JPH08216164A - Cleaning of vulcanizing mold - Google Patents

Cleaning of vulcanizing mold

Info

Publication number
JPH08216164A
JPH08216164A JP2915895A JP2915895A JPH08216164A JP H08216164 A JPH08216164 A JP H08216164A JP 2915895 A JP2915895 A JP 2915895A JP 2915895 A JP2915895 A JP 2915895A JP H08216164 A JPH08216164 A JP H08216164A
Authority
JP
Japan
Prior art keywords
reaction gas
pressure
electrode
plasma
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2915895A
Other languages
Japanese (ja)
Inventor
Yukihiro Kusano
行弘 草野
Shinji Saito
伸二 斉藤
Masahito Yoshikawa
雅人 吉川
Yoshio Nohara
義夫 野原
Koji Hirose
煌司 弘瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2915895A priority Critical patent/JPH08216164A/en
Publication of JPH08216164A publication Critical patent/JPH08216164A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • B29C2033/725Cleaning cleaning by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Abstract

PURPOSE: To advantageously realize uniform ashing within a short treatment time at a low cost by holding the pressure of a reaction gas to a low pressure within a predetermined range during a period when plasma distribution is uniform and reducing the same to a lower pressure as compared with the low pressure within the predetermined range in the vicinity of a point of time when a non-uniform region is generated. CONSTITUTION: When an elastomer residue formed on the surface of a mold is removed by ashing, a central electrode 4 is allowed to protrude into a treatment tank 1 and an annular vulcanizing mold 15 is positioned around the electrode 4 as other electrode so as to be spaced apart from the electrode 4 by a predetermined distance and power is applied across both electrodes 4, 15 to generate plasma by discharge. The pressure of the reaction gas from a reaction gas supply pipe 9 is held to a low pressure within a predetermined range from the start of discharge during a period when the plasma distribution between both electrodes 4, 15 is uniform in such a state that the inflow and outflow amts. of the reaction gas are well-balanced and, in the vicinity of a point of time when a non-uniform region is generated, the pressure of the reaction gas is reduced to lower pressure as compared with the low pressure within the predetermined range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ゴムタイヤ、防振ゴ
ムなどのゴム製品及びその他のエラストマとしてのプラ
スチック製品の加硫成形に際し、繰返し用いる金型の成
形表面、分割金型の場合は合せ面も含めた表面及び凹部
や穴に不可避的に形成されるエラストマ残滓を有利に除
去するための加硫金型の清浄方法に関し、特にプラズマ
の有効活用により一層短時間で均一な高効率清浄を、か
つより小電力量の使用及びより廉価な反応ガスの主適用
での低コスト清浄を可能とする加硫金型の清浄方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molding surface of a mold repeatedly used for vulcanization molding of rubber products such as rubber tires and anti-vibration rubber and other plastic products as elastomers, and a mating surface in the case of a split mold. Regarding the cleaning method of the vulcanizing mold for advantageously removing the elastomer residue that is inevitably formed on the surface including the surface and the recesses and holes, in particular, the effective utilization of plasma enables uniform and highly efficient cleaning in a shorter time, In addition, the present invention relates to a method for cleaning a vulcanization mold that enables low-cost cleaning by using a smaller amount of electric power and mainly applying a cheaper reaction gas.

【0002】[0002]

【従来の技術】既に本出願人による特開平6−2858
68号公報にて詳述したように、エラストマ製品、とり
わけゴムタイヤ製品(以降単にタイヤと記す)や防振ゴ
ム製品などは要求性能を満たすため、天然ゴム、合成ゴ
ム又はこれらのブレンドゴムに架橋剤としての硫黄と補
強材としてのカーボンブラックとを配合するほか、加硫
促進剤や各種耐久性保持のための各種薬品を配合する必
要がある。
2. Description of the Related Art JP-A-6-2858 already filed by the present applicant.
As described in detail in Japanese Patent Publication No. 68, elastomer products, particularly rubber tire products (hereinafter simply referred to as tires), anti-vibration rubber products, and the like satisfy the required performance, and therefore natural rubber, synthetic rubber or blended rubbers thereof are cross-linked. In addition to blending sulfur as a component and carbon black as a reinforcing material, it is necessary to blend a vulcanization accelerator and various chemicals for maintaining various durability.

【0003】このようにして調合した未加硫ゴム組成物
を加硫成形する際、一般的に200℃に近い高温度で架
橋反応などの化学反応を生じさせるので、ゴム組成物は
流動性を増すばかりでなく一部はガス化し、その結果加
硫金型の成形表面はもとより、金型の合せ面の極く狭い
隙間や空気抜きのいわゆるベントホールなどの穴などに
もゴム組成物及びその化学反応生成物が加硫成形の都
度、微量ながら残滓物として強固に付着するのは不可避
である。この加硫成形を多数回にわたり繰返すことによ
り残滓物は看過し得ないほどの厚さで堆積する。このこ
とはゴム組成物に限らず他のエラストマについても大同
小異で同様に生じる。
When the unvulcanized rubber composition thus prepared is vulcanized and molded, a chemical reaction such as a crosslinking reaction generally occurs at a high temperature close to 200 ° C., so that the rubber composition has fluidity. Not only does it increase, but it also partially gasifies, and as a result, not only the molding surface of the vulcanizing mold, but also the extremely narrow gaps in the mating surface of the mold and holes such as so-called vent holes for venting the rubber composition and its chemical composition. It is unavoidable that the reaction product adheres strongly as a residue, although it is a small amount, each time it is vulcanized and molded. By repeating this vulcanization molding a number of times, the residue is deposited in a thickness that cannot be overlooked. This applies not only to the rubber composition but also to other elastomers in the same manner and in different sizes.

【0004】加硫金型に強固に付着堆積した厚い加硫残
滓はタイヤの外観を損ねるのみに止まらず、タイヤ全体
の優れた品質保持に対し悪影響を及ぼす。よって加硫成
形を所定回数だけ実施した加硫金型を新品同様に清浄す
る作業が必要であり、この作業法としてプラスチックビ
ーズやグラスビーズなどの粒体を高圧ガスにより吹き当
てるショットブラスト清浄法、又は酸、アルカリ、アミ
ン系などの溶液中に浸す液体清浄法が主流を占めていた
ところ、これらの清浄法による各種の不利な点を大幅に
改善するため、本出願人は上記特開平6−285868
号公報に記載したプラズマによる加硫金型清浄方法を提
案し、顕著に優れた成果を得ている。
The thick vulcanization residue firmly adhered and deposited on the vulcanization mold not only impairs the appearance of the tire, but also adversely affects the excellent quality maintenance of the entire tire. Therefore, it is necessary to clean the vulcanization mold that has been vulcanized and molded a predetermined number of times as if it was a new product.As this work method, a shot blast cleaning method in which granules such as plastic beads and glass beads are sprayed with high pressure gas, Alternatively, a liquid cleaning method of immersing in a solution of acid, alkali, amine or the like has predominantly been used. Since the various disadvantages of these cleaning methods are remarkably improved, the applicant of the present invention has described the above-mentioned JP-A-6- 285868
The method for cleaning a vulcanization mold by plasma described in Japanese Patent Publication has been proposed, and a remarkably excellent result has been obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしこの成果を突き
詰めてみると、下記する諸点につきさらに改善を施す余
地があることを見出した。すなわちその第一点は、加硫
金型の清浄面に対しプラズマ領域が過大であり、その結
果大電力と余分な量の反応ガスを必要とし、処理コスト
が高価につくことである。
However, upon examining this result, it was found that there is room for further improvement in the following points. That is, the first point is that the plasma region is excessively large with respect to the clean surface of the vulcanization mold, and as a result, a large amount of electric power and an excessive amount of reaction gas are required, resulting in high processing cost.

【0006】その第二点は、清浄を必要とする加硫金型
の型形成面に、特殊なタイヤ種は別としても一般にはタ
イヤに対する要求特性の十分な発揮に必要不可欠な太
溝、細溝、スリットなどをトレッド部に形成するための
多数個のリブやサイプ(細条片)などの突起物を設けて
いて、プラズマがこれらの突起物に遮られて清浄面対象
全領域にわたる加硫残滓の均一なアッシング(灰化)が
損なわれ勝ちであることである。
The second point is that, on the mold forming surface of the vulcanizing mold that needs to be cleaned, apart from special tire types, generally, the large grooves and fine grooves that are indispensable for sufficiently exhibiting the required characteristics of the tire are required. A large number of ribs and protrusions such as sipes (strips) for forming grooves and slits on the tread portion are provided, and the plasma is blocked by these protrusions and vulcanized over the entire area of the clean surface. This is because the uniform ashing (ashing) of the residue is impaired and tends to occur.

【0007】その第三点は、上記第二点に関連して多く
の処理時間を要するため清浄能率が低下すること、そし
て第四点は、清浄対象外の表面までプラズマにさらす結
果となるため、この表面部分に劣化を生じさせ、また損
傷を与えることである。
The third point is that a lot of processing time is required in connection with the second point, so that the cleaning efficiency is lowered, and the fourth point is that the surface not to be cleaned is exposed to plasma. , Is to cause deterioration and damage to this surface portion.

