JPH08244041A - Washing of vulcanizing mold - Google Patents

Washing of vulcanizing mold

Info

Publication number
JPH08244041A
JPH08244041A JP5248095A JP5248095A JPH08244041A JP H08244041 A JPH08244041 A JP H08244041A JP 5248095 A JP5248095 A JP 5248095A JP 5248095 A JP5248095 A JP 5248095A JP H08244041 A JPH08244041 A JP H08244041A
Authority
JP
Japan
Prior art keywords
gas
discharge
electrode
plasma
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5248095A
Other languages
Japanese (ja)
Inventor
Yukihiro Kusano
行弘 草野
Shinji Saito
伸二 斉藤
Masahito Yoshikawa
雅人 吉川
Yoshio Nohara
義夫 野原
Koji Hirose
煌司 弘瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP5248095A priority Critical patent/JPH08244041A/en
Publication of JPH08244041A publication Critical patent/JPH08244041A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • B29C2033/725Cleaning cleaning by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof

Abstract

PURPOSE: To realize uniform ashing within a short time without applying restriction to the mold surface of a vulcanizing mold by constituting the reaction gas allowed to flow in a vacuum treatment tank of oxygen gas and halide gas and holding the pressure of the gas to low pressure within a predetermined range under the equilibrium of the inflow and outflow amts. of the gas. CONSTITUTION: One electrode 4 is allowed to protrude into a vacuum treatment tank 1 and an annular vulcanizing mold 15 is positioned around the electrode 4 as other electrode so as to be separated from the electrode 4 by a predetermined distance and plasma is generated only in the region between the surface of the vulcanizing electrode 15 to be cleaned and the surface of the electrode 4 and an insulator 8 is provided at the position covering the discharge region between both electrodes to prevent the generation of abnormal discharge. The reaction gas flowing in the vacuum treatment tank is constituted of oxygen gas and halide gas and the pressure of the gas in set to 0.1-10.0Torr under the equilibrium of the inflow and outflow amts. of the gas. By this constitution, the plasma region optimized to a tire tread pattern forming surface brings about uniform ashing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ゴムタイヤ、防振ゴ
ムなどのゴム製品及びその他のエラストマとしてのプラ
スチック製品の加硫成形に際し、繰返し用いる金型の成
形表面、分割金型の場合は互いに隣接する合せ面も含め
た表面及び凹部や穴に不可避的に形成されるエラストマ
残滓を有利に除去するための加硫金型の清浄方法に関
し、特にプラズマの有効活用により一層短時間で均一な
高効率清浄を、かつより小電力量の使用及びより廉価な
反応ガスの主適用での低コスト清浄を可能とする加硫金
型の清浄方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a molding surface of a mold repeatedly used for vulcanization molding of rubber products such as rubber tires and vibration-proof rubber and other plastic products as elastomers, and in the case of split molds, they are adjacent to each other. The method for cleaning the vulcanization mold to effectively remove the elastomer residue that is inevitably formed on the surface including the mating surface and the recesses and holes. The present invention relates to a method for cleaning a vulcanizing mold, which enables cleaning and low-cost cleaning by using a smaller amount of electric power and mainly applying a cheaper reaction gas.

【0002】[0002]

【従来の技術】既に本出願人による特開平6−2858
68号公報にて詳述したように、エラストマ製品、とり
わけゴムタイヤ製品(以降単にタイヤと記す)や防振ゴ
ム製品などは要求性能を満たすため、天然ゴム、合成ゴ
ム又はこれらのブレンドゴムに架橋剤としての硫黄と補
強材としてのカーボンブラックとを配合するほか、加硫
促進剤や各種耐久性保持のための各種薬品を配合する必
要がある。
2. Description of the Related Art JP-A-6-2858 already filed by the present applicant.
As described in detail in Japanese Patent Publication No. 68, elastomer products, particularly rubber tire products (hereinafter simply referred to as tires), anti-vibration rubber products, and the like satisfy the required performance, and therefore natural rubber, synthetic rubber or blended rubbers thereof are cross-linked. In addition to blending sulfur as a component and carbon black as a reinforcing material, it is necessary to blend a vulcanization accelerator and various chemicals for maintaining various durability.

【0003】このようにして調合した未加硫ゴム組成物
を加硫成形する際、一般的に200℃に近い高温度で架
橋反応などの化学反応を生じさせるので、ゴム組成物は
流動性を増すばかりでなく一部はガス化し、その結果加
硫金型の成形表面はもとより、金型の合せ面の極く狭い
隙間や空気抜きのいわゆるベントホールなどの穴などに
もゴム組成物及びその化学反応生成物が加硫成形の都
度、微量ながら残滓物として強固に付着するのは不可避
である。この加硫成形を多数回にわたり繰返すことによ
り残滓物は看過し得ないほどの厚さで堆積する。このこ
とはゴム組成物に限らず他のエラストマについても大同
小異で同様に生じる。
When the unvulcanized rubber composition thus prepared is vulcanized and molded, a chemical reaction such as a crosslinking reaction generally occurs at a high temperature close to 200 ° C., so that the rubber composition has fluidity. Not only does it increase, but it also partially gasifies, and as a result, not only the molding surface of the vulcanizing mold, but also the extremely narrow gaps in the mating surface of the mold and holes such as so-called vent holes for venting the rubber composition and its chemical composition. It is unavoidable that the reaction product adheres strongly as a residue, although it is a small amount, each time it is vulcanized and molded. By repeating this vulcanization molding a number of times, the residue is deposited in a thickness that cannot be overlooked. This applies not only to the rubber composition but also to other elastomers in the same manner and in different sizes.

【0004】加硫金型に強固に付着堆積した厚い加硫残
滓はタイヤの外観を損ねるのみに止まらず、タイヤ全体
の優れた品質保持に対し悪影響を及ぼす。よって加硫成
形を所定回数だけ実施した加硫金型を新品同様に清浄す
る作業が必要であり、この作業法としてプラスチックビ
ーズやグラスビーズなどの粒体を高圧ガスにより吹き当
てるショットブラスト清浄法、又は酸、アルカリ、アミ
ン系などの溶液中に浸す液体清浄法が主流を占めていた
ところ、これらの清浄法による各種の不利な点を大幅に
改善するため、本出願人は上記特開平6−285868
号公報に記載したプラズマによる加硫金型清浄方法を提
案し、顕著に優れた成果を得ている。
The thick vulcanization residue firmly adhered and deposited on the vulcanization mold not only impairs the appearance of the tire, but also adversely affects the excellent quality maintenance of the entire tire. Therefore, it is necessary to clean the vulcanization mold that has been vulcanized and molded a predetermined number of times as if it was a new product.As this work method, a shot blast cleaning method in which granules such as plastic beads and glass beads are sprayed with high pressure gas, Alternatively, a liquid cleaning method of immersing in a solution of acid, alkali, amine or the like has predominantly been used. Since the various disadvantages of these cleaning methods are remarkably improved, the applicant of the present invention has described the above-mentioned JP-A-6- 285868
The method for cleaning a vulcanization mold by plasma described in Japanese Patent Publication has been proposed, and a remarkably excellent result has been obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしこの成果を突き
詰めてみると、下記する諸点につきさらに改善を施す余
地があることを見出した。すなわちその第一点は、加硫
金型の清浄面に対しプラズマ領域が過大であり、その結
果大電力と余分な量の反応ガスを必要とし、処理コスト
が高価につくことである。
However, upon examining this result, it was found that there is room for further improvement in the following points. That is, the first point is that the plasma region is excessively large with respect to the clean surface of the vulcanization mold, and as a result, a large amount of electric power and an excessive amount of reaction gas are required, resulting in high processing cost.

【0006】その第二点は、清浄を必要とする加硫金型
の型形成面に、特殊なタイヤ種は別としても一般にはタ
イヤに対する要求特性の十分な発揮に必要不可欠な太
溝、細溝、スリットなどをトレッド部に形成するための
多数個のリブやサイプ(細条片)などの突起物を設けて
いて、プラズマがこれらの突起物に遮られて清浄面対象
全領域にわたる加硫残滓の均一なアッシング(灰化)が
損なわれ勝ちであることである。
The second point is that, on the mold forming surface of the vulcanizing mold that needs to be cleaned, apart from special tire types, generally, the large grooves and fine grooves that are indispensable for sufficiently exhibiting the required characteristics of the tire are required. A large number of ribs and protrusions such as sipes (strips) for forming grooves and slits on the tread portion are provided, and the plasma is blocked by these protrusions and vulcanized over the entire area of the clean surface. This is because the uniform ashing (ashing) of the residue is impaired and tends to occur.

【0007】その第三点は、上記第二点に関連して多く
の処理時間を要するため清浄能率が低下すること、そし
て第四点は、清浄対象外の表面までプラズマにさらす結
果となるため、この表面部分に劣化を生じさせ、また損
傷を与えることである。
The third point is that a lot of processing time is required in connection with the second point, so that the cleaning efficiency is lowered, and the fourth point is that the surface not to be cleaned is exposed to plasma. , Is to cause deterioration and damage to this surface portion.

