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: Contains 0.001-0.010%, Cr: 0 0.01 to 0.50% Ni: 0.01 to 3.0% Mo: 0.01 to 0.50% Cu: 0.01 to 1.5% V: 0.005 to 0.20% Nb: 0 0.003 to 0.05% B: 0.0003 to 0.0020% of 1 type or 2 types or more, the total content of P and N is 0.01% or less, and further Mg, Ca, Y. one or the total amount of addition of two or more, the steel slab consisting balance iron and unavoidable impurities was added 0.002 to 0.01%, a c3-varying Above points, heated to a temperature of 1250 ° C. or less, low yield ratio method for producing a high tensile steel plate, which comprises terminating the hot rolling at A r3 transformation point or higher.
【請求項3】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、PとNの含
有量の合計が0.01%以下で、さらにMg,Ca,Y
の1種または2種以上を添加量の合計として、0.00
2〜0.01%添加した残部鉄および不可避不純物より
なる鋼片を、Ac3変態点以上、1250℃以下の温度に
加熱し、Ar3変態点以上の温度で熱間圧延を終了した
後、5℃/秒以上の冷却速度で加速冷却し、650〜5
00℃の範囲で加速冷却を終了することを特徴とする低
降伏比高張力鋼板の製造方法。
3. By weight%, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: 0.001-0.010% is contained, P and N are contained. The total content of 0.01% or less, and further Mg, Ca, Y
The total amount of one or more of
After heating the steel slab consisting of the balance iron and unavoidable impurities added by 2 to 0.01% to a temperature of A c3 transformation point or more and 1250 ° C. or less and finishing hot rolling at a temperature of A r3 transformation point or more, Accelerated cooling at a cooling rate of 5 ° C / sec or more,
A method for producing a high-strength steel plate having a low yield ratio, which comprises terminating accelerated cooling within a range of 00 ° C.
【請求項4】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、 Cr:0.01〜0.50% Ni:0.01〜3.0% Mo:0.01〜0.50% Cu:0.01〜1.5% V :0.005〜0.20% Nb:0.003〜0.05% B :0.0003〜0.0020%の1種または2種
以上を含有し、PとNの含有量の合計が0.01%以下
で、さらにMg,Ca,Yの1種または2種以上を添加
量の合計として、0.002〜0.01%添加した残部
鉄および不可避不純物よりなる鋼片を、Ac3変態点以
上、1250℃以下の温度に加熱し、Ar3変態点以上の
温度で熱間圧延を終了した後、5℃/秒以上の冷却速度
で加速冷却し、650〜500℃の範囲で加速冷却を終
了することを特徴とする低降伏比高張力鋼板の製造方
法。
4. By weight%, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: Contains 0.001-0.010%, Cr: 0 0.01 to 0.50% Ni: 0.01 to 3.0% Mo: 0.01 to 0.50% Cu: 0.01 to 1.5% V: 0.005 to 0.20% Nb: 0 0.003 to 0.05% B: 0.0003 to 0.0020% of 1 type or 2 types or more, the total content of P and N is 0.01% or less, and further Mg, Ca, Y. one or the total amount of addition of two or more, the steel slab consisting balance iron and unavoidable impurities was added 0.002 to 0.01%, a c3-varying Above points, heated to a temperature of 1250 ° C. or less, after completion of the hot rolling at a temperature not lower than A r3 transformation point, and accelerated cooling at 5 ° C. / sec or more cooling rate, accelerated cooling in the range of six hundred and fifty to five hundred ° C. The method for producing a high-strength steel plate with a low yield ratio, which comprises:
【請求項5】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、PとNの含
有量の合計が0.01%以下で、さらにMg,Ca,Y
の1種または2種以上を添加量の合計として、0.00
2〜0.01%添加した残部鉄および不可避不純物より
なる鋼片を、Ac3変態点以上、1250℃以下の温度に
加熱し、Ar3変態点以上の温度で熱間圧延を終了した
後、5℃/秒以上の冷却速度で650℃以下まで加速冷
却した後、500℃以上、Ac1変態点以下に焼戻すこと
を特徴とする低降伏比高張力鋼板の製造方法。
5. C .: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: 0.001-0.010% is contained, P and N are contained. The total content of 0.01% or less, and further Mg, Ca, Y
The total amount of one or more of
After heating the steel slab consisting of the balance iron and unavoidable impurities added by 2 to 0.01% to a temperature of A c3 transformation point or more and 1250 ° C. or less and finishing hot rolling at a temperature of A r3 transformation point or more, A method for producing a high-strength steel sheet having a low yield ratio, which comprises accelerating cooling to 650 ° C. or lower at a cooling rate of 5 ° C./sec or more, and then tempering to 500 ° C. or more and A c1 transformation point or less.
【請求項6】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、 Cr:0.01〜0.50% Ni:0.01〜3.0% Mo:0.01〜0.50% Cu:0.01〜1.5% V :0.005〜0.20% Nb:0.003〜0.05% B :0.0003〜0.0020%の1種または2種
以上を含有し、PとNの含有量の合計が0.01%以下
で、さらにMg,Ca,Yの1種または2種以上を添加
量の合計として、0.002〜0.01%添加した残部
鉄および不可避不純物よりなる鋼片を、Ac3変態点以
上、1250℃以下の温度に加熱し、Ar3変態点以上の
温度で熱間圧延を終了した後、5℃/秒以上の冷却速度
で650℃以下まで加速冷却した後、500℃以上、A
c1変態点以下に焼戻すことを特徴とする低降伏比高張力
鋼板の製造方法。
6. By weight%, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: Contains 0.001-0.010%, Cr: 0 0.01 to 0.50% Ni: 0.01 to 3.0% Mo: 0.01 to 0.50% Cu: 0.01 to 1.5% V: 0.005 to 0.20% Nb: 0 0.003 to 0.05% B: 0.0003 to 0.0020% of 1 type or 2 types or more, the total content of P and N is 0.01% or less, and further Mg, Ca, Y. one or the total amount of addition of two or more, the steel slab consisting balance iron and unavoidable impurities was added 0.002 to 0.01%, a c3-varying Above points, heated to a temperature of 1250 ° C. or less, after completion of the hot rolling at A r3 transformation point or higher temperatures, 5 ° C. / sec after accelerated cooling to 650 ° C. or less at a cooling rate higher than, 500 ° C. or higher, A