【0008】従ってこの発明の目的は上述した不利な諸
点の改善を目指し、加硫金型の型形成面に制約を加える
ことなく低コストで、かつ短い処理時間での均一なアッ
シングを有利に実現することが可能な加硫金型の清浄方
法を提供することにある。
Therefore, an object of the present invention is to improve the above-mentioned disadvantages, and to realize uniform ashing at a low cost and in a short processing time without restricting the mold forming surface of the vulcanizing mold. It is to provide a method of cleaning a vulcanization mold that can be performed.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明その一による加硫金型の清浄方法は、真空
処理槽内の希薄反応ガスに生起させたプラズマを加硫金
型に作用させ、エラストマの繰返し加硫成形により金型
表面に形成されたエラストマ残滓をアッシングして除去
するにあたり、一方の電極を処理槽内に突出させ、突出
した電極の周囲に環状加硫金型を他方の電極として前者
の電極から所定距離隔てて位置させ、これら両電極に電
力を印加して両電極間に放電によるプラズマを生起さ
せ、反応ガスの流入量及び流出量の均衡の下で、放電開
始から両電極間のプラズマ分布が一様の間までは反応ガ
ス圧力を所定範囲内の低圧に保持し、プラズマ分布に不
均一領域が生じたときを含むその近傍時点で反応ガス圧
力を上記所定範囲内の低圧に比しより低圧に減圧させる
ことを特徴とする。
In order to achieve the above object, a method for cleaning a vulcanizing mold according to the first aspect of the present invention is to apply a plasma generated in a dilute reaction gas in a vacuum processing tank to a vulcanizing mold. Then, in order to ash and remove the elastomer residue formed on the mold surface by the repeated vulcanization molding of the elastomer, one electrode is projected into the treatment tank, and the annular vulcanization mold is surrounded around the projected electrode. The electrode is positioned at a predetermined distance from the former electrode, and electric power is applied to both electrodes to generate plasma due to discharge between both electrodes, and discharge is started under the balance of the inflow amount and outflow amount of the reaction gas. The reaction gas pressure is maintained at a low pressure within a predetermined range until the plasma distribution between the two electrodes is uniform, and the reaction gas pressure is set to the predetermined range at a time point near the time when the plasma distribution has a non-uniform region. Inside Wherein the depressurizing than than the pressure in the low pressure.

【0010】この発明その一を実施するにあたり、プラ
ズマ分布が一様の間の反応ガス圧力を1.3〜10.0
Torrの範囲内とし、プラズマ分布に不均一領域が生
じたときを含むその近傍時点で反応ガス圧力を0.1〜
1.3Torr未満の範囲内で減圧すること、反応ガス
圧力を0.1〜1.3Torr未満の範囲内で減圧する
とき、併せて放電電力の出力を降下させること、反応ガ
ス圧力を0.1〜1.3Torr未満の範囲内で減圧す
るとき、併せて反応ガスの処理槽内への流入量を減少さ
せること、そして反応ガスが、酸素ガス及びハロゲン化
物ガスの少なくとも何れか一方のガスであることが望ま
しい。
In carrying out one of the present inventions, the reaction gas pressure is 1.3 to 10.0 while the plasma distribution is uniform.
Within the range of Torr, the reaction gas pressure is set at 0.1 to around the time including the nonuniform region in the plasma distribution.
When the pressure is reduced within the range of less than 1.3 Torr, the reaction gas pressure is reduced within the range of 0.1 to less than 1.3 Torr, the discharge power output is also reduced, and the reaction gas pressure is reduced to 0.1. When the pressure is reduced within the range of less than 1.3 Torr, the amount of the reaction gas flowing into the processing tank is also reduced, and the reaction gas is at least one of oxygen gas and halide gas. Is desirable.

【0011】そしてこの発明その二による加硫金型の清
浄方法は、真空処理槽内の希薄反応ガスに生起させたプ
ラズマを加硫金型に作用させ、エラストマの繰返し加硫
成形により金型表面に形成されたエラストマ残滓をアッ
シングして除去するにあたり、一方の電極を処理槽内に
突出させ、突出した電極の周囲に環状加硫金型を他方の
電極として前者の電極から所定距離隔てて位置させ、こ
れら両電極に電力を印加して両電極間に放電によるプラ
ズマを生起させ、反応ガス成分が酸素ガス及びハロゲン
化物ガスからなり、反応ガスの流入量及び流出量の均衡
の下で反応ガス圧力を所定範囲内の低圧に保持すること
を特徴とする。
In the method for cleaning a vulcanizing mold according to the second aspect of the present invention, the plasma generated in the dilute reaction gas in the vacuum treatment tank is caused to act on the vulcanizing mold, and the mold surface is subjected to repeated vulcanization molding of the elastomer. When ashing and removing the elastomer residue formed on the one electrode, one electrode is projected into the processing tank, and the annular vulcanizing mold is used as the other electrode around the protruding electrode and is located at a predetermined distance from the former electrode. Then, electric power is applied to both electrodes to generate plasma due to discharge between the electrodes, and the reaction gas components consist of oxygen gas and halide gas, and the reaction gas flows under the balance of the inflow amount and the outflow amount of the reaction gas. It is characterized in that the pressure is maintained at a low pressure within a predetermined range.

【0012】この発明その二を実施するにあたり、反応
ガス圧力が1.3〜10.0Torrの範囲内であるこ
と、上記両電極間のプラズマ分布に不均一領域が生じた
ときを含むその近傍時点で、反応ガスのうちハロゲン化
物ガスが占める量を減じること、そして両電極間の放電
開始から10〜30分経過までの間の反応ガスは酸素ガ
スのみとし、その後は酸素ガスにハロゲン化物ガスを加
えた混合反応ガスとすることが望ましい。
In carrying out the second aspect of the present invention, the reaction gas pressure is in the range of 1.3 to 10.0 Torr, and the time point in the vicinity thereof, including the case where a non-uniform region occurs in the plasma distribution between the two electrodes, Then, the amount of the halide gas occupied in the reaction gas is reduced, and the reaction gas is only oxygen gas from the start of discharge between both electrodes until 10 to 30 minutes have passed, and thereafter, the halide gas is added to the oxygen gas. It is desirable to use the added mixed reaction gas.

【0013】さらにこの発明その一及びその二を実施す
るに際し、ハロゲン化物ガスが四フッ化炭素(CF4)ガ
スであること、そして上記両電極間のプラズマ分布状態
及び両電極間の正常放電領域を除く残余領域での異常放
電現象をモニタリング手段により監視し、監視結果を反
応ガス圧力、反応ガス流入量、放電電力及び金型温度の
各制御系のうち少なくとも一の制御系にフィードバック
し、このフィードバックに基づき各制御系のうち少なく
とも一の制御系を制御可能とするのが望ましい。
Further, in carrying out the first and second aspects of the present invention, the halide gas is carbon tetrafluoride (CF 4 ) gas, and the plasma distribution state between both electrodes and the normal discharge region between both electrodes are provided. The abnormal discharge phenomenon in the remaining area except for is monitored by the monitoring means, and the monitoring result is fed back to at least one control system of the reaction gas pressure, the reaction gas inflow amount, the discharge power and the mold temperature, It is desirable to be able to control at least one of the control systems based on the feedback.

【0014】[0014]

【作用】一方の電極を処理槽内に突出させると共に、こ
の電極の周囲に環状加硫金型を他方の電極として前者電
極から所定距離隔てて位置させることにより、まず、清
浄を必要とする加硫金型の面と電極面との間の領域にの
みプラズマを生起させればよく、その結果プラズマ領域
を必要最小限度で最適化することができ、よって余分な
電力及び余分な反応ガス使用量を低減させ、処理コスト
を引き下げることが可能となる。
Operation: One electrode is projected into the processing tank, and an annular vulcanizing die is positioned around this electrode as the other electrode at a predetermined distance from the former electrode, so that cleaning is required first. It is only necessary to generate the plasma in the area between the surface of the metal mold and the electrode surface, and as a result, the plasma area can be optimized to the minimum required, and therefore, the extra power and the extra reaction gas consumption are required. And the processing cost can be reduced.

【0015】次に、プラズマ領域の最適化は低コストで
処理時間の短縮を可能とする外、清浄対象外の表面に対
し劣化をもたらす不具合が回避できる利点を有する。ま
た相当に複雑で多様な形態をもつタイヤトレッド模様形
成面に対し最適化したプラズマ領域は均一なアッシング
をもたらす。
Next, the optimization of the plasma region has the advantages that the processing time can be shortened at a low cost, and that a defect that deteriorates the surface not to be cleaned can be avoided. Also, the optimized plasma region for the tire tread surface having a fairly complex and diverse morphology provides uniform ashing.