【0008】従ってこの発明の目的は上述した不利な諸
点の改善を目指すと共に他に不利な異常現象を新たに伴
うことなく、加硫金型の型形成面に制約を加えずに低コ
ストで、かつ短い処理時間での均一なアッシングを有利
に実現することが可能な加硫金型の清浄方法を提供する
ことにある。
Therefore, the object of the present invention is to improve the above-mentioned disadvantages and to bring about another disadvantageous abnormal phenomenon, and at a low cost without restricting the die-forming surface of the vulcanizing die. Another object of the present invention is to provide a method for cleaning a vulcanization mold, which can advantageously realize uniform ashing in a short processing time.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明による加硫金型の清浄方法は、真空処理槽
内の希薄反応ガスに生起させたプラズマを加硫金型に作
用させ、エラストマの繰返し加硫成形により金型表面に
形成されたエラストマ残滓をアッシングして除去するに
あたり、一方の電極を処理槽内に突出させ、突出した電
極の周囲に環状加硫金型を他方の電極として前者の電極
から所定距離隔てて位置させ、これら両電極に電力を印
加して両電極間に放電によるプラズマを生起させ、上記
両電極間の放電領域を覆う位置に絶縁体を設け、これに
より該放電領域と電力供給の電圧印加側部分における放
電との間の放電結合現象を阻止し、真空処理槽内に流入
させるガスのうち反応ガスを酸素ガス及びハロゲン化物
ガスとし、ガスの流入量及び流出量の均衡の下でガス圧
力を所定範囲内の低圧に保持することを特徴とする。
In order to achieve the above object, a method for cleaning a vulcanization mold according to the present invention is to apply a plasma generated in a dilute reaction gas in a vacuum processing tank to the vulcanization mold, When removing the elastomer residue formed on the mold surface by repeated vulcanization molding of the elastomer by ashing, one electrode is projected into the processing tank, and the annular vulcanization mold is surrounded by the other electrode. As a result, the electrodes are positioned at a predetermined distance from the former electrodes, electric power is applied to these electrodes to generate plasma due to discharge between the electrodes, and an insulator is provided at a position covering the discharge region between the electrodes, whereby Oxygen gas and halide gas are used as reaction gases among the gases to be introduced into the vacuum treatment tank to prevent the discharge coupling phenomenon between the discharge region and the discharge in the voltage application side portion of the power supply, and the gas flow Characterized by holding the gas pressure under equilibrium amounts and runoff into the low pressure within a predetermined range.

【0010】この発明を実施するにあたり、反応ガス圧
力が0.1〜10.0Torrの範囲内であること、上
記絶縁体がアルミナを主成分とするセラミックスである
こと、酸素ガス及びハロゲン化物ガスとの反応ガスに、
アルゴンガス、ヘリウムガス及び窒素ガスのうち少なく
とも一のガスを希釈ガスとして添加すること、上記両電
極間のプラズマ分布に不均一領域が生じたときを含むそ
の近傍時点で、酸素ガス及びハロゲン化物ガスとの反応
ガスに、アルゴンガス、ヘリウムガス及び窒素ガスのう
ち少なくとも一のガスを希釈ガスとして添加すること、
ハロゲン化物ガスが四フッ化炭素(CF4)ガスであるこ
と、そして上記両電極間のプラズマ分布状態及び上記異
常放電現象をモニタリング手段により監視し、監視結果
を反応ガス圧力、反応ガス流入量、放電電力及び金型温
度の各制御系のうち少なくとも一の制御系にフィードバ
ックし、このフィードバックに基づき各制御系のうち少
なくとも一の制御系を制御可能とするのが望ましい。
In carrying out the present invention, the reaction gas pressure is in the range of 0.1 to 10.0 Torr, the insulator is a ceramic containing alumina as the main component, and oxygen gas and halide gas are used. To the reaction gas of
At least one of argon gas, helium gas, and nitrogen gas is added as a diluent gas, and oxygen gas and halide gas are added at the vicinity of the time including a nonuniform region in the plasma distribution between the electrodes. To the reaction gas with, adding at least one gas of argon gas, helium gas and nitrogen gas as a diluent gas,
The halide gas is a carbon tetrafluoride (CF 4 ) gas, and the plasma distribution state between the electrodes and the abnormal discharge phenomenon are monitored by monitoring means, and the monitoring results are the reaction gas pressure, the reaction gas inflow amount, It is desirable to feed back to at least one of the control systems of the discharge power and the mold temperature, and to control at least one of the control systems based on this feedback.

【0011】[0011]

【作用】一方の電極を処理槽内に突出させると共に、こ
の電極の周囲に環状加硫金型を他方の電極として前者電
極から所定距離隔てて位置させることにより、まず、清
浄を必要とする加硫金型の面と電極面との間の領域にの
みプラズマを生起させればよく、その結果プラズマ領域
を必要最小限度で最適化することができ、よって余分な
電力及び余分な反応ガス使用量を低減させ、処理コスト
を引き下げることが可能となる。
Operation: One electrode is projected into the processing tank, and an annular vulcanizing die is positioned around this electrode as the other electrode at a predetermined distance from the former electrode, so that cleaning is required first. It is only necessary to generate the plasma in the area between the surface of the metal mold and the electrode surface, and as a result, the plasma area can be optimized to the minimum required, and therefore, the extra power and the extra reaction gas consumption are required. And the processing cost can be reduced.

【0012】次に、プラズマ領域の最適化は低コストで
処理時間の短縮を可能とする外、清浄対象外の表面に対
し劣化をもたらす不具合が回避できる利点を有する。ま
た相当に複雑で多様な形態をもつタイヤトレッド模様形
成面に対し最適化したプラズマ領域は均一なアッシング
をもたらす。
Next, the optimization of the plasma region has the advantages that the processing time can be shortened at a low cost, and that a defect that deteriorates the surface not to be cleaned can be avoided. Also, the optimized plasma region for the tire tread surface having a fairly complex and diverse morphology provides uniform ashing.

【0013】また清浄処理当初から処理終了までの間、
両電極間のプラズマ密度分布(以下プラズマ分布と略記
する)が必ずしも均一であるとは言えない。このありさ
まを、例えば図5にプラズマ分布状態を簡略図解した両
電極4、15の平面図に示すように、環状加硫金型15
の内周面の一部に好適強さをもつプラズマ領域(斜線を
施した部分)に比し弱いプラズマ領域、もしくは非プラ
ズマ領域、すなわち非放電領域(両者とも白抜き部分)
が処理途中で発生し勝ちである。図5に示す例の外に、
両電極間の上下方向に弱いプラズマ領域もしくは非プラ
ズマ領域が形成されることもしばしばである。
From the beginning of the cleaning process to the end of the process,
The plasma density distribution between both electrodes (hereinafter abbreviated as plasma distribution) cannot always be said to be uniform. This state is shown, for example, in a plan view of both electrodes 4 and 15 in which the plasma distribution state is schematically illustrated in FIG.
Weaker plasma area than non-plasma area, which is weaker than plasma area (hatched area), which has suitable strength on a part of inner surface of
Is likely to occur during processing. In addition to the example shown in FIG.
A weak plasma region or non-plasma region is often formed in the vertical direction between both electrodes.

【0014】上述した不均一プラズマ分布の下でアッシ
ング処理を継続すると、処理効率の低下、処理不良など
の不具合を生じる他に、両電極間にスパークが発生して
加硫金型や中央電極が損傷を受ける不利がもたらされ
る。
If the ashing process is continued under the above-mentioned non-uniform plasma distribution, in addition to problems such as a decrease in process efficiency and process failure, a spark is generated between the two electrodes and the vulcanization mold and the center electrode are removed. There is a disadvantage of being damaged.

【0015】そこで不均一プラズマ分布の発生原因を追
求したところ、(1)中央電極と加硫金型との間の半径
方向距離が周回りで見て一定又は一様ではないこと及び
上記半径方向と直交する向き(上下方向)で加硫金型内
側断面形状が湾曲しているため上下方向での中央電極と
加硫金型との間の距離に差が生じること、(2)特に割
りモールドの場合、放電による加硫金型の温度上昇度合
いが各セグメント毎に異なり、温度分布が一様ではない
こと、(3)プラズマ中に不可避的に生じる負イオン、
例えばF- 、O- が局所的に滞留すること(特にF-
プラズマ中での滞留時間が長く、これが局所的に電子の
雲の状態を呈する部分が形成され勝ちで、この部分が両
電極間の放電を遮断するように作用する)、(4)中央
電極が帯電するか又は加硫金型内側面のエラストマ残滓
(これは絶縁体)が帯電することにあることを究明し
た。
Then, when the cause of the non-uniform plasma distribution was sought, (1) the radial distance between the central electrode and the vulcanization mold was not constant or uniform when viewed around the circumference, and Since the inner shape of the vulcanization mold is curved in a direction orthogonal to (vertical direction), there is a difference in the distance between the center electrode and the vulcanization mold in the vertical direction. In the case of, the degree of temperature rise of the vulcanization mold due to discharge differs for each segment, and the temperature distribution is not uniform, (3) negative ions inevitably generated in plasma,
For example, local retention of F and O (especially F is long residence time in the plasma, and this is likely to form a part that locally exhibits the state of an electron cloud, and this part is likely to be formed on both electrodes. (4) the central electrode is charged, or the elastomer residue (which is an insulator) on the inner surface of the vulcanization mold is charged.