A method for producing a high-strength steel sheet having a low yield ratio, which is characterized by tempering to a temperature not higher than the c1 transformation point.
【請求項7】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、PとNの含
有量の合計が0.01%以下で、さらにMg,Ca,Y
の1種または2種以上を添加量の合計として、0.00
2〜0.01%添加した残部鉄および不可避不純物より
なる鋼片を熱間圧延により鋼板とした後、、Ac3変態点
以上、1000℃以下の温度に再加熱して焼入れ処理を
行い、引き続き500℃以上、AC1変態点以下に焼戻す
ことを特徴とする低降伏比高張力鋼板の製造方法。
7. By weight%, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: 0.001-0.010% is contained, P and N are contained. The total content of 0.01% or less, and further Mg, Ca, Y
The total amount of one or more of
A steel slab consisting of the balance iron and unavoidable impurities added by 2 to 0.01% is hot-rolled into a steel plate, and then reheated to a temperature of not lower than the Ac3 transformation point and not higher than 1000 ° C to perform quenching treatment, A method for producing a high-strength steel sheet having a low yield ratio, which comprises tempering at a temperature of 500 ° C or higher and a temperature of A C1 or lower.
【請求項8】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、 Cr:0.01〜0.50% Ni:0.01〜3.0% Mo:0.01〜0.50% Cu:0.01〜1.5% V :0.005〜0.20% Nb:0.003〜0.05% B :0.0003〜0.0020%の1種または2種
以上を含有し、PとNの含有量の合計が0.01%以下
で、さらにMg,Ca,Yの1種または2種以上を添加
量の合計として、0.002〜0.01%添加した残部
鉄および不可避不純物よりなる鋼片を熱間圧延により鋼
板とした後、、Ac3変態点以上、1000℃以下の温度
に再加熱して焼入れ処理を行い、引き続き500℃以
上、Ac1変態点以下に焼戻すことを特徴とする低降伏比
高張力鋼板の製造方法。
8. C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: Contains 0.001-0.010%, Cr: 0 0.01 to 0.50% Ni: 0.01 to 3.0% Mo: 0.01 to 0.50% Cu: 0.01 to 1.5% V: 0.005 to 0.20% Nb: 0 0.003 to 0.05% B: 0.0003 to 0.0020% of 1 type or 2 types or more, the total content of P and N is 0.01% or less, and further Mg, Ca, Y. Hot rolling a steel slab consisting of the balance iron and unavoidable impurities added with 0.002 to 0.01% as a total of one or two or more of More steel sheet was then ,, A c3 transformation point or higher, and re-heated to quenching temperature of 1000 ° C. or less, subsequently 500 ° C. or higher, wherein the tempered below transformation point A c1 low yield ratio and high Method of manufacturing tensile steel sheet.
【請求項9】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、PとNの含
有量の合計が0.01%以下で、さらにMg,Ca,Y
の1種または2種以上を添加量の合計として、0.00
2〜0.01%添加した残部鉄および不可避不純物より
なる鋼片を熱間圧延により鋼板とした後、Ac3変態点以
上、1000℃以下の温度に再加熱して焼ならし処理を
行うことを特徴とする低降伏比高張力鋼板の製造方法。
9. In% by weight, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: 0.001-0.010% is contained, P and N are contained. The total content of 0.01% or less, and further Mg, Ca, Y
The total amount of one or more of
A steel slab consisting of the balance iron and unavoidable impurities added by 2 to 0.01% is hot-rolled into a steel plate, and then reheated to a temperature not lower than the Ac3 transformation point and not higher than 1000 ° C to perform a normalizing treatment. A method for manufacturing a high-strength steel sheet having a low yield ratio, characterized by:
【請求項10】 重量%で、 C :0.01〜0.20% Si:0.03〜1.0% Mn:0.30〜2.0% P :0.008%以下 S :0.005%以下 Al:0.005〜0.1% N :0.001〜0.006% Ti:0.005〜0.020% O :0.001〜0.010%を含有し、 Cr:0.01〜0.50% Ni:0.01〜3.0% Mo:0.01〜0.50% Cu:0.01〜1.5% V :0.005〜0.20% Nb:0.003〜0.05% B :0.0003〜0.0020%の1種または2種
以上を含有し、PとNの含有量の合計が0.01%以下
で、さらにMg,Ca,Yの1種または2種以上を添加
量の合計として、0.002〜0.01%添加した残部
鉄および不可避不純物よりなる鋼片を熱間圧延により鋼
板とした後、Ac3変態点以上、1000℃以下の温度に
再加熱して焼ならし処理を行うことを特徴とする低降伏
比高張力鋼板の製造方法。
10. By weight%, C: 0.01 to 0.20% Si: 0.03 to 1.0% Mn: 0.30 to 2.0% P: 0.008% or less S: 0.0. 005% or less Al: 0.005-0.1% N: 0.001-0.006% Ti: 0.005-0.020% O: Contains 0.001-0.010%, Cr: 0 0.01 to 0.50% Ni: 0.01 to 3.0% Mo: 0.01 to 0.50% Cu: 0.01 to 1.5% V: 0.005 to 0.20% Nb: 0 0.003 to 0.05% B: 0.0003 to 0.0020% of 1 type or 2 types or more, the total content of P and N is 0.01% or less, and further Mg, Ca, Y. 1 or 2 or more as the total amount of addition, a steel slab consisting of the balance iron and unavoidable impurities added by 0.002 to 0.01% is hot pressed. After the steel sheet by, A c3 transformation point or higher, the low yield ratio method for manufacturing a high-tensile steel sheet and performing reheating to the normalizing treatment at a temperature of 1000 ° C. or less.
JP05371295A 1995-02-20 1995-02-20 Manufacturing method for high yield strength steel sheet with low yield ratio Expired - Fee Related JP3325146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05371295A JP3325146B2 (en) 1995-02-20 1995-02-20 Manufacturing method for high yield strength steel sheet with low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05371295A JP3325146B2 (en) 1995-02-20 1995-02-20 Manufacturing method for high yield strength steel sheet with low yield ratio