【0016】また清浄処理当初から処理終了までの間、
両電極間のプラズマ密度分布(以下プラズマ分布と略記
する)が必ずしも均一であるとは言えない。このありさ
まを、例えば図5に簡略図解した両電極4、15の平面
図にプラズマ分布状態を示すように、環状加硫金型15
の内周面の一部に好適密度をもつプラズマ領域(斜線を
施した部分)に比しより低密度のプラズマ領域、もしく
は非プラズマ領域、すなわち非放電領域(両者とも白抜
き部分)が処理途中で発生し勝ちである。図5に示す例
の外に、両電極間の上下方向により低密度のプラズマ領
域もしくは非プラズマ領域が形成されることもしばしば
である。
From the beginning of the cleaning process to the end of the process,
The plasma density distribution between both electrodes (hereinafter abbreviated as plasma distribution) cannot always be said to be uniform. This state is shown, for example, in a plan view of both electrodes 4 and 15 schematically illustrated in FIG.
The plasma area with a lower density or the non-plasma area, that is, the non-discharge area (both white areas) is in the middle of processing, compared to the plasma area (hatched area) that has a suitable density on a part of the inner peripheral surface of the It is easy to occur in. In addition to the example shown in FIG. 5, a low-density plasma region or non-plasma region is often formed in the vertical direction between both electrodes.

【0017】上述した不均一プラズマ分布の下でアッシ
ング処理を継続すると、処理効率の低下、処理不良など
の不具合を生じる他に、両電極間にスパークが発生して
加硫金型や中央電極が損傷を受ける不利がもたらされ
る。
If the ashing process is continued under the above-mentioned non-uniform plasma distribution, in addition to problems such as a decrease in process efficiency and a process failure, a spark is generated between the two electrodes to cause the vulcanization mold and the center electrode to move. There is a disadvantage of being damaged.

【0018】そこで不均一プラズマ分布の発生原因を追
求したところ、(1)中央電極と加硫金型との間の半径
方向距離が周回りで見て一定又は一様ではないこと及び
上記半径方向と直交する向き(上下方向)で加硫金型内
側断面形状が湾曲しているため上下方向での中央電極と
加硫金型との間の距離に差が生じること、(2)特に割
りモールドの場合、放電による加硫金型の温度上昇度合
いが各セグメント毎に異なり、温度分布が一様ではない
こと、(3)プラズマ中の負イオン、例えばF- 、O-
が局所的に滞留すること、(4)中央電極が帯電するか
又は加硫金型内側面のエラストマ残滓(これは絶縁体)
が帯電することにあることを究明した。以下この発明そ
の一、その二に分けて説明する。
Then, when the cause of the non-uniform plasma distribution was sought, (1) the radial distance between the central electrode and the vulcanization mold was not constant or uniform when viewed around the circumference, and Since the inner shape of the vulcanization mold is curved in a direction orthogonal to (vertical direction), there is a difference in the distance between the center electrode and the vulcanization mold in the vertical direction. In the case of, the degree of temperature rise of the vulcanization mold due to discharge differs for each segment, and the temperature distribution is not uniform. (3) Negative ions in plasma, such as F , O
Remain locally, (4) the central electrode is charged, or the elastomer residue on the inner surface of the vulcanization mold (this is an insulator)
Have found that there is a charge. The present invention will be described below in its first and second parts.

【0019】1、この発明その一について;従ってプラ
ズマ分布に不均一領域が生じたときを含むその近傍時点
で反応ガス圧力を、放電開始から両電極間のプラズマ分
布が一様の間における低圧の反応ガス圧力に比しより低
圧に減圧させることにより、真空度をより高めて電子の
平均自由行程をより延長させることができる結果、電子
がより一層拡散し易くなる。このことはとりもなおさず
上記(1)〜(4)の原因を取除くか又は原因の作用を
弱めるように働くことに外ならず、その結果プラズマ分
布の均一化を実現することができる。
1. Regarding the first aspect of the present invention; Therefore, the reaction gas pressure is set to a low pressure in the vicinity of the time when the plasma distribution has an inhomogeneous region, including the time when the plasma distribution between the electrodes is uniform. By reducing the pressure to a lower pressure than the reaction gas pressure, the degree of vacuum can be further increased and the mean free path of the electrons can be further extended. As a result, the electrons can be more easily diffused. This means that the causes of (1) to (4) above are removed or the action of the causes is weakened, and as a result, uniform plasma distribution can be realized.

【0020】清浄開始当初からプラズマ分布が一様の間
の反応ガス圧力を1.3〜10.0Torrの範囲内と
することで大電力供給を可能とし、これにより均一なプ
ラズマ分布を得ること及び高効率なアッシングを実現す
ることに寄与させ、プラズマ分布に不均一領域が生じた
ときを含むその近傍時点で反応ガス圧力を0.1〜1.
3Torr未満の範囲内で減圧することにより、プラズ
マ分布の不均一化阻止に対しなお一層効果を高めるのに
役立つ。
By setting the reaction gas pressure during the uniform plasma distribution from the beginning of cleaning to within the range of 1.3 to 10.0 Torr, a large amount of power can be supplied, thereby obtaining a uniform plasma distribution. It contributes to the realization of highly efficient ashing, and the reaction gas pressure is 0.1 to 1.
By reducing the pressure within the range of less than 3 Torr, it is possible to further enhance the effect for preventing the non-uniformity of the plasma distribution.

【0021】上記反応ガス圧力を減圧するとき、併せて
放電電力の出力を降下させれば異常放電のうれいを回避
することができ、さらに電力降下で不均一プラズマの発
生を伴うようであれば反応ガス圧力を上記範囲内でより
減圧すればよい。これを繰り返し実行すれば異常放電及
び不均一プラズマをそれぞれ阻止可能となる。
When the pressure of the above-mentioned reaction gas is reduced, the discharge power of the discharge is also lowered to avoid the murmur of the abnormal discharge, and if the power drop causes the generation of nonuniform plasma. The reaction gas pressure may be further reduced within the above range. By repeating this, it is possible to prevent abnormal discharge and non-uniform plasma, respectively.

【0022】また上記反応ガス圧力の減圧の際、併せて
反応ガスの流入量を減少させればコストの点で有利であ
り、かつ真空ポンプの負担軽減に役立ち、また安定した
反応ガス圧力を得ることに寄与する。さらに反応ガスが
酸素ガス(O2)及びハロゲン化物ガス( 特にCF4
ス)の少なくとも一方のガス、すなわちO2 ガス又はC
4 ガス又は(O2 +CF4 )ガスであれば有効適切な
清浄を実現するのに役立つ。
Further, when the reaction gas pressure is reduced, it is advantageous in terms of cost to reduce the inflow amount of the reaction gas at the same time, which is useful for reducing the load on the vacuum pump, and a stable reaction gas pressure can be obtained. Contribute to that. Further, the reaction gas is at least one of oxygen gas (O 2 ) and halide gas (particularly CF 4 gas), that is, O 2 gas or C.
F 4 gas or (O 2 + CF 4 ) gas is useful for achieving effective and proper cleaning.

【0023】なおハロゲン化物ガスとしてはF(フッ
素)、Cl(塩素)、Br(臭素)、I(ヨウ素)など
を含有するあらゆるガスを使用することができる。また
真空処理槽にガスとして供給されさえすればよいため標
準状態(25℃、1atm)で必ずしもガスである必要
ななく、例えば液体状態であってもよい。特にフロンや
NF3 、SF6 が好適に用いられ、なかでもCF4 が効
果的である。
As the halide gas, any gas containing F (fluorine), Cl (chlorine), Br (bromine), I (iodine), etc. can be used. Further, since it only needs to be supplied as a gas to the vacuum processing tank, it does not necessarily have to be a gas in a standard state (25 ° C., 1 atm), and may be in a liquid state, for example. In particular, chlorofluorocarbon, NF 3 , and SF 6 are preferably used, and CF 4 is particularly effective.

【0024】2、この発明その二について;反応ガス成
分を酸素ガス及びハロゲン化物ガスで構成し、反応ガス
圧力を所定範囲内の低圧に保持することにより、それぞ
れのガス分圧を随時かつ適宜調整することができるの
で、先に述べた(1)〜(4)の原因の除去、ないしこ
れら原因に基づく作用緩和とを達成することが可能とな
り、やはり清浄処理開始から終了までの全般にわたり均
一なプラズマ処理が可能となる。
2. Regarding the second aspect of the present invention; the reaction gas components are composed of oxygen gas and halide gas, and the reaction gas pressure is maintained at a low pressure within a predetermined range, so that the partial pressures of the respective gases are adjusted as needed. Therefore, it is possible to eliminate the causes (1) to (4) described above, or to alleviate the action based on these causes, and it is also possible to perform uniform cleaning from the start to the end of the cleaning process. Plasma processing becomes possible.

【0025】それというのも、酸素ガス及びハロゲン化
物ガスはプラズマ中で負イオンになり易く、特に後者の
ガスのイオンはプラズマ中の滞在寿命が長いため局所的
に電子の雲のような状態を呈する部分が長時間にわたり
形成され、この部分が両電極間の放電を遮断するように
作用し、その結果プラズマ分布に不均一領域を形成する
こととなるところ、酸素ガス及びハロゲン化物ガスを低
圧に保持することによりこれらの負イオンの発生量を抑
制して放電遮断作用を緩和することが可能となる結果、
均一なプラズマ処理が可能となるからである。
This is because the oxygen gas and the halide gas are apt to become negative ions in the plasma, and in particular, the ions of the latter gas have a long staying life in the plasma, and thus locally form a state like an electron cloud. The part to be exposed is formed for a long time, and this part acts to interrupt the discharge between both electrodes, resulting in the formation of a non-uniform region in the plasma distribution. By holding it, it is possible to suppress the amount of generation of these negative ions and alleviate the discharge interruption effect,
This is because uniform plasma processing becomes possible.

【0026】反応ガス圧力が1.3〜10.0Torr
の範囲内であれば上記効果をより一層高めることに寄与
する。また両電極間のプラズマ分布に不均一領域が生じ
たときを含むその近傍時点でハロゲン化物ガスが占める
量を減じることにより、プラズマ分布は不均一領域が解
消して均一になり、かてて加えて高価なガスの使用量が
低減する利点を併せ発揮する。
The reaction gas pressure is 1.3 to 10.0 Torr.
Within the range, it contributes to further enhancing the above effect. Also, by reducing the amount of halide gas occupying in the vicinity of the time, including when a non-uniform region occurs in the plasma distribution between both electrodes, the non-uniform region is eliminated and the plasma distribution becomes uniform. It also has the advantage of reducing the amount of expensive gas used.

【0027】放電開始から10〜30分経過までの間は
2 ガスのみとし、それ以降にO2ガスにハロゲン化物
ガス、好適にはCF4 ガスを加えた混合ガスとすること
により、10〜30分経過後に加硫金型が高温度を示す
時点、これは効率良いアッシング反応が生じる時点を意
味し、従ってこの時点からアッシング反応に有利なCF
4 ガスを添加することになり、このことは高効率な清浄
を可能とする一方、やはり高価なCF4 ガスの使用量を
抑制してコスト低減につながる。なおハロゲン化物ガス
に適合する物質は先に述べた通りである。
From the start of discharge to the lapse of 10 to 30 minutes, only O 2 gas is used, and thereafter, a mixed gas in which a halide gas, preferably CF 4 gas is added to O 2 gas is used. After 30 minutes, the vulcanization mold shows a high temperature, which means an efficient ashing reaction occurs.
This means that four gases are added, which enables highly efficient cleaning, while also suppressing the amount of expensive CF 4 gas used, leading to cost reduction. The substances compatible with the halide gas are as described above.

【0028】この発明その一、その二両者を通じ、プラ
ズマ分布状態及び異常放電現象をモニタリング手段によ
り監視し、監視結果を反応ガス圧力、反応ガス流入量、
放電電力及び加硫金型温度の各制御系のうち少なくとも
一の制御系にフィードバックして制御可能とすること
は、上に述べた諸作用効果を有利に的確に実現すること
に貢献する。
Through the first and second aspects of the present invention, the plasma distribution state and the abnormal discharge phenomenon are monitored by the monitoring means, and the monitoring results are the reaction gas pressure, the reaction gas inflow amount,
Feeding back control to at least one of the control systems for controlling the discharge power and the temperature of the vulcanization mold contributes to realizing the above-mentioned various effects advantageously and accurately.

【0029】[0029]

【実施例】この発明その一及びその二の実施例を図1に
基づき詳細に以下説明する。図1は加硫金型の清浄に使
用する真空処理槽1側面の要部断面を、簡略図解した加
硫金型の断面と合せ示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first and second embodiments of the present invention will be described in detail below with reference to FIG. FIG. 1 is an explanatory diagram showing a cross section of a main part of a side surface of a vacuum processing tank 1 used for cleaning a vulcanizing mold together with a simplified cross section of a vulcanizing mold.

【0030】図1において、真空処理槽1は下方位置に
て相互に上下に分離可能でかつシール可能な容器上部2
−1と容器下部2−2とからなる容器2を備え、容器下
部2−2に図示しない真空ポンプに接続させる吸引部3
を具備する。加硫金型の清浄作業を開始するに先立ちこ
の真空ポンプを稼働させて容器2内部の空気圧を、例え
ば10-1〜10-5Torrのいわゆる中真空〜高真空と
する。なお図示例の真空処理槽1は容器下部2−2側
を、例えば複数本の支柱2−2a(図では1本のみを示
す)により床面Fsなどに固定し、容器上部2−1側を
容器下部2−2に対し上方に向け着脱自在に設ける。
In FIG. 1, a vacuum processing tank 1 is a container upper part 2 which is vertically separable and sealable at a lower position.
-1 and a container lower part 2-2, and a suction part 3 that is connected to a vacuum pump (not shown) in the container lower part 2-2.
It is equipped with. Prior to starting the cleaning work of the vulcanization mold, the vacuum pump is operated to adjust the air pressure inside the container 2 to a so-called medium vacuum to high vacuum of, for example, 10 -1 to 10 -5 Torr. In the vacuum processing tank 1 of the illustrated example, the container lower part 2-2 side is fixed to the floor surface Fs or the like by a plurality of columns 2-2a (only one is shown in the figure), and the container upper part 2-1 side is fixed. The container lower part 2-2 is detachably provided upward.

【0031】一方側の電極4を図1に示すように上方か
ら吊下げ状態で容器2内に突出させて配置する。この配
置位置は図の上下方向に移動可能とするか、又は容器上
部2−1に固定するか何れでも可とする。図示例の電極
4は外周が円筒状をなし、円筒の中程を導電体プレート
(円板)4aで電気的、機械的に接合するタイプであ
る。なおこの種の電極4の外側形状を円筒に限定する必
要はなく、例えば5角形以上の多角形とすることを可と
し、また放電効率を高めるため多数個のフィンを電極外
周に沿って横並びに配置するか、又は縦並びに配置する
ことができる。
As shown in FIG. 1, the electrode 4 on one side is arranged so as to project from the upper side into the container 2 in a suspended state. This arrangement position may be movable in the vertical direction in the figure or may be fixed to the container upper part 2-1. The electrode 4 in the illustrated example has a cylindrical outer periphery, and is of a type in which the middle of the cylinder is electrically and mechanically joined by a conductor plate (disc) 4a. It is not necessary to limit the outer shape of the electrode 4 of this kind to a cylinder. For example, it is possible to form a polygon of pentagon or more, and in order to improve the discharge efficiency, a large number of fins are arranged side by side along the outer circumference of the electrode. They can be arranged or arranged vertically.

【0032】さらに電極4を拡径及び縮径自在に構成す
るすることができ、この場合は後述する加硫金型15の
内側と電極4の外側との間の半径方向(水平方向)距離
が調整自在となり、最適距離の選定や内径が大幅に異な
る各種加硫金型の適用に役立つ利点を有する。
Further, the electrode 4 can be constructed so that its diameter can be expanded and contracted freely. In this case, the radial (horizontal) distance between the inside of the vulcanization mold 15 and the outside of the electrode 4 described later is reduced. It is adjustable and has the advantage of being useful for selecting the optimum distance and applying various vulcanization dies with greatly different inner diameters.

【0033】導電体プレート4aを介し電極4を導電体
の冷却槽5と電気的かつ機械的に接合し、冷却槽5をや
や太径の送電パイプ6(例えば銅製パイプ)と電気的か
つ機械的に接合する。勿論導電体プレート4aと冷却槽
5とは相互にシールして外部に冷却媒体が流出するのを
防止する。送電パイプ6は容器2の中央に配置し、容器
上部2−1の上方で絶縁固着する。なおこの例では容器
2を接地側とした。
The electrode 4 is electrically and mechanically joined to the conductor cooling bath 5 through the conductor plate 4a, and the cooling bath 5 is electrically and mechanically connected to the slightly large diameter transmission pipe 6 (for example, a copper pipe). To join. Of course, the conductor plate 4a and the cooling tank 5 are mutually sealed to prevent the cooling medium from flowing out. The power transmission pipe 6 is arranged in the center of the container 2 and is fixed by insulation above the container upper portion 2-1. In this example, the container 2 was on the ground side.

【0034】送電パイプ6の内部に、電極4を冷却する
ための液体(例えば約20℃の冷却水や同様冷却油)又
は気体などの冷却媒体を冷却槽5に供給するより細径の
冷媒送りパイプ7を収容する。パイプ7は冷却槽5内に
開口して冷却媒体を放出し、放出された冷却媒体はその
役を果たした後、送電パイプ6と冷却用パイプ7との間
を通り、図の上方に向け移動し、排出される。なお送電
パイプ6と冷却用パイプ7との間は大気圧とほぼ同等の
内圧に保つ。
Inside the power transmission pipe 6, a cooling medium having a smaller diameter is supplied to the cooling tank 5 by supplying a cooling medium such as a liquid for cooling the electrode 4 (for example, cooling water of about 20 ° C. or similar cooling oil) or gas to the cooling tank 5. The pipe 7 is accommodated. The pipe 7 opens into the cooling tank 5 to release the cooling medium, and the released cooling medium plays its role, and then passes between the power transmission pipe 6 and the cooling pipe 7 and moves upward in the drawing. And then discharged. The internal pressure between the power transmission pipe 6 and the cooling pipe 7 is kept substantially equal to the atmospheric pressure.

【0035】かようにして電極4を容器2に縦軸中央位
置で中央電極として固定支持すると共に冷却槽5及び送
電パイプ6を介して電極4に電力を供給し、併せて動作
時における電極4の過熱を抑制して電極4を適当な温度
に保持する。なお電力供給用電源は図示を省略したがこ
の例では周波数13.56MHzのラジオ波と呼ばれる
高周波電力を送電する。別の例では直流電源又はマイク
ロ波電源とすることもできる。
In this way, the electrode 4 is fixedly supported on the container 2 as a central electrode at the central position of the vertical axis, and electric power is supplied to the electrode 4 through the cooling tank 5 and the power transmission pipe 6, and at the same time, the electrode 4 is operated. The overheating of the electrode 4 is suppressed and the electrode 4 is maintained at an appropriate temperature. Although not shown in the figure, the power supply power source transmits high-frequency power called radio waves having a frequency of 13.56 MHz in this example. In another example, it may be a DC power supply or a microwave power supply.

【0036】縦長の絶縁体、例えばアルミナのようなセ
ラミックス絶縁体8をその下方部にて冷却槽5の上部に
固着する。絶縁体8は中空部を有し、この中空部は送電
パイプ6と反応ガス供給パイプ9とを収容するスペース
を有する。さらに絶縁体8の上部と、絶縁体8と同様上
方に垂直に延びる円筒10をそのフランジ部とをシール
状態で結合する。勿論この円筒10の内部は両パイプ
6、9を収容するのに十分な空間を有する。この空間と
つながる絶縁体8の空間は大気に解放し、よって冷却槽
5と絶縁体8とは十分なシール状態で互いに結合する。
円筒10は容器上部2−1に固定するか、又は移動自在
に取付ける。
A vertically long insulator, for example, a ceramic insulator 8 such as alumina is fixed to the upper portion of the cooling tank 5 at its lower portion. The insulator 8 has a hollow portion, and this hollow portion has a space for accommodating the power transmission pipe 6 and the reaction gas supply pipe 9. Further, the upper portion of the insulator 8 and the flange portion of the cylinder 10 extending vertically upward like the insulator 8 are joined together in a sealed state. Of course, the inside of the cylinder 10 has a sufficient space for accommodating both pipes 6 and 9. The space of the insulator 8 connected to this space is opened to the atmosphere, and therefore the cooling tank 5 and the insulator 8 are coupled to each other in a sufficiently sealed state.
The cylinder 10 is fixed to the upper part 2-1 of the container or is movably attached.

【0037】反応ガスは供給パイプ9の下端部にて絶縁
体8の中を完全シール状態で横方向に延び、それから電
極4の内部で下方に延びる連結パイプ9−1を経て、こ
のパイプ9−1の下方終端部に連結した円環状パイプ9
−2に送られ、このパイプ9−2にほぼ等間隔で形成し
た多数個の吐出口(図示省略)から処理槽1内に供給さ
れる。その際反応ガスの流れは電極4のプレート4aに
遮られて一旦上方に向かい、それから容器2内に充満す
る。
The reaction gas extends laterally in the insulator 8 at the lower end of the supply pipe 9 in a completely sealed state, and then passes through a connecting pipe 9-1 extending downward inside the electrode 4 to the pipe 9-. An annular pipe 9 connected to the lower end of 1
-2, and is supplied into the processing tank 1 from a large number of discharge ports (not shown) formed in the pipe 9-2 at substantially equal intervals. At this time, the flow of the reaction gas is blocked by the plate 4a of the electrode 4 and once goes upward, and then the container 2 is filled.

【0038】中央電極4の周囲に環状加硫金型15を位
置させる。加硫金型15は一体として図示しているが、
この例ではいわゆる割りモールドのうち外周側を分割形
成する多数個、例えば3〜20個のセグメントを、金属
製、例えばスチール製の電気伝導を兼ねる支持搬送用定
盤16上面に、実際の使用時と同じ状態に仮組みしたと
ころを示している。
An annular vulcanizing mold 15 is positioned around the central electrode 4. Although the vulcanization mold 15 is shown as one body,
In this example, a large number, for example, 3 to 20, of the so-called split mold, which divides the outer peripheral side, are formed on the upper surface of the supporting and transporting platen 16 which is also made of metal, for example, steel and which also serves as an electric conductor during actual use. The figure shows a temporary assembly in the same state as.

【0039】またタイヤのトレッド部に踏面及び各種溝
やスリットを形成する部分には一般にアルミニューム合
金を適用し、実際に使用する際はこの合金部分をスチー
ル製保持部材に取付けて上述のセグメントとするもので
あり、この発明では上記合金部分のみの場合とセグメン
トの場合との両方を含めて加硫金型と呼ぶ。
An aluminum alloy is generally applied to the tread portion of the tire where treads and various grooves and slits are formed. When actually used, this alloy portion is attached to a steel holding member to form the above-mentioned segment. In the present invention, both the case of only the alloy portion and the case of the segment are referred to as a vulcanization mold.

【0040】加硫金型15が割りモールドである場合は
図示のセグメントモールドの上下に一対のサイドモール
ドを組み合わせてモールド本体とする。このモールド本
体を加硫金型15としてプラズマ清浄を施すこともで
き、さらに周上に分割面を有する、いわゆる2つ割りモ
ールドにもこの発明を適用することができる。
When the vulcanization mold 15 is a split mold, a pair of side molds are combined above and below the segment mold shown in the figure to form a mold body. This mold body can be used as a vulcanizing mold 15 for plasma cleaning, and the present invention can be applied to a so-called split mold having a divided surface on the circumference.

【0041】図示を省略したが定盤16は、多数個のセ
グメントを仮組みする際又は割りモールド本体や2つ割
りモールドを据え置く際、セグメントの集合体又はこれ
らモールドを所定位置に据えるための機構を備え、さら
に定盤16は、集合体としての加硫金型15又はこれら
モールドとしての加硫金型15を中央電極4に対し心出
しをする機構を備える。後者の機構は加硫金型15及び
定盤16を支持するホイールコンベヤ17に設けた心出
し装置と心出し係合する。
Although not shown in the drawings, the surface plate 16 is a mechanism for setting a group of segments or a set of these molds at a predetermined position when temporarily assembling a large number of segments or when placing a split mold body or a split mold. Further, the surface plate 16 is provided with a mechanism for centering the vulcanizing mold 15 as an assembly or the vulcanizing mold 15 as these molds with respect to the central electrode 4. The latter mechanism is centeringly engaged with a centering device provided on a wheel conveyor 17 supporting the vulcanizing mold 15 and the surface plate 16.

【0042】加硫金型15の処理槽1内への導入は、容
器上部2−1や中央電極4を上方に移動させた状態で、
予め処理槽1の外部で定盤16上に仮組み乃至据え置い
た加硫金型15を定盤16と共に、図示を省略した別の
同様ホイールコンベヤ上で図示位置まで搬送し、同時に
心出しをする。この心出し精度は心ずれ量で望ましくは
3cm以下、より望ましくは5mm以下である。
The vulcanization mold 15 is introduced into the processing tank 1 with the upper part 2-1 of the container and the central electrode 4 being moved upward.
The vulcanization mold 15 temporarily assembled or set aside on the surface plate 16 outside the processing tank 1 is conveyed together with the surface plate 16 to the position shown on another similar wheel conveyor (not shown), and at the same time, centering is performed. . The centering accuracy, which is the amount of misalignment, is preferably 3 cm or less, and more preferably 5 mm or less.

【0043】定盤16を所定位置まで搬送した後、ホイ
ールコンベヤ17に設けた固定手段(図示省略)により
定盤16を一時固定する。固定した後に昇降手段20に
連結したロッド19の上端に設けた電気接点18を上昇
させて定盤16と接触させる。ロッド19を介し電気接
点18を電力供給用電源の接地側に接続する。すなわち
この例では加硫金型15を接地側とするも、別の例では
電圧印加側とすることができる。
After the platen 16 is conveyed to a predetermined position, the platen 16 is temporarily fixed by a fixing means (not shown) provided on the wheel conveyor 17. After fixing, the electrical contact 18 provided on the upper end of the rod 19 connected to the elevating means 20 is raised to make contact with the surface plate 16. The electrical contact 18 is connected to the ground side of the power supply for power supply via the rod 19. That is, in this example, the vulcanization mold 15 is on the ground side, but in another example, it can be on the voltage application side.

【0044】その後容器上部2−1や中央電極4を下降
させて容器下部2−2と接触係合させ、両容器2−1、
2−2を密封状態で固定し、それから図示しない真空ポ
ンプを稼働させて吸引部3を介し容器2内部を先に述べ
た所定の中〜高真空状態とする。次いで反応ガスを円環
状パイプ9−2の吐出口から流入させる。なお空気排出
及び反応ガスの流入と流出の均衡を円滑ならしめるた
め、好適には吸引部3の吸引口位置に対応する定盤16
位置に複数個の貫通穴を設ける。なお反応ガスの圧力測
定位置は吸引部3の吸引口及びその近傍を除く位置なら
何れの箇所でもよい。
Thereafter, the container upper part 2-1 and the central electrode 4 are lowered to be brought into contact with and engage with the container lower part 2-2.
2-2 is fixed in a hermetically sealed state, and then a vacuum pump (not shown) is operated to bring the inside of the container 2 into the predetermined medium to high vacuum state described above through the suction section 3. Then, the reaction gas is caused to flow in from the discharge port of the annular pipe 9-2. In addition, in order to smooth the balance between the air discharge and the inflow and outflow of the reaction gas, it is preferable that the surface plate 16 corresponding to the position of the suction port of the suction unit 3.
Provide a plurality of through holes at the positions. The reaction gas pressure measurement position may be any position except the suction port of the suction unit 3 and its vicinity.

【0045】図示を省略したがこの装置には、プラズマ
分布状態及び異常放電現象をモニタリングする手段を備
え、モニタ対象としてはプラズマ発光分光スペクトル、
電子温度及び電子密度(プローブ測定)、加硫金型温度
(熱電対、赤外線温度計)などであり、その他目視やビ
デオカメラ撮影可能な窓を容器2に設け、外部からの観
察と画像解析を可能としている。これらのモニタリング
による監視結果に基づき、反応ガス圧力、反応ガス流入
量、放電電力及び加硫金型温度の制御を適正に実施す
る。
Although not shown in the drawing, this apparatus is provided with means for monitoring the plasma distribution state and abnormal discharge phenomenon, and the plasma emission spectrum as the monitoring target,
Electron temperature and electron density (probe measurement), vulcanization mold temperature (thermocouple, infrared thermometer), etc. In addition, a window that allows visual observation and video camera shooting is provided in the container 2 for external observation and image analysis. It is possible. Based on the monitoring results of these monitoring, the control of the reaction gas pressure, the reaction gas inflow amount, the discharge power and the vulcanization mold temperature is properly performed.

【0046】[実施例1]図1に従い、電極4は円筒形
をなし、その寸法諸元は外径が480mm、高さが22
0mmである。加硫金型15のセグメント数は8個で最
大内径が550mmである。反応ガスはO2 ガス及びC
4 ガスの混合ガスを用い、これらガスの流入量の比を
2 :CF4 =2:1とした。詳細にはO2 が500S
CCM、CF4 が250SCCMである。
[Embodiment 1] According to FIG. 1, the electrode 4 has a cylindrical shape, and its dimensional specifications include an outer diameter of 480 mm and a height of 22.
It is 0 mm. The vulcanization mold 15 has eight segments and a maximum inner diameter of 550 mm. The reaction gas is O 2 gas and C
A mixed gas of F 4 gas was used, and the ratio of the inflow amounts of these gases was set to O 2 : CF 4 = 2: 1. In detail, O 2 is 500S
CCM and CF 4 are 250 SCCM.

【0047】放電時間約150分にわたる間の経過時間
と反応ガス圧力(Torr)及び供給電力(KW)との
関係を、前者は三角形印の連なりで、後者は丸印の連な
りでそれぞれ線図として纏めて図2に示す。
The relationship between the elapsed time during the discharge time of about 150 minutes and the reaction gas pressure (Torr) and the supplied power (KW) is shown as a diagram in which the former is a series of triangle marks and the latter is a series of circle marks. Collectively shown in FIG.

【0048】図2において、放電開始から符号Aで示す
時点(約50分経過後)まではプラズマ分布が均一であ
るため反応ガス圧力を1.5Torrに保持し、A時点
で周回りでプラズマ分布に不均一領域が生じる傾向を見
出し、その時点から反応ガス圧力を徐々に減圧し、B時
点でこの傾向が完全に消滅して均一な分布が得られるの
を確認して減圧操作を停止した。その後再びC時点(放
電開始から約100分経過後)で同様傾向が見られたた
めプラズマ分布が完全に均一になるD時点まで減圧操作
を施し、D時点以降は処理終了までほぼ一様な圧力に保
持した。なおD時点以降の反応ガスの流入量を当初量の
約60%とした。
In FIG. 2, since the plasma distribution is uniform from the start of discharge to the time point indicated by symbol A (after a lapse of about 50 minutes), the reaction gas pressure is maintained at 1.5 Torr, and at the time point A, the plasma distribution around the circumference is maintained. At that time, the reaction gas pressure was gradually reduced, and at point B, it was confirmed that this tendency had completely disappeared and a uniform distribution was obtained, and the depressurization operation was stopped. After that, a similar tendency was observed again at time C (about 100 minutes after the start of discharge), so the depressurization operation was performed until time D when the plasma distribution became completely uniform, and after time D, the pressure became almost uniform until the treatment was completed. Held The inflow amount of the reaction gas after the time point D was set to about 60% of the initial amount.

【0049】電力については当初6KWを保持したが、
反応ガスの減圧下で高電圧状態を継続すると、加硫金型
15の内側面を除く接地側と電圧印加側との間で異常放
電(結合)が生じるうれいがあるため、安全をみて予め
反応ガスのC時点近傍のX時点で供給電力を降下させ
た。以上の操作により終始正常放電及び均一なプラズマ
分布の下で加硫金型15のエラストマ残滓を全面にわた
り一様に、かつ十分にアッシングして、他に何ら悪影響
を伴うことなく新品同様な金型内面地肌を得ることがで
きた。
The electric power initially held 6 kW,
If the high-voltage state is continued under the reduced pressure of the reaction gas, there is a gratification that abnormal discharge (coupling) occurs between the ground side and the voltage-applying side of the vulcanization mold 15 except for the inner side surface thereof. The supply power was decreased at the time point X near the time point C of the reaction gas. By the above operation, the elastomer residue of the vulcanization mold 15 is uniformly and sufficiently ashed over the entire surface under normal discharge and uniform plasma distribution, and the mold is as good as new without any other adverse effect. I was able to get an inner skin.

【0050】[実施例2]やはり図1に従い、実施例1
と同じ電極4及び8個のセグメントを有する加硫金型1
5を用い、反応ガスはO2 ガス及びCF4 ガスを適用し
た。反応ガス圧力は終始1.5Torrに保持し、放電
開始から25分経過(符号G1 時点 )までの反応ガスは
2 ガスのみを適用し、G1 時点からCF4 ガスを添加
して混合ガスとした。添加開始から約5分経過した添加
終了時点G2 でのガス流入量の比O 2 :CF4 は2:1
とした。この操作状態を線図として図3に示す。右縦軸
は反応ガスの流入量の比をあらわす。
[Embodiment 2] Referring to FIG.
Vulcanization mold 1 having the same electrode 4 and 8 segments
5, and the reaction gas is O2Gas and CFFourApply gas
Was. Keep the reaction gas pressure at 1.5 Torr from beginning to end
25 minutes have passed since the start (code G1 Reaction gas up to
O2Apply gas only, G1 CF from the momentFourAdd gas
And made into mixed gas. About 5 minutes after the start of addition
End time G2Ratio of gas inflow at 2: CFFourIs 2: 1
And This operation state is shown as a diagram in FIG. Right vertical axis
Represents the ratio of the inflow amount of the reaction gas.

【0051】このことは加硫金型15の温度が十分高温
度に達するまでアッシング反応はさほど進行しないた
め、放電開始から所定温度に達するまで高価なCF4
スの適用を避けるためであり、これにより処理コストの
低減を図ることができる。また同様意図の下で、図3に
示すように、電力は放電開始時に4KWとし、約10分
経過したY時点までの間に8KWまで上昇させ、処理終
了までこの値を保持した。これで実施例1と同様なアッ
シング効果を得ることができた。
This is because the ashing reaction does not proceed so much until the temperature of the vulcanization mold 15 reaches a sufficiently high temperature, so that the application of expensive CF 4 gas is avoided until the temperature reaches a predetermined temperature from the start of discharge. Therefore, the processing cost can be reduced. With the same intention, as shown in FIG. 3, the electric power was set to 4 KW at the start of discharge, increased to 8 KW until the time point Y when about 10 minutes had elapsed, and kept at this value until the end of the treatment. As a result, the same ashing effect as in Example 1 could be obtained.

【0052】[実施例3]やはり図1に従い、実施例1
と同じ電極4及び8個のセグメントを有する加硫金型1
5を用い、反応ガスは放電開始当初からO2 ガスとCF
4 ガスとの混合ガスを適用し、反応ガスとしての圧力は
終始1.5Torrに保持した。操作状態を図3同様に
図4に示す。
[Embodiment 3] Referring to FIG.
Vulcanization mold 1 having the same electrode 4 and 8 segments
5, the reaction gas was O 2 gas and CF from the beginning of discharge.
A mixed gas with 4 gases was applied, and the pressure as a reaction gas was kept at 1.5 Torr from beginning to end. The operation state is shown in FIG. 4 as in FIG.

【0053】図4に示すように、H1 時点(約25分経
過後)にてプラズマ分布に不均一領域発生の兆しが見ら
れたので、H1 時点からH2 時点までの間に反応ガス圧
力は1.5Torrに保持した状態でCF4 ガスの流入
量を減少させた。これにより不均一プラズマ領域の発生
が阻止され、同時に高価なCF4 ガスの使用量を削減す
ることができ、さらに実施例1と同様なアッシング効果
を得ることができた。
As shown in FIG. 4, at the time point H 1 (after about 25 minutes), there was a sign that a non-uniform region was generated in the plasma distribution. Therefore, the reaction gas was changed from the time point H 1 to the time point H 2. The flow rate of CF 4 gas was reduced while the pressure was kept at 1.5 Torr. As a result, the generation of the non-uniform plasma region was prevented, the amount of expensive CF 4 gas used could be reduced, and the same ashing effect as in Example 1 could be obtained.

【0054】実施例1〜3の効果を評価するため、比較
例として従来の両電極間に各実施例と同じ8個のセグメ
ントの加硫金型を位置させ、6KWの電力で、反応ガス
はO 2 ガスとCF4 ガスとの混合ガス(流入量の比
2 :CF4 は2:1)を適用し、反応ガス圧力を1.
5Torrに保持してプラズマ処理を施した。評価項目
は加硫金型の各セグメントの処理直後における温度と、
目視による清浄状態良否判断とによった。なお実施例1
と比較例との加硫金型の汚れ具合(残滓厚さ)が同様に
最も顕著で、実施例2、3はそれより比較的軽微な汚れ
状態であった。温度測定結果を表1に示す。表1におい
てセグメントNo.は時計回りに順次付した。値はN
o.1〜8の間で均一なほうが良い。
Comparisons were made to evaluate the effects of Examples 1 to 3.
As an example, the same eight segment segments as those in each embodiment are provided between the two conventional electrodes.
The vulcanization mold of the component is positioned, and the reaction gas is generated with the power of 6KW.
Is O 2Gas and CFFourMixed gas with gas (ratio of inflow
O2: CFFour2: 1) and the reaction gas pressure is 1.
The plasma treatment was performed while holding at 5 Torr. Evaluation item
Is the temperature immediately after processing each segment of the vulcanization mold,
This was based on the visual judgment of the clean state. Example 1
The degree of contamination of the vulcanization mold (residual thickness) is
Most noticeable, and Examples 2 and 3 had relatively lighter stains.
It was in a state. The results of temperature measurement are shown in Table 1. Table 1 Smell
Segment No. Are sequentially attached clockwise. Value is N
o. It is better to be uniform between 1 and 8.

【0055】[0055]

【表1】 [Table 1]

【0056】表1から実施例1〜3は各セグメント間の
温度バラツキが僅少で、均一な清浄が達成できているこ
とをあらわし、これに対し比較例は最高温度と最低温度
との比が2倍以上に達し、プラズマ分布に不均一領域が
あらわれたことを意味している。プラズマ処理終了後に
加硫金型を取出して観察したところ、各実施例は金型内
面全体にわたり一様、かつ十分な残滓清浄が達成されて
いる一方、比較例では特にセグメントNo.5、6が清
浄不十分であった。さらに各実施例とも加硫金型に何ら
損傷が見出せなかったのに対し、比較例では高温のセグ
メントNo.1に見過ごせない損傷部分が生じていた。
From Table 1, Examples 1 to 3 show that there is little temperature variation between the segments and uniform cleaning can be achieved, whereas in Comparative Example, the ratio of the maximum temperature to the minimum temperature is 2 It is more than double that, which means that a non-uniform region appears in the plasma distribution. When the vulcanizing mold was taken out and observed after the plasma treatment was completed, in each of the examples, uniform and sufficient residue cleaning was achieved over the entire inner surface of the mold. 5 and 6 were not cleaned sufficiently. Further, no damage was found in the vulcanization mold in each of the examples, whereas in the comparative example, the high temperature segment No. There was a damaged part that could not be overlooked in 1.

【0057】[0057]

【発明の効果】この発明によれば、エラストマの繰返し
加硫成形により金型表面に形成されたエラストマ残滓
を、加硫金型に損傷を与えるなどの不利を伴うことな
く、また加硫金型の型形成面に制約を加えることなく、
低コストで、かつ短い処理時間で均一に有利にアッシン
グすることが可能な加硫金型の清浄方法を提供すること
ができる。
According to the present invention, the elastomer residue formed on the surface of the mold by the repeated vulcanization molding of the elastomer is not accompanied by a disadvantage such as damage to the vulcanization mold and the vulcanization mold. Without any restrictions on the mold forming surface of
It is possible to provide a method of cleaning a vulcanizing mold that can be uniformly and advantageously ashed at a low cost with a short processing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による清浄方法に供する一実施例の真
空処理槽側面の断面図である。
FIG. 1 is a cross-sectional view of a side surface of a vacuum processing tank according to an embodiment used in a cleaning method according to the present invention.

【図2】この発明による一実施例の放電時間と電力及び
反応ガス圧力との関係をあらわす線図である。
FIG. 2 is a diagram showing the relationship between discharge time and electric power and reaction gas pressure according to an embodiment of the present invention.

【図3】この発明による一実施例の放電時間と電力及び
反応ガス流入量比との関係をあらわす線図である。
FIG. 3 is a diagram showing a relationship between a discharge time and an electric power and a reaction gas inflow ratio according to an embodiment of the present invention.

【図4】この発明による他の実施例の放電時間と電力及
び反応ガス流入量比との関係をあらわす線図である。
FIG. 4 is a diagram showing the relationship between the discharge time and power and reaction gas inflow ratio of another embodiment according to the present invention.

【図5】プラズマ分布の説明図である。FIG. 5 is an explanatory diagram of plasma distribution.

【符号の説明】[Explanation of symbols]

1 真空処理槽 2 容器 2−1 容器上部 2−2 容器下部 3 吸引部 4 電極 4a 導電体プレート 5 冷却槽 6 送電パイプ 7 冷媒送りパイプ 8 絶縁体 9 反応ガス供給パイプ 9−1 連結パイプ 9−2 円環状パイプ 10 円筒 15 加硫金型 16 支持搬送用定盤 17 ホイールコンベヤ 18 電気接点 19 ロッド 20 昇降手段 DESCRIPTION OF SYMBOLS 1 Vacuum processing tank 2 Container 2-1 Container upper part 2-2 Container lower part 3 Suction part 4 Electrode 4a Conductor plate 5 Cooling tank 6 Power transmission pipe 7 Refrigerant sending pipe 8 Insulator 9 Reactive gas supply pipe 9-1 Connection pipe 9- 2 circular pipe 10 cylinder 15 vulcanization mold 16 supporting and transporting surface plate 17 wheel conveyor 18 electrical contact point 19 rod 20 lifting means

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:24 (72)発明者 弘瀬 煌司 東京都小平市小川町1−445−1 ガーデ ンハイツ小平1−612Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location B29K 105: 24 (72) Inventor Koji Hirose 1-4445 Ogawamachi, Kodaira-shi, Tokyo Garden Heights Kodaira 1- 612

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 真空処理槽内の希薄反応ガスに生起させ
たプラズマを加硫金型に作用させ、エラストマの繰返し
加硫成形により金型表面に形成されたエラストマ残滓を
アッシングして除去するにあたり、 一方の電極を処理槽内に突出させ、突出した電極の周囲
に環状加硫金型を他方の電極として前者の電極から所定
距離隔てて位置させ、これら両電極に電力を印加して両
電極間に放電によるプラズマを生起させ、 反応ガスの流入量及び流出量の均衡の下で、放電開始か
ら両電極間のプラズマ分布が一様の間までは反応ガス圧
力を所定範囲内の低圧に保持し、プラズマ分布に不均一
領域が生じたときを含むその近傍時点で反応ガス圧力を
上記所定範囲内の低圧に比しより低圧に減圧させること
を特徴とする加硫金型の清浄方法。
1. When removing plasma by causing plasma generated in a dilute reaction gas in a vacuum treatment tank to act on a vulcanizing mold to ash and remove elastomer residue formed on the mold surface by repeated vulcanization molding of elastomer , One electrode is projected into the treatment tank, and the annular vulcanizing die is positioned around the projected electrode as the other electrode at a predetermined distance from the former electrode, and electric power is applied to both electrodes to apply both electrodes. Plasma is generated by the discharge in the meantime, and under the balance of the inflow and outflow of the reaction gas, the reaction gas pressure is kept at a low pressure within a predetermined range from the start of the discharge until the plasma distribution between both electrodes is uniform. The method for cleaning a vulcanization mold is characterized in that the pressure of the reaction gas is reduced to a lower pressure than the low pressure within the above-mentioned predetermined range at a time point in the vicinity of the time when the plasma distribution has a non-uniform region.
【請求項2】 プラズマ分布が一様の間の反応ガス圧力
を1.3〜10.0Torrの範囲内とし、プラズマ分
布に不均一領域が生じたときを含むその近傍時点で反応
ガス圧力を0.1〜1.3Torr未満の範囲内で減圧
する請求項1に記載した清浄方法。
2. The reaction gas pressure while the plasma distribution is uniform is within the range of 1.3 to 10.0 Torr, and the reaction gas pressure is 0 at a time point near the time when the nonuniform region is generated in the plasma distribution. The cleaning method according to claim 1, wherein the pressure is reduced within a range of 0.1 to less than 1.3 Torr.
【請求項3】 反応ガス圧力を0.1〜1.3Torr
未満の範囲内で減圧するとき、併せて放電電力の出力を
降下させる請求項2に記載した清浄方法。
3. The reaction gas pressure is 0.1 to 1.3 Torr.
The cleaning method according to claim 2, wherein when the pressure is reduced within the range of less than, the output of the discharge power is also reduced.
【請求項4】 反応ガス圧力を0.1〜1.3Torr
未満の範囲内で減圧するとき、併せて反応ガスの処理槽
内への流入量を減少させる請求項2又は3に記載した清
浄方法。
4. The reaction gas pressure is 0.1 to 1.3 Torr.
The cleaning method according to claim 2 or 3, wherein when the pressure is reduced within the range of less than, the amount of reaction gas flowing into the processing tank is also reduced.
【請求項5】 反応ガスが、酸素ガス及びハロゲン化物
ガスの少なくとも何れか一方のガスである請求項1〜4
の何れか一項に記載した清浄方法。
5. The reaction gas is at least one of oxygen gas and halide gas.
The cleaning method described in any one of 1.
【請求項6】 真空処理槽内の希薄反応ガスに生起させ
たプラズマを加硫金型に作用させ、エラストマの繰返し
加硫成形により金型表面に形成されたエラストマ残滓を
アッシングして除去するにあたり、 一方の電極を処理槽内に突出させ、突出した電極の周囲
に環状加硫金型を他方の電極として前者の電極から所定
距離隔てて位置させ、これら両電極に電力を印加して両
電極間に放電によるプラズマを生起させ、 反応ガス成分が酸素ガス及びハロゲン化物ガスからな
り、反応ガスの流入量及び流出量の均衡の下で反応ガス
圧力を所定範囲内の低圧に保持することを特徴とする加
硫金型の清浄方法。
6. When removing plasma by causing plasma generated in a dilute reaction gas in a vacuum treatment tank to act on a vulcanization mold and ashing the elastomer residue formed on the mold surface by repeated vulcanization molding of the elastomer. , One electrode is projected into the treatment tank, and the annular vulcanizing die is positioned around the projected electrode as the other electrode at a predetermined distance from the former electrode, and electric power is applied to both electrodes to apply both electrodes. Plasma is generated by electric discharge in the meantime, the reaction gas component consists of oxygen gas and halide gas, and the reaction gas pressure is maintained at a low pressure within a predetermined range under the balance of the reaction gas inflow amount and outflow amount. Cleaning method for vulcanizing mold.
【請求項7】 反応ガス圧力が1.3〜10.0Tor
rの範囲内である請求項6に記載した清浄方法。
7. The reaction gas pressure is 1.3 to 10.0 Tor.
The cleaning method according to claim 6, which is within the range of r.
【請求項8】 上記両電極間のプラズマ分布に不均一領
域が生じたときを含むその近傍時点で、反応ガスのうち
ハロゲン化物ガスが占める量を減じる請求項6又は7に
記載した清浄方法。
8. The cleaning method according to claim 6, wherein the amount of the halogenide gas in the reaction gas is reduced at a time point near the nonuniform region in the plasma distribution between the electrodes, including the time when the nonuniform region occurs.
【請求項9】 両電極間の放電開始から10〜30分経
過までの間の反応ガスは酸素ガスのみとし、その後は酸
素ガスにハロゲン化物ガスを加えた混合反応ガスとする
請求項6又は7に記載した清浄方法。
9. The reaction gas for 10 to 30 minutes after the start of discharge between both electrodes is only oxygen gas, and thereafter is a mixed reaction gas obtained by adding a halide gas to oxygen gas. The cleaning method described in.
【請求項10】 ハロゲン化物ガスが四フッ化炭素(C
4)ガスである請求項5又は請求項6〜9の何れか一項
に記載した清浄方法。
10. The halide gas is carbon tetrafluoride (C
The cleaning method according to claim 5 or any one of claims 6 to 9, which is F 4 ) gas.
【請求項11】 上記両電極間のプラズマ分布状態及び
両電極間の正常放電領域を除く残余領域での異常放電現
象をモニタリング手段により監視し、監視結果を反応ガ
ス圧力、反応ガス流入量、放電電力及び金型温度の各制
御系のうち少なくとも一の制御系にフィードバックし、
このフィードバックに基づき各制御系のうち少なくとも
一の制御系を制御可能とする請求項1〜10に記載した
清浄方法。
11. The plasma distribution state between both electrodes and the abnormal discharge phenomenon in the remaining region excluding the normal discharge region between both electrodes are monitored by a monitoring means, and the monitoring results are used as the reaction gas pressure, the reaction gas inflow amount, and the discharge. Feedback to at least one control system of each control system of electric power and mold temperature,
The cleaning method according to claim 1, wherein at least one of the control systems can be controlled based on this feedback.
JP2915895A 1995-02-17 1995-02-17 Cleaning of vulcanizing mold Pending JPH08216164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2915895A JPH08216164A (en) 1995-02-17 1995-02-17 Cleaning of vulcanizing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2915895A JPH08216164A (en) 1995-02-17 1995-02-17 Cleaning of vulcanizing mold

Publications (1)

Publication Number Publication Date
JPH08216164A true JPH08216164A (en) 1996-08-27

Family

ID=12268462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2915895A Pending JPH08216164A (en) 1995-02-17 1995-02-17 Cleaning of vulcanizing mold

Country Status (1)

Country Link
JP (1) JPH08216164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790113A3 (en) * 1996-02-15 1998-02-04 Bridgestone Corporation Method for cleaning vulcanization mold
KR100607704B1 (en) * 2005-03-31 2006-08-02 임덕구 Surface treatment unit of macromolecule forming products
JP2007038502A (en) * 2005-08-02 2007-02-15 Yokohama Rubber Co Ltd:The Cleaning method for mold for vulcanizing/molding tire and its apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790113A3 (en) * 1996-02-15 1998-02-04 Bridgestone Corporation Method for cleaning vulcanization mold
US5855728A (en) * 1996-02-15 1999-01-05 Bridgestone Corporation Method for cleaning vulcanization mold
KR100607704B1 (en) * 2005-03-31 2006-08-02 임덕구 Surface treatment unit of macromolecule forming products
JP2007038502A (en) * 2005-08-02 2007-02-15 Yokohama Rubber Co Ltd:The Cleaning method for mold for vulcanizing/molding tire and its apparatus
JP4724487B2 (en) * 2005-08-02 2011-07-13 横浜ゴム株式会社 Method and apparatus for cleaning tire vulcanization mold

Similar Documents

Publication Publication Date Title
USRE39969E1 (en) Processing system
EP0618017B1 (en) Method for cleaning curing mold
CN1692475A (en) Plasma etching chamber and plasma etching system using same
JPH0653193A (en) Removal of carbon-based polymer residue by using ozone useful for cleaning of plasma reaction container
JPH07153740A (en) Reduction of granular contamination during plasma treatment of semiconductor device
CN112582295A (en) Wafer processing equipment and cleaning method of wafer carrier
EP0740989B1 (en) Method of cleaning vulcanizing mold
CN210378981U (en) Wafer processing equipment
CN101232984A (en) Method and equipment for cleaning tire vulcanization die
JPH08216164A (en) Cleaning of vulcanizing mold
JPH08244041A (en) Washing of vulcanizing mold
JP2005005701A (en) Wafer edge etching device and method
JP3277094B2 (en) Cleaning method for vulcanizing mold
EP0790113A2 (en) Method for cleaning vulcanization mold
JPH1119945A (en) Method for cleaning vulcanization mold
JP2005324509A (en) Method for vulcanizing pneumatic tire
JPH11188742A (en) Method and apparatus for cleaning vulcanizing mold
JP3574256B2 (en) Cleaning method for vulcanizing mold
JP3623590B2 (en) Vulcanizing mold cleaning equipment
JP3277093B2 (en) Cleaning method for vulcanizing mold
JP3277095B2 (en) Cleaning method for vulcanizing mold
JPH08207056A (en) Plasma forming apparatus for washing vulcanizing mold and electrode thereof
JP3727705B2 (en) Microwave plasma generator
JPH0964021A (en) Plasma processing method
JPH11188741A (en) Method and apparatus for cleaning vulcanizing mold