【0016】上記の原因除去のため、(a)供給電力を
高めること、(b)処理槽内部の真空度を高める、すな
わち反応ガスの流入量を減少させて反応ガスの圧力を下
げること、(c)そして放電を促し易い不活性ガスを添
加することが有効である。なかでも反応ガス圧力のより
一層の低圧化は、ガス分子の平均自由工程が長くなり放
電が広がりやすくなるため効果的手段と言える。しかし
これらのプラズマ分布均一化手段を安易に適用すると下
記するような異常放電現象が生じ勝ちであり、好ましく
ない。
In order to eliminate the above causes, (a) increase the power supply, (b) increase the degree of vacuum inside the processing tank, that is, decrease the inflow amount of the reaction gas and lower the pressure of the reaction gas. c) Then, it is effective to add an inert gas that facilitates discharge. Above all, further lowering the pressure of the reaction gas can be said to be an effective means because the mean free path of gas molecules becomes longer and the discharge tends to spread. However, if these plasma distribution equalizing means are easily applied, the abnormal discharge phenomenon as described below tends to occur, which is not preferable.

【0017】図6、図7に真空処理槽1′、1″の断面
を例示し、その内部に生じる異常放電現象のありさまを
各図に基づき説明する。図6、7において、真空処理槽
1′、1″の容器2内部に突出させて収容した電極4の
周囲に加硫金型15を位置させている。加硫金型15は
定盤16上面に据え、これらをホイールコンベヤ17が
担持する。なお真空吸引部3は容器2の下方に位置す
る。
6 and 7 exemplify the cross sections of the vacuum processing tanks 1'and 1 ", and the state of the abnormal discharge phenomenon occurring inside the vacuum processing tanks will be described with reference to the respective drawings. A vulcanization mold 15 is positioned around the electrode 4 which is housed by projecting into the container 1 ', 1'. The vulcanization mold 15 is set on the upper surface of the surface plate 16, and these are carried by the wheel conveyor 17. The vacuum suction unit 3 is located below the container 2.

【0018】図6に示す真空処理槽1′は加硫金型15
を接地側とし、電圧印加側としての電極4に送電パイプ
6を介し電力を供給する。このとき上記手段によりプラ
ズマ分布を均一にすると、まず絶縁体8′及び送電パイ
プ6を収容する金属製パイプ10′の間に配置する接合
用金属スペーサ11′と絶縁体8′上部との間に高密度
の電気力線が集中して不所望の放電現象があらわれ、次
いでこの放電が電極4と加硫金型15との間のプラズマ
生起用放電領域と結合し、図示の格子模様で示すような
異常放電現象にまで進展することを確かめた。
The vacuum processing tank 1'shown in FIG.
Is connected to the ground side, and electric power is supplied to the electrode 4 on the voltage applying side through the power transmission pipe 6. At this time, if the plasma distribution is made uniform by the above means, first, between the metal spacer 11 'for joining which is arranged between the insulator 8'and the metal pipe 10' for accommodating the power transmission pipe 6 and the upper portion of the insulator 8 '. An undesired discharge phenomenon appears due to the concentration of high-density electric lines of force, and this discharge is then combined with the plasma-generating discharge region between the electrode 4 and the vulcanization mold 15, as shown by the lattice pattern in the figure. It was confirmed that the abnormal discharge phenomenon progressed.

【0019】この異常放電現象の下では、電極4と加硫
金型15の内側面との間の所望放電電力が大幅に低下
し、従って所望する領域におけるプラズマ密度が著しく
減少してアッシング処理能力の低下がもたらされるのは
不可避である。加えてこのことは放電を望まない加硫金
型15部分まで放電領域に含め、その結果この部分に劣
化や損傷が生じる不利をもたらす。
Under this abnormal discharge phenomenon, the desired discharge power between the electrode 4 and the inner surface of the vulcanization mold 15 is significantly reduced, and therefore the plasma density in the desired region is significantly reduced, and the ashing treatment capability is increased. It is inevitable that a decrease in In addition, this has the disadvantage that even the part of the vulcanization mold 15 where the discharge is not desired is included in the discharge area, which results in deterioration or damage to this part.

【0020】図7に示す真空処理槽1″は、電極4を接
地側とし、電圧印加側としての加硫金型15に送電パイ
プ6′を介し電力を供給する。この場合も先に示した例
と同様に図示の格子模様で示す位置に異常放電現象が生
じ、上記同様な不利をもたらす。
In the vacuum processing tank 1 "shown in Fig. 7, the electrode 4 is on the ground side, and power is supplied to the vulcanizing mold 15 on the voltage applying side through the power transmission pipe 6 '. This case is also shown above. Similar to the example, the abnormal discharge phenomenon occurs at the position shown by the lattice pattern in the figure, which causes the same disadvantages as described above.

【0021】しかし両電極、すなわち電極4及び加硫金
型15間の放電領域を覆う位置に絶縁体を設けることに
より、先に述べた(a)〜(c)項のプラズマ分布均一
化手段を適用した際に図6、7で説明したような異常放
電を阻止することができる。その理由は下記の通りであ
る。
However, by providing an insulator at a position covering both electrodes, that is, the discharge region between the electrode 4 and the vulcanization mold 15, the above-mentioned means for uniformizing the plasma distribution of the items (a) to (c) can be provided. When applied, it is possible to prevent abnormal discharge as described with reference to FIGS. The reason is as follows.

【0022】まず両電極に電力を供給するための電圧印
加側及び接地側が比較的接近している部分で生じる不所
望放電が異常放電のきっかけとなることは先に述べたと
ころであるが、これは所望するプラズマ密度を得るため
高電力、すなわち高電圧、例えば0.2〜20kVを印
加する必要上、上記接近部分間の電場が強まり、絶縁破
壊電圧、すなわち放電開始電圧に達するからであり、こ
のことは真空状態ともいうべき低圧反応ガス雰囲気中で
は止むを得ない。この不所望放電位置が両電極4、15
間の所望放電領域と比較的近い場合、図6に示す例のよ
うに絶縁体8′上部から接合用金属スペーサを経て金属
製パイプ10′の接合フランジに至る間の場合、この不
所望放電が両電極間の所望放電領域と結合する傾向を呈
する。
First, it has been described above that an undesired discharge that occurs at a portion where the voltage application side for supplying electric power to both electrodes and the ground side are relatively close to each other triggers the abnormal discharge. This is because in order to obtain a desired plasma density, it is necessary to apply high power, that is, high voltage, for example, 0.2 to 20 kV, and the electric field between the approaching portions is strengthened to reach the dielectric breakdown voltage, that is, the discharge start voltage. This is unavoidable in a low pressure reaction gas atmosphere, which should be called a vacuum state. This undesired discharge position is on both electrodes 4, 15
When the discharge area is relatively close to the desired discharge area between them, as in the example shown in FIG. 6, in the case where it reaches from the upper portion of the insulator 8'through the joining metal spacer to the joining flange of the metal pipe 10 ', this undesired discharge is generated. It tends to couple with the desired discharge area between both electrodes.

【0023】よって異常放電阻止のため上記の絶縁破壊
電圧もしくは放電開始電圧を高めることも必要ではある
がこれだけで万全とは言い切れず、従ってたとえ不所望
放電が生じたとしても、両電極間の放電領域を覆う位置
に絶縁体を設けることにより、望ましくは該放電領域の
上下側位置のうち少なくとも電圧印加側位置に放電領域
を覆う絶縁体を設けることにより、放電領域に面する絶
縁体表面がプラズマの作用により帯電するため、両電極
間の放電領域に電圧印加側部分の不所望放電が結合する
ことはなく、異常放電現象の発生を完全に阻止すること
が可能となる。その結果プラズマ領域が上方又は下方に
拡散する現象もまた阻止できる。
Therefore, in order to prevent abnormal discharge, it is necessary to increase the above-mentioned dielectric breakdown voltage or discharge start voltage, but this alone cannot be said to be perfect. Therefore, even if an undesired discharge occurs, it is possible to prevent the discharge between both electrodes. By providing an insulator at a position that covers the discharge region, preferably by providing an insulator that covers the discharge region at least at the voltage application side position of the upper and lower sides of the discharge region, the insulator surface facing the discharge region is Since it is charged by the action of plasma, the undesired discharge in the voltage application side portion is not coupled to the discharge region between both electrodes, and it becomes possible to completely prevent the occurrence of the abnormal discharge phenomenon. As a result, the phenomenon that the plasma region diffuses upward or downward can also be prevented.

【0024】上述した通りの手段を適用することにより
異常放電のうれいなくプラズマ分布の均一化を図ること
が可能となる。すなわち真空処理槽内に流入させるガス
のうち反応ガスを酸素ガス及びハロゲン化物ガスとし、
ガスの流入量及び流出量の均衡下でガス圧力を所定範囲
内の低圧に保持することにより、先に(a)〜(c)項
で述べたように、供給電力を高め、反応ガスの圧力を下
げ、そして放電を促し易い不活性ガスを添加することが
可能となり、その結果放電開始当初から終了までの間に
わたり両電極間に均一なプラズマを生起させることがで
き、均一な清浄と処理時間の短縮及びコスト低減とを実
現することが可能となる。
By applying the means as described above, it becomes possible to make the plasma distribution uniform without the occurrence of abnormal discharge. That is, the reaction gas among the gases flowing into the vacuum processing tank is oxygen gas and halide gas,
By maintaining the gas pressure at a low pressure within a predetermined range under the equilibrium of the gas inflow amount and the gas outflow amount, as described above in (a) to (c), the power supply is increased and the pressure of the reaction gas is increased. And it is possible to add an inert gas that facilitates discharge. As a result, a uniform plasma can be generated between both electrodes from the beginning to the end of discharge, resulting in uniform cleaning and treatment time. It is possible to realize reduction of cost and cost.

【0025】ここに酸素ガス及びハロゲン化物ガスはプ
ラズマ中で負イオンになり易く、特に後者ガスのイオン
はプラズマ中の滞在寿命が長いため局所的に上記の負イ
オンガ滞留し、放電に必要な電子の供給を妨げ、その結
果プラズマ分布に不均一領域を形成するところ、酸素ガ
ス及びハロゲン化物ガスを低圧に保持することによりこ
れら負イオンの発生量を抑制して放電遮断作用を緩和す
ることが可能となり、均一なプラズマ処理が得られるこ
とになる。
Oxygen gas and halide gas are apt to become negative ions in the plasma, and in particular, the ions of the latter gas have a long staying life in the plasma, so that the negative ions are locally retained in the plasma, and electrons required for discharge are discharged. Supply is interrupted, and as a result, a non-uniform region is formed in the plasma distribution. By keeping the oxygen gas and the halide gas at low pressure, it is possible to suppress the generation amount of these negative ions and mitigate the discharge interruption effect. Therefore, uniform plasma processing can be obtained.

【0026】反応ガス圧力が0.1〜10.0Torr
の範囲内であれば上記効果をより一層高めることに寄与
する。絶縁体がアルミナを主成分とするセラミックスで
あれば異常放電発生阻止に有効であり、その他テフロン
などの絶縁性樹脂の適用も効果的である。
The reaction gas pressure is 0.1 to 10.0 Torr.
Within the range, it contributes to further enhancing the above effect. If the insulator is a ceramic containing alumina as a main component, it is effective for preventing the occurrence of abnormal discharge, and it is also effective to apply an insulating resin such as Teflon.

【0027】酸素ガス及びハロゲン化物ガスの反応ガス
に、アルゴン(Ar)ガス、ヘリウム(He)ガス及び
窒素(N2)ガスのうち少なくとも一のガスを、最適には
Arガスを希釈ガスとして添加することにより、両電極
間の放電をより一層円滑ならしめて均一なプラズマ分布
を得ることに寄与させることができる。またプラズマ分
布に不均一領域が生じるような兆しが見えたとき、又は
生じた以後にArガス、Heガス及びN2 ガスのうち少
なくとも一のガスを、最適にはArガスを希釈ガスとし
て添加すれば不均一問題の解消と共に高価なArガスの
使用量を削減できてコスト低減に役立つ。
At least one of argon (Ar) gas, helium (He) gas, and nitrogen (N 2 ) gas, optimally Ar gas as a diluent gas, is added to the reaction gas of oxygen gas and halide gas. By doing so, it is possible to further smooth the discharge between both electrodes and contribute to obtaining a uniform plasma distribution. Also, when a sign that a non-uniform region is generated in the plasma distribution is observed or after that, at least one gas of Ar gas, He gas and N 2 gas, optimally Ar gas as a diluent gas, is added. For example, the problem of non-uniformity can be solved and the amount of expensive Ar gas used can be reduced, which is useful for cost reduction.

【0028】またハロゲン化物ガスを四フッ化ガス(C
4)とすれば高効率なアッシングに寄与する。なおハロ
ゲン化物ガスとしてF(フッ素)、Cl(塩素)、Br
(臭素)、I(ヨウ素)などを化合物中に有するあらゆ
るガスを適用することができる。さらにこれらの化合物
は真空処理槽内にガスとして供給できればよいので、標
準状態(25℃、1atm)で必ずしもガスである必要
はなく、例えば液状状態であってもよい。また特にフロ
ンやNF3 、SF6 が好適に用いられ、なかでもCF4
が有効である。
Further, the halide gas is replaced by tetrafluoride gas (C
F 4 ) contributes to highly efficient ashing. As a halide gas, F (fluorine), Cl (chlorine), Br
Any gas having (bromine), I (iodine), etc. in the compound can be applied. Further, since it is sufficient that these compounds can be supplied as a gas into the vacuum processing tank, they do not necessarily have to be gases in a standard state (25 ° C., 1 atm), and may be in a liquid state, for example. Freon, NF 3 , and SF 6 are particularly preferably used, and among them CF 4
Is valid.

【0029】さらにプラズマ分布状態及び異常放電現象
をモニタリング手段により監視し、監視結果を反応ガス
圧力、反応ガス流入量、放電電力及び加硫金型温度の各
制御系のうち少なくとも一の制御系にフィードバックし
て制御可能とすることは、上に述べた諸作用効果を有利
に的確に実現することに貢献する。
Further, the plasma distribution state and the abnormal discharge phenomenon are monitored by the monitoring means, and the monitoring result is displayed in at least one of the control systems of the reaction gas pressure, the reaction gas inflow amount, the discharge power and the vulcanization mold temperature. The feedback controllability contributes to the advantageous and appropriate realization of the above-mentioned various operational effects.

【0030】[0030]

【実施例】この発明による実施例を図1〜図4に基づき
詳細に以下説明する。図1は加硫金型の清浄に使用する
真空処理槽1側面の要部断面を、簡略図解した加硫金型
の断面と合せ示す説明図であり、この真空処理槽1を後
述する実施例1〜3に適用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described in detail below with reference to FIGS. FIG. 1 is an explanatory view showing a cross section of a main part of a side surface of a vacuum processing tank 1 used for cleaning a vulcanizing mold together with a simplified cross section of a vulcanizing mold. Applies to 1-3.

【0031】図1において、真空処理槽1は下方位置に
て相互に上下に分離可能でかつシール可能な容器上部2
−1と容器下部2−2とからなる容器2を備え、容器下
部2−2に図示しない真空ポンプに接続させる吸引部3
を具備する。加硫金型の清浄作業を開始するに先立ちこ
の真空ポンプを稼働させて容器2内部の空気圧を、例え
ば10-1〜10-5Torrのいわゆる中真空〜高真空と
する。なお図示例の真空処理槽1は容器下部2−2側
を、例えば複数本の支柱2−2a(図では1本のみを示
す)により床面Fsなどに固定し、容器上部2−1側を
容器下部2−2に対し上方に向け着脱自在に設ける。
In FIG. 1, a vacuum processing tank 1 is a container upper part 2 which is vertically separable and sealable at a lower position.
-1 and a container lower part 2-2, and a suction part 3 that is connected to a vacuum pump (not shown) in the container lower part 2-2.
It is equipped with. Prior to starting the cleaning work of the vulcanization mold, the vacuum pump is operated to adjust the air pressure inside the container 2 to a so-called medium vacuum to high vacuum of, for example, 10 -1 to 10 -5 Torr. In the vacuum processing tank 1 of the illustrated example, the container lower part 2-2 side is fixed to the floor surface Fs or the like by a plurality of columns 2-2a (only one is shown in the figure), and the container upper part 2-1 side is fixed. The container lower part 2-2 is detachably provided upward.

【0032】一方側の電極4を図1に示すように上方か
ら吊下げ状態で容器2内に突出させて配置する。この配
置位置は図の上下方向に移動可能とするか、又は容器上
部2−1に固定するか何れでも可とする。図示例の電極
4は外周が円筒状をなし、円筒の中程を導電体プレート
(円板)4aで電気的、機械的に接合するタイプであ
る。なおこの種の電極4の外側形状を円筒に限定する必
要はなく、例えば5角形以上の多角形とすることを可と
し、また放電効率を高めるため多数個のフィンを電極外
周に沿って横並びに配置するか、又は縦並びに配置する
ことができる。
As shown in FIG. 1, the electrode 4 on one side is arranged so as to project from the upper side into the container 2 in a suspended state. This arrangement position may be movable in the vertical direction in the figure or may be fixed to the container upper part 2-1. The electrode 4 in the illustrated example has a cylindrical outer periphery, and is of a type in which the middle of the cylinder is electrically and mechanically joined by a conductor plate (disc) 4a. It is not necessary to limit the outer shape of the electrode 4 of this kind to a cylinder. For example, it is possible to form a polygon of pentagon or more, and in order to improve the discharge efficiency, a large number of fins are arranged side by side along the outer circumference of the electrode. They can be arranged or arranged vertically.

【0033】さらに電極4を拡径及び縮径自在に構成す
るすることができ、この場合は後述する加硫金型15の
内側と電極4の外側との間の半径方向(水平方向)距離
が調整自在となり、最適距離の選定や内径が大幅に異な
る各種加硫金型の適用に役立つ利点を有する。
Further, the diameter of the electrode 4 can be freely expanded and reduced, and in this case, the radial (horizontal) distance between the inside of the vulcanization mold 15 and the outside of the electrode 4 which will be described later is reduced. It is adjustable and has the advantage of being useful for selecting the optimum distance and applying various vulcanization dies with greatly different inner diameters.

【0034】導電体プレート4aを介し電極4を導電体
の冷却槽5と電気的かつ機械的に接合し、冷却槽5をや
や太径の送電パイプ6(例えば銅製パイプ)と電気的か
つ機械的に接合する。勿論導電体プレート4aと冷却槽
5とは相互にシールして外部に冷却媒体が流出するのを
防止する。送電パイプ6は容器2の中央に配置し、容器
上部2−1の上方で絶縁固着する。なおこの例では容器
2を接地側とし、送電パイプ6を電圧印加側とした。
The electrode 4 is electrically and mechanically joined to the conductor cooling tank 5 through the conductor plate 4a, and the cooling tank 5 is electrically and mechanically connected to the slightly large diameter transmission pipe 6 (for example, a copper pipe). To join. Of course, the conductor plate 4a and the cooling tank 5 are mutually sealed to prevent the cooling medium from flowing out. The power transmission pipe 6 is arranged in the center of the container 2 and is fixed by insulation above the container upper portion 2-1. In this example, the container 2 is on the ground side and the power transmission pipe 6 is on the voltage application side.

【0035】送電パイプ6の内部に、電極4を冷却する
ための液体(例えば約20℃の冷却水や同様冷却油)又
は気体などの冷却媒体を冷却槽5に供給するより細径の
冷却用パイプ7を収容する。パイプ7は冷却槽5内に開
口して冷却媒体を放出し、放出された冷却媒体はその役
を果たした後、送電パイプ6と冷却用パイプ7との間を
通り、図の上方に向け移動し、排出される。なお送電パ
イプ6と冷却用パイプ7との間は大気圧とほぼ同等の内
圧に保つ。
Inside the power transmission pipe 6, a cooling medium such as a liquid for cooling the electrode 4 (for example, cooling water at about 20 ° C. or similar cooling oil) or a gas is supplied to the cooling tank 5 for cooling with a smaller diameter. The pipe 7 is accommodated. The pipe 7 opens into the cooling tank 5 to release the cooling medium, and the released cooling medium plays its role, and then passes between the power transmission pipe 6 and the cooling pipe 7 and moves upward in the drawing. And then discharged. The internal pressure between the power transmission pipe 6 and the cooling pipe 7 is kept substantially equal to the atmospheric pressure.

【0036】かようにして電極4を容器2に縦軸中央位
置で中央電極として固定支持すると共に冷却槽5及び送
電パイプ6を介して電極4に電力を供給し、併せて動作
時における電極4の過熱を抑制して電極4を適当な温度
に保持する。なお電力供給用電源は図示を省略したがこ
の例では周波数13.56MHzのラジオ波と呼ばれる
高周波電力を送電する。なお電力供給は直流、交流のい
ずれも可能であり、周波数により放電形式を適宜選ぶこ
とができる。交流放電としては上述の高周波の他に、低
周波又はマイクロ波放電などがよく知られている。
In this way, the electrode 4 is fixedly supported on the container 2 as a central electrode at the central position of the vertical axis, and electric power is supplied to the electrode 4 through the cooling tank 5 and the power transmission pipe 6, and at the same time, the electrode 4 is operated. The overheating of the electrode 4 is suppressed and the electrode 4 is maintained at an appropriate temperature. Although not shown in the figure, the power supply power source transmits high-frequency power called radio waves having a frequency of 13.56 MHz in this example. The power supply can be direct current or alternating current, and the discharge type can be appropriately selected depending on the frequency. In addition to the above-mentioned high frequency, low frequency or microwave discharge is well known as the AC discharge.

【0037】縦長の絶縁体、例えばアルミナのようなセ
ラミックスの絶縁体8をその下部にて冷却槽5の上部に
固着する。絶縁体8は中空部を有し、この中空部は送電
パイプ6と反応ガス供給パイプ9とを収容するスペース
を有する。さらに絶縁体8の上部と、絶縁体8と同様上
方に垂直に延びる金属、例えばステンレス鋼の円筒10
のフランジ部とを、十分な厚さをもつ金属製の連結用ス
ペーサ11を介して相互に完全なシール状態で結合す
る。勿論この金属円筒10の内部は両パイプ6、9を収
容するのに十分な空間を有する。この空間とつながる絶
縁体8の空間は大気に解放し、よって冷却槽5と絶縁体
8とは十分なシール状態で互いに結合する。金属円筒1
0は容器上部2−1に固定するか、又は移動自在に取付
ける。
A vertically long insulator, for example, an insulator 8 made of ceramics such as alumina is fixed to the upper portion of the cooling tank 5 at its lower portion. The insulator 8 has a hollow portion, and this hollow portion has a space for accommodating the power transmission pipe 6 and the reaction gas supply pipe 9. Further, the upper portion of the insulator 8 and a cylinder 10 made of a metal, for example, stainless steel, which extends vertically upward similarly to the insulator 8 are provided.
And the flange portion of the above are joined to each other in a completely sealed state via a metal connecting spacer 11 having a sufficient thickness. Of course, the inside of the metal cylinder 10 has a sufficient space for accommodating both pipes 6 and 9. The space of the insulator 8 connected to this space is opened to the atmosphere, and therefore the cooling tank 5 and the insulator 8 are coupled to each other in a sufficiently sealed state. Metal cylinder 1
0 is fixed to the upper part 2-1 of the container or movably attached.

【0038】このとき、絶縁体8と連結用スペーサ11
との結合面の内方に向かう延長上、図1の断面では結合
線としてあらわす直線の延長と送電パイプ6との交点を
点Xで、連結用スペーサ11の下側結合面の端縁を点Y
でそれぞれ示し、好適には両点X−Y間の距離Lを50
mm以上とする。このことにより点Y(実際上は円周端
縁)近傍における不所望放電の発生を有効に阻止するこ
ができる。
At this time, the insulator 8 and the connecting spacer 11
In the cross section of FIG. 1, the intersection of the straight line represented as the coupling line and the power transmission pipe 6 is point X, and the end of the lower coupling surface of the coupling spacer 11 is pointed. Y
Respectively, and preferably the distance L between both points X and Y is 50
mm or more. As a result, it is possible to effectively prevent the occurrence of undesired discharge near the point Y (actually, the circumferential edge).

【0039】反応ガスは供給パイプ9の下端部にて絶縁
体8の中を完全シール状態で横方向に延び、それから電
極4の内部で下方に延びる連結パイプ9−1を経て、こ
のパイプ9−1の下方終端部に連結した円環状パイプ9
−2に送られ、このパイプ9−2にほぼ等間隔で形成し
た多数個の吐出口(図示省略)から処理槽1内に供給さ
れる。その際反応ガスの流れは電極4のプレート4aに
遮られて一旦上方に向かい、それから容器2内に充満す
る。
The reaction gas extends laterally in the insulator 8 at the lower end of the supply pipe 9 in a completely sealed state, and then through a connecting pipe 9-1 extending downward inside the electrode 4 to the pipe 9-. An annular pipe 9 connected to the lower end of 1
-2, and is supplied into the processing tank 1 from a large number of discharge ports (not shown) formed in the pipe 9-2 at substantially equal intervals. At this time, the flow of the reaction gas is blocked by the plate 4a of the electrode 4 and once goes upward, and then the container 2 is filled.

【0040】中央電極4の周囲に環状加硫金型15を位
置させる。加硫金型15は一体として図示しているが、
この例ではいわゆる割りモールドのうち外周側を分割形
成する多数個、例えば3〜20個のセグメントを、金属
製、例えばスチール製の電気伝導を兼ねる支持搬送用定
盤16上面に、実際の使用時と同じ状態に仮組みしたと
ころを示している。
An annular vulcanization mold 15 is positioned around the central electrode 4. Although the vulcanization mold 15 is shown as one body,
In this example, a large number, for example, 3 to 20, of the so-called split mold, which divides the outer peripheral side, are formed on the upper surface of the supporting and transporting platen 16 which is also made of metal, for example, steel and which also serves as an electric conductor during actual use. The figure shows a temporary assembly in the same state as.

【0041】あたかも加硫金型15の上蓋のように張り
出す板状絶縁体12を絶縁体8の下方位置に設ける。こ
の板状絶縁体12は少なくとも電極4と加硫金型15と
の間に生起するプラズマ領域を覆う形状ないし寸度を有
し、かつ一方の板表面がこのプラズマに曝されて帯電す
る位置に配置し、またプラズマの上方領域に向かう拡散
を阻止させ位置に設ける。板状絶縁体12の材質はテフ
ロンやセラミックス、とりわけアルミナセラミックスと
するのが好適であり、CF4 やO2 のプラズマに対し優
れた耐腐食性を有する材質が適する。
A plate-like insulator 12 that projects like a top lid of the vulcanization mold 15 is provided below the insulator 8. The plate-shaped insulator 12 has a shape or dimension that covers at least the plasma region generated between the electrode 4 and the vulcanization mold 15, and one plate surface is exposed to this plasma and charged. It is placed and positioned so as to prevent diffusion of the plasma towards the upper region. The material of the plate-like insulator 12 is preferably Teflon or ceramics, especially alumina ceramics, and a material having excellent corrosion resistance against plasma of CF 4 or O 2 is suitable.

【0042】板状絶縁体12を上記位置に設けることに
より、たとえ先に述べた点Y近傍に不所望放電が発生し
たとしても、この放電が両電極4、15間の所望放電領
域に結合する不具合を排除することができる。また図1
に示すように、筒状絶縁体8上部から金属円筒10中間
部までの周囲を被覆する充実絶縁体13を配置すれば、
上述の点Yから被覆絶縁体13外側表面までの距離Z
(例えば10〜300mm)内に電気力線が集中しても
被覆絶縁体13の充実により放電現象を生じることはな
い。また被覆絶縁体13の周囲では電場が大幅に弱まる
ので、所望放電領域に結合する不所望放電の発生は十分
に抑制可能となる。
By providing the plate-shaped insulator 12 at the above position, even if the undesired discharge occurs near the point Y described above, this discharge is coupled to the desired discharge region between the electrodes 4 and 15. It is possible to eliminate defects. See also FIG.
As shown in, by arranging the solid insulator 13 covering the periphery from the upper portion of the tubular insulator 8 to the middle portion of the metal cylinder 10,
Distance Z from the above point Y to the outer surface of the covering insulator 13
Even if the lines of electric force are concentrated within (for example, 10 to 300 mm), the discharge phenomenon does not occur due to the enhancement of the covering insulator 13. Further, since the electric field is significantly weakened around the coated insulator 13, it is possible to sufficiently suppress the generation of the undesired discharge coupled to the desired discharge region.

【0043】加硫金型15につき、タイヤのトレッド部
に踏面及び各種溝やスリットを形成する部分には一般に
アルミニューム合金を適用し、実際に使用する際はこの
合金部分をスチール製保持部材に取付けて上述のセグメ
ントとするものであり、この発明では上記合金部分のみ
の場合とセグメントの場合との両方を含めて加硫金型と
呼ぶ。
In the vulcanization mold 15, an aluminum alloy is generally applied to the tread portion of the tire where treads and various grooves and slits are formed. When actually used, this alloy portion is used as a steel holding member. It is attached to form the above-mentioned segment, and in the present invention, both the case of only the alloy portion and the case of the segment are referred to as a vulcanization mold.

【0044】加硫金型15が割りモールドである場合は
図示のセグメントモールドの上下に一対のサイドモール
ドを組み合わせてモールド本体とする。このモールド本
体を加硫金型15としてプラズマ清浄を施すこともで
き、さらに周上に分割面を有する、いわゆる2つ割りモ
ールドにもこの発明を適用することができる。
When the vulcanization mold 15 is a split mold, a pair of side molds are combined above and below the segment mold shown in the figure to form a mold body. This mold body can be used as a vulcanizing mold 15 for plasma cleaning, and the present invention can be applied to a so-called split mold having a divided surface on the circumference.

【0045】図示を省略したが定盤16は、多数個のセ
グメントを仮組みする際又は割りモールド本体や2つ割
りモールドを据え置く際、セグメントの集合体又はこれ
らモールドを所定位置に据えるための機構を備え、さら
に定盤16は、集合体としての加硫金型15又はこれら
モールドとしての加硫金型15を中央電極4に対し心出
しをする機構を備える。後者の機構は加硫金型15及び
定盤16を支持するホイールコンベヤ17に設けた心出
し装置と心出し係合する。
Although not shown in the drawings, the surface plate 16 is a mechanism for setting a group of segments or a set of these molds at a predetermined position when temporarily assembling a large number of segments or when placing a split mold body or a split mold. Further, the surface plate 16 is provided with a mechanism for centering the vulcanizing mold 15 as an assembly or the vulcanizing mold 15 as these molds with respect to the central electrode 4. The latter mechanism is centeringly engaged with a centering device provided on a wheel conveyor 17 supporting the vulcanizing mold 15 and the surface plate 16.

【0046】加硫金型15の処理槽1内への導入は、容
器上部2−1や中央電極4を上方に移動させた状態で、
予め処理槽1の外部で定盤16上に仮組み乃至据え置い
た加硫金型15を定盤16と共に、図示を省略した同様
ホイールコンベヤ上で図示位置まで搬送し、同時に心出
しをする。この心出し精度は心ずれ量で望ましくは3c
m以下、より望ましくは5mm以下である。
The vulcanization mold 15 is introduced into the processing tank 1 with the upper part 2-1 of the container and the central electrode 4 being moved upward.
The vulcanization mold 15 temporarily assembled or set aside on the surface plate 16 outside the processing tank 1 is conveyed together with the surface plate 16 on the same wheel conveyor (not shown) to the position shown in the drawing, and at the same time, centering is performed. This centering accuracy is the amount of misalignment, and is desirably 3c.
m or less, more preferably 5 mm or less.

【0047】定盤16を所定位置まで搬送した後、ホイ
ールコンベヤ17に設けた固定手段(図示省略)により
定盤16を一時固定する。固定した後に昇降手段20に
連結したロッド19の上端に設けた電気接点18を上昇
させて定盤16と接触させる。ロッド19を介し電気接
点18を電力供給用電源の接地側に接続する。すなわち
この例では加硫金型15を接地側とするも、別の例では
電圧印加側とすることができる。
After the surface plate 16 is conveyed to a predetermined position, the surface plate 16 is temporarily fixed by a fixing means (not shown) provided on the wheel conveyor 17. After fixing, the electrical contact 18 provided on the upper end of the rod 19 connected to the elevating means 20 is raised to make contact with the surface plate 16. The electrical contact 18 is connected to the ground side of the power supply for power supply via the rod 19. That is, in this example, the vulcanization mold 15 is on the ground side, but in another example, it can be on the voltage application side.

【0048】その後容器上部2−1や中央電極4を下降
させて容器下部2−2と接触係合させ、両容器2−1、
2−2を密封状態で固定し、それから図示しない真空ポ
ンプを稼働させて吸引部3を介し容器2内部を先に述べ
た所定の中〜高真空状態とする。次いで反応ガスを円環
状パイプ9−2の吐出口から流入させる。なお空気排出
及び反応ガスの流入と流出の均衡を円滑ならしめるた
め、好適には吸引部3の吸引口位置に対応する定盤16
位置に複数個の貫通穴を設ける。なお反応ガスの圧力測
定位置は吸引部3の吸引口及びその近傍を除く位置なら
何れの箇所でもよい。
Thereafter, the container upper part 2-1 and the central electrode 4 are lowered to be brought into contact with and engage with the container lower part 2-2.
2-2 is fixed in a hermetically sealed state, and then a vacuum pump (not shown) is operated to bring the inside of the container 2 into the predetermined medium to high vacuum state described above through the suction section 3. Then, the reaction gas is caused to flow in from the discharge port of the annular pipe 9-2. In addition, in order to smooth the balance between the air discharge and the inflow and outflow of the reaction gas, it is preferable that the surface plate 16 corresponding to the position of the suction port of the suction unit 3.
Provide a plurality of through holes at the positions. The reaction gas pressure measurement position may be any position except the suction port of the suction unit 3 and its vicinity.

【0049】図示を省略したがこの装置には、プラズマ
分布状態及び異常放電現象をモニタリングする手段を備
え、モニタ対象としてはプラズマ発光スペクトル、電子
温度及び電子密度(プローブ測定)、加硫金型温度(熱
電対、赤外線温度計)などであり、その他目視やビデオ
カメラ撮影可能な窓を容器2に設け、外部からの観察と
画像解析を可能としている。これらのモニタリングによ
る監視結果に基づき、反応ガス圧力、反応ガス流入量、
放電電力及び加硫金型温度の制御を適正に実施する。
Although not shown, this apparatus is equipped with means for monitoring the plasma distribution state and abnormal discharge phenomenon, and the plasma emission spectrum, electron temperature and electron density (probe measurement), vulcanization mold temperature are monitored. (Thermocouple, infrared thermometer) and the like, and other windows that allow visual observation and video camera photography are provided in the container 2 to allow external observation and image analysis. Based on the monitoring results by these monitoring, the reaction gas pressure, the reaction gas inflow amount,
Properly control discharge power and vulcanization mold temperature.

【0050】[実施例1]図1に従い、電極4は円筒形
をなし、その寸法諸元は外径が480mm、高さが22
0mmである。加硫金型15のセグメント数は8個で最
大内径が550mmである。反応ガスはCF4 ガス及び
2 ガスの混合ガスを用い、これらガスの流入量の比を
CF4 :O2 =1:2とした。詳細にはO2 が500S
CCM、CF4 が250SCCMである。
[Embodiment 1] According to FIG. 1, the electrode 4 has a cylindrical shape, and its dimensions are 480 mm in outer diameter and 22 in height.
It is 0 mm. The vulcanization mold 15 has eight segments and a maximum inner diameter of 550 mm. As the reaction gas, a mixed gas of CF 4 gas and O 2 gas was used, and the ratio of the inflow amounts of these gases was CF 4 : O 2 = 1: 2. In detail, O 2 is 500S
CCM and CF 4 are 250 SCCM.

【0051】放電時間約90分にわたる間の経過時間と
反応ガス圧力(Torr)及び放電電力(KW)との関
係を、前者は三角形印の連なりで、後者は丸印の連なり
でそれぞれ線図として纏めて図2に示す。比較評価のた
め板状絶縁体12を取外した処理槽を用い、実施例1と
同程度のポリマ残滓が付着した同一サイズの加硫金型
を、プラズマ分布を均一にして清浄処理を施したときの
処理完了時間で対比してみたところ、実施例1の約90
分に対し比較対象金型では約150分を要することが判
明した。
The relationship between the elapsed time during the discharge time of about 90 minutes and the reaction gas pressure (Torr) and the discharge power (KW) is shown as a diagram in which the former is a series of triangles and the latter is a series of circles. Collectively shown in FIG. When a vulcanization mold of the same size to which the polymer residue of the same degree as in Example 1 was attached was subjected to a cleaning treatment with a uniform plasma distribution, using a treatment tank from which the plate-shaped insulator 12 was removed for comparative evaluation. When compared with the treatment completion time of Example 1, it was about 90 of Example 1.
It was found that it takes about 150 minutes for the compared mold.

【0052】その理由は図2に示すように、異常放電の
うれいがないため実施例1では初期電力を8KWまで高
めることが可能であったのに対し、比較対象金型の場合
は異常放電を生じない限度の初期電力が6KWに過ぎな
いことによる。さらに均一なプラズマ領域確保のための
反応ガス圧力の減圧操作が比較対象金型では2回に及ん
だのに対し、実施例1では1回のみで足り、その上減圧
時に合せて低下させた後の電力につき、実施例1での5
KWに対し比較対象金型は約4KWであったことによ
る。なお図に示す丸印の連なりは電力を、三角形印は反
応ガス圧力を示す。
The reason is that, as shown in FIG. 2, the initial electric power could be increased up to 8 kW in Example 1 because there was no suspicion of abnormal discharge, whereas in the case of the comparative mold, abnormal discharge was possible. This is because the initial power of the limit that does not generate is only 6 kW. Further, the pressure reduction operation of the reaction gas pressure for securing a more uniform plasma region was performed twice in the comparative mold, whereas in Example 1, it was sufficient only once, and the pressure was reduced in accordance with the pressure reduction. Regarding the electric power after that, 5 in Example 1
This is because the compared mold was about 4 KW against KW. The circles in the figure represent electric power, and the triangles represent reaction gas pressure.

【0053】[実施例2]実施例1で清浄に供した加硫
金型15より一層残滓付着量が多い金型を用いた他は全
て同じ加硫金型15にプラズマ処理を施した。処理槽1
は同一である。但し処理槽1に流入させるガスとして、
放電当初から反応ガスのCF4 ガス及びO 2 ガスにAr
ガスを添加し、これらガスの混合比をCF4 :O2 :A
r=1:2:3に設定し、この比を処理終了まで一定に
保つと共に、ガス圧力も1.6Torrに保持し、電力
は放電開始当初を除き一定の8KWとした。このありさ
まを線図として図3に示す。なお図に示す丸印の連なり
は電力を、三角形印はガス圧力を示す(以下同じ)。
Example 2 Vulcanization used for cleaning in Example 1
All except for the use of a mold with a larger amount of residue deposits than mold 15.
The same vulcanization mold 15 was subjected to plasma treatment. Processing tank 1
Are the same. However, as the gas to flow into the processing tank 1,
CF of reaction gas from the beginning of dischargeFourGas and O 2Ar to gas
Gas is added, and the mixing ratio of these gases is CFFour: O2: A
Set r = 1: 2: 3 and keep this ratio constant until the end of processing.
While maintaining the gas pressure at 1.6 Torr,
Was a constant 8 kW except at the beginning of discharge. This is
Figure 3 is shown as a diagram. The circles shown in the figure
Indicates electric power and triangular marks indicate gas pressure (the same applies hereinafter).

【0054】図3からArガスを添加することにより、
放電開始から十分なアッシングが達成される放電停止ま
での間、均一なプラズマ分布を損なわずにガス圧力を一
定に保つことが可能であることがわかる。また実施例1
に比し本来なら処理時間の延長が余儀なくされるところ
放電開始当初を除き終始高電力での放電が可能なため約
60分で済むことがわかる。
By adding Ar gas from FIG. 3,
It is understood that it is possible to keep the gas pressure constant without impairing the uniform plasma distribution from the start of discharge to the end of discharge at which sufficient ashing is achieved. Example 1
Compared with the above, it can be understood that it is necessary to extend the processing time, but since it is possible to discharge at high power throughout the period except when the discharge starts, it takes about 60 minutes.

【0055】[実施例3]実施例2と同じ加硫金型15
を用い、放電開始から約25分間経過までの間の流入ガ
スは反応ガスのCF4 ガス及びO2 ガス(CF4 :O2
=1:2)のみとし、その後Arガスの添加を開始しプ
ラズマ分布が不均一になる状態が予測される30分経過
頃までに、流入ガスをCF4 :O2 :Ar=1:2:3
とした。ガス圧力は終始1.5Torrに保持した。こ
のありさまを線図として図4に示し、図において右縦軸
をArガスの流入量比とした。
[Embodiment 3] The same vulcanization mold 15 as in Embodiment 2
The inflow gas from the start of discharge to the lapse of about 25 minutes was CF 4 gas and O 2 gas (CF 4 : O 2) which were reaction gases.
= 1: 2) only, and after that, by adding Ar gas, the inflowing gas is changed to CF 4 : O 2 : Ar = 1: 2: Three
And The gas pressure was kept at 1.5 Torr throughout. This state is shown in FIG. 4 as a diagram, and the right vertical axis in the figure is the inflow ratio of Ar gas.

【0056】実施例3ではモニタリングによりプラズマ
分布不均一状態の発生をいち早く検出し、この時点でA
rガスの添加流入を開始させる操作を実施した。その結
果プラズマ分布は終始一貫して均一状態を示し、処理終
了時間も約60分に短縮することができた。
In the third embodiment, the occurrence of the non-uniform plasma distribution state is detected promptly by monitoring, and at this point A
The operation of starting the additional inflow of r gas was carried out. As a result, the plasma distribution showed a uniform state throughout, and the processing completion time could be shortened to about 60 minutes.

【0057】前述の比較対象とは別に、比較例として従
来の両電極間に各実施例と同じ8個のセグメントの加硫
金型を位置させ、6KWの電力で、反応ガスはCF4
スとO2 ガスとの混合ガス(流入量比1:2)を適用
し、反応ガス圧力を1.5Torrに保持してプラズマ
処理を施した。評価項目は各セグメントの処理完了時点
における温度と、目視による清浄状態良否判断とによっ
た。なお比較例の残滓付着量は実施例1と同程度であっ
た。温度測定結果を表1に示す。表1においてセグメン
トNo.は時計回りに順次付した。値はNo.1〜8の
間で均一なほうが良い。
In addition to the above-mentioned comparison object, as a comparative example, a vulcanization mold of the same eight segments as in each example was positioned between both electrodes of the conventional case, and the reaction gas was CF 4 gas with an electric power of 6 KW. A mixed gas with an O 2 gas (inflow ratio 1: 2) was applied, and the reaction gas pressure was kept at 1.5 Torr for plasma treatment. The evaluation items were the temperature at the time of completion of processing of each segment, and the visual judgment as to whether the clean state was good or bad. The amount of residue adhered in the comparative example was about the same as in Example 1. The results of temperature measurement are shown in Table 1. In Table 1, the segment No. Are sequentially attached clockwise. The value is No. It is better to be uniform between 1 and 8.

【0058】[0058]

【表1】 [Table 1]

【0059】表1から実施例1〜3は各セグメント間の
温度格差が僅少で、均一なプラズマ分布の下での処理が
達成できていることをあらわし、これに対し比較例は最
高温度と最低温度との比が2倍以上に達し、分布に不均
一領域が現れたことを裏付けている。そこでプラズマ処
理終了後に加硫金型を取出して詳細に観察したところ、
各実施例は加硫金型内面全体にわたり一様、かつ十分な
残滓清浄が達成されている一方、比較例では特にセグメ
ントNo.5、6が清浄不十分であった。さらに各実施
例の何れにも加硫金型に何ら損傷が見出せなかったのに
対し、比較例では高温となったセグメントNo.1に看
過し得ない損傷部分が生じていた。
From Table 1, Examples 1 to 3 show that the temperature difference between the segments is small and that the treatment under a uniform plasma distribution can be achieved, whereas the Comparative Example shows the highest temperature and the lowest temperature. This proves that the ratio with temperature reached more than twice, and the non-uniform region appeared in the distribution. Therefore, when the vulcanization mold was taken out after the plasma treatment and observed in detail,
In each of the examples, the entire inner surface of the vulcanizing mold was uniformly and sufficiently cleaned of the residue, while in the comparative example, the segment No. 5 and 6 were not cleaned sufficiently. Further, no damage was found on the vulcanization mold in any of the examples, whereas in the comparative example, the high temperature of segment No. No. 1 had a damaged part that could not be overlooked.

【0060】[0060]

【発明の効果】この発明によれば、エラストマの繰返し
加硫成形により不可避的に金型の内側表面に形成された
エラストマ残滓を、加硫金型に損傷を与えるなどの不利
を伴うことなく、また加硫金型の型形成面に何ら制約を
加えることなく、低コストで、かつ短い処理時間で均一
に有利にアッシングすることが可能な加硫金型の清浄方
法を提供することができる。
According to the present invention, the elastomer residue, which is inevitably formed on the inner surface of the mold by the repeated vulcanization molding of the elastomer, does not have a disadvantage such as damage to the vulcanization mold. Further, it is possible to provide a method for cleaning a vulcanizing mold that can be ashed uniformly and advantageously at low cost and in a short processing time without applying any restriction to the mold forming surface of the vulcanizing mold.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による清浄方法に供する一実施例の真
空処理槽側面の断面図である。
FIG. 1 is a cross-sectional view of a side surface of a vacuum processing tank according to an embodiment used in a cleaning method according to the present invention.

【図2】この発明による一実施例の放電時間と電力及び
反応ガス圧力との関係をあらわす線図である。
FIG. 2 is a diagram showing the relationship between discharge time and electric power and reaction gas pressure according to an embodiment of the present invention.

【図3】この発明による他の実施例の放電時間と電力及
び反応ガス圧力との関係をあらわす線図である。
FIG. 3 is a diagram showing the relationship between discharge time and power and reaction gas pressure in another embodiment according to the present invention.

【図4】この発明による別の実施例の放電時間と電力及
び反応ガス流入量比との関係をあらわす線図である。
FIG. 4 is a diagram showing the relationship between the discharge time and the power and reaction gas inflow ratio of another embodiment according to the present invention.

【図5】プラズマ分布の説明図である。FIG. 5 is an explanatory diagram of plasma distribution.

【図6】この発明の作用を説明するための別の真空処理
槽側面の断面図である。
FIG. 6 is a side sectional view of another vacuum processing tank for explaining the operation of the present invention.

【図7】この発明の作用を説明するための他の真空処理
槽側面の断面図である。
FIG. 7 is a sectional view of another side of the vacuum processing tank for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 真空処理槽 2 容器 2−1 容器上部 2−2 容器下部 3 吸引部 4 電極 5 冷却槽 6 送電パイプ 7 冷媒送りパイプ 8 絶縁体 9 反応ガス供給パイプ 9−1 連結パイプ 9−2 円環状パイプ 10 金属円筒 11 連結用スペーサ 12 板状絶縁体 13 充実被覆絶縁体 15 加硫金型 16 支持搬送用定盤 17 ホイールコンベヤ 18 電気接点 19 ロッド 20 昇降手段 DESCRIPTION OF SYMBOLS 1 Vacuum processing tank 2 Container 2-1 Container upper part 2-2 Container lower part 3 Suction part 4 Electrode 5 Cooling tank 6 Power transmission pipe 7 Refrigerant sending pipe 8 Insulator 9 Reactive gas supply pipe 9-1 Connecting pipe 9-2 Circular pipe 10 Metal Cylinder 11 Connection Spacer 12 Plate Insulator 13 Solid Cover Insulator 15 Vulcanizing Mold 16 Supporting Transport Surface Plate 17 Wheel Conveyor 18 Electrical Contact 19 Rod 20 Elevating Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘瀬 煌司 東京都小平市小川町1−445−1 ガーデ ンハイツ小平1−612 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Hirose 1-445-1 Ogawamachi, Kodaira-shi, Tokyo Garden Heights 1-612 Kodaira

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空処理槽内の希薄反応ガスに生起させ
たプラズマを加硫金型に作用させ、エラストマの繰返し
加硫成形により金型表面に形成されたエラストマ残滓を
アッシングして除去するにあたり、 一方の電極を処理槽内に突出させ、突出した電極の周囲
に環状加硫金型を他方の電極として前者の電極から所定
距離隔てて位置させ、これら両電極に電力を印加して両
電極間に放電によるプラズマを生起させ、 上記両電極間の放電領域を覆う位置に絶縁体を設け、こ
れにより該放電領域と電力供給の電圧印加側部分におけ
る放電との間の放電結合現象を阻止し、 真空処理槽内に流入させるガスのうち反応ガスを酸素ガ
ス及びハロゲン化物ガスとし、ガスの流入量及び流出量
の均衡の下でガス圧力を所定範囲内の低圧に保持するこ
とを特徴とする加硫金型の清浄方法。
1. When removing plasma by causing plasma generated in a dilute reaction gas in a vacuum treatment tank to act on a vulcanizing mold to ash and remove elastomer residue formed on the mold surface by repeated vulcanization molding of elastomer , One electrode is projected into the treatment tank, and the annular vulcanizing die is positioned around the projected electrode as the other electrode at a predetermined distance from the former electrode, and electric power is applied to both electrodes to apply both electrodes. A plasma is generated by a discharge between the electrodes, and an insulator is provided at a position covering the discharge region between the two electrodes to prevent a discharge coupling phenomenon between the discharge region and the discharge in the voltage application side portion of the power supply. Of the gases introduced into the vacuum treatment tank, the reaction gas is oxygen gas and halide gas, and the gas pressure is maintained at a low pressure within a predetermined range under the balance of the gas inflow and outflow. Cleaning method for vulcanizing mold.
【請求項2】 反応ガス圧力が0.1〜10.0Tor
rの範囲内である請求項1に記載した清浄方法。
2. The reaction gas pressure is 0.1 to 10.0 Tor.
The cleaning method according to claim 1, which is within the range of r.
【請求項3】 上記絶縁体がアルミナを主成分とするセ
ラミックスである請求項1又は2に記載した清浄方法。
3. The cleaning method according to claim 1, wherein the insulator is a ceramic containing alumina as a main component.
【請求項4】 酸素ガス及びハロゲン化物ガスの反応ガ
スに、アルゴンガス、ヘリウムガス及び窒素ガスのうち
少なくとも一のガスを希釈ガスとして添加する請求項1
〜3の何れか一項に記載した清浄方法。
4. The reaction gas of oxygen gas and halide gas, at least one gas of argon gas, helium gas and nitrogen gas is added as a diluent gas.
The cleaning method described in any one of 3 to 3.
【請求項5】 上記両電極間のプラズマ分布に不均一領
域が生じたときを含むその近傍時点で、酸素ガス及びハ
ロゲン化物ガスの反応ガスに、アルゴンガス、ヘリウム
ガス及び窒素ガスのうち少なくとも一のガスを希釈ガス
として添加する請求項1〜4に記載した清浄方法。
5. The reaction gas of oxygen gas and halide gas is at least one of argon gas, helium gas, and nitrogen gas at a time point near the time when a nonuniform region is generated in the plasma distribution between the electrodes. The cleaning method according to any one of claims 1 to 4, wherein the gas of (1) is added as a diluent gas.
【請求項6】 ハロゲン化物ガスが四フッ化炭素(CF
4)ガスである請求項1〜5に記載した清浄方法。
6. The carbon tetrafluoride (CF) is used as the halide gas.
4 ) The cleaning method according to claim 1, wherein the cleaning method is gas.
【請求項7】 上記両電極間のプラズマ分布状態及び上
記異常放電現象をモニタリング手段により監視し、監視
結果を反応ガス圧力、反応ガス流入量、放電電力及び金
型温度の各制御系のうち少なくとも一の制御系にフィー
ドバックし、このフィードバックに基づき各制御系のう
ち少なくとも一の制御系を制御可能とする請求項1〜6
に記載した清浄方法。
7. A plasma distribution state between the both electrodes and the abnormal discharge phenomenon are monitored by a monitoring means, and the monitoring result is at least one of control systems of reaction gas pressure, reaction gas inflow amount, discharge power and mold temperature. 7. Feedback is provided to one control system, and at least one control system among the control systems can be controlled based on this feedback.
The cleaning method described in.
JP5248095A 1995-03-13 1995-03-13 Washing of vulcanizing mold Pending JPH08244041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5248095A JPH08244041A (en) 1995-03-13 1995-03-13 Washing of vulcanizing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5248095A JPH08244041A (en) 1995-03-13 1995-03-13 Washing of vulcanizing mold

Publications (1)

Publication Number Publication Date
JPH08244041A true JPH08244041A (en) 1996-09-24

Family

ID=12915893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5248095A Pending JPH08244041A (en) 1995-03-13 1995-03-13 Washing of vulcanizing mold

Country Status (1)

Country Link
JP (1) JPH08244041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790113A3 (en) * 1996-02-15 1998-02-04 Bridgestone Corporation Method for cleaning vulcanization mold
JP2006289724A (en) * 2005-04-08 2006-10-26 Yokohama Rubber Co Ltd:The Method and apparatus for washing mold for vulcanizing and molding tire
CN103350473A (en) * 2005-08-02 2013-10-16 横滨橡胶株式会社 Method and equipment for cleaning tire vulcanization die
CN112776237A (en) * 2020-12-28 2021-05-11 哈尔滨工业大学 Pouring type resin-based distributed optical fiber sensor packaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790113A3 (en) * 1996-02-15 1998-02-04 Bridgestone Corporation Method for cleaning vulcanization mold
US5855728A (en) * 1996-02-15 1999-01-05 Bridgestone Corporation Method for cleaning vulcanization mold
JP2006289724A (en) * 2005-04-08 2006-10-26 Yokohama Rubber Co Ltd:The Method and apparatus for washing mold for vulcanizing and molding tire
JP4585361B2 (en) * 2005-04-08 2010-11-24 横浜ゴム株式会社 Tire vulcanization mold cleaning equipment
CN103350473A (en) * 2005-08-02 2013-10-16 横滨橡胶株式会社 Method and equipment for cleaning tire vulcanization die
CN112776237A (en) * 2020-12-28 2021-05-11 哈尔滨工业大学 Pouring type resin-based distributed optical fiber sensor packaging device
CN112776237B (en) * 2020-12-28 2023-04-21 哈尔滨工业大学 Pouring type resin-based distributed optical fiber sensor packaging device

Similar Documents

Publication Publication Date Title
US5417826A (en) Removal of carbon-based polymer residues with ozone, useful in the cleaning of plasma reactors
JP2814370B2 (en) Plasma processing equipment
USRE39939E1 (en) Processing system
JP4708705B2 (en) Processing equipment, gas discharge suppression member
US7662723B2 (en) Methods and apparatus for in-situ substrate processing
EP0618017A1 (en) Method for cleaning curing mold
JPH07153740A (en) Reduction of granular contamination during plasma treatment of semiconductor device
JPH0358171B2 (en)
US20050269294A1 (en) Etching method
JPH08244041A (en) Washing of vulcanizing mold
EP0740989B1 (en) Method of cleaning vulcanizing mold
KR101249247B1 (en) Plasma etching chamber
US20060000804A1 (en) Specimen surface processing apparatus and surface processing method
JP2005005701A (en) Wafer edge etching device and method
JPH08216164A (en) Cleaning of vulcanizing mold
US5855728A (en) Method for cleaning vulcanization mold
JP3277094B2 (en) Cleaning method for vulcanizing mold
JP3574256B2 (en) Cleaning method for vulcanizing mold
JPH1119945A (en) Method for cleaning vulcanization mold
JP3623590B2 (en) Vulcanizing mold cleaning equipment
JPH11274146A (en) Dry cleaning method on site for polygate etching
JPH11188742A (en) Method and apparatus for cleaning vulcanizing mold
JP3277093B2 (en) Cleaning method for vulcanizing mold
JP3277095B2 (en) Cleaning method for vulcanizing mold
JP3727705B2 (en) Microwave plasma generator