Publications (2)

Publication Number Publication Date
JPH08225834A true JPH08225834A (en) 1996-09-03
JP3325146B2 JP3325146B2 (en) 2002-09-17

Family

ID=12950453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05371295A Expired - Fee Related JP3325146B2 (en) 1995-02-20 1995-02-20 Manufacturing method for high yield strength steel sheet with low yield ratio

Country Status (1)

Country Link
JP (1) JP3325146B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194480A (en) * 2000-12-21 2002-07-10 Kobe Steel Ltd Steel having excellent machinability and cold workability and machine parts
JP2010111924A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
CN101781736A (en) * 2010-03-09 2010-07-21 武汉钢铁(集团)公司 Yield strength 225MPa-level earthquake-resistant construction steel and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194480A (en) * 2000-12-21 2002-07-10 Kobe Steel Ltd Steel having excellent machinability and cold workability and machine parts
JP2010111924A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
CN101781736A (en) * 2010-03-09 2010-07-21 武汉钢铁(集团)公司 Yield strength 225MPa-level earthquake-resistant construction steel and production method thereof

Also Published As

Publication number Publication date
JP3325146B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP2000178645A (en) Production of steel excellent in strength and toughness
JPH0892687A (en) High strength and high toughness non-heattreated steel for hot forging and its production
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH083635A (en) Production of steel plate excellent in toughness
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
JP3374688B2 (en) Method for producing tempered 600 N / mm2 class high strength steel excellent in weld cracking sensitivity and low-temperature toughness
JPH07258788A (en) Production of thick steel plate excellent in brittle fracture propagation stop characteristic and low temperature toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JPH07126797A (en) Manufacture of thick steel plate excellent in low temperature toughness
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JP3848397B2 (en) Manufacturing method of high-efficiency and highly uniform tough steel plate
JPH0663026B2 (en) Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process.
JPH09256038A (en) Heat treatment before stress relieving annealing treatment for thick steel plate
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3692565B2 (en) Method for producing B-added high-strength steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees