JPH08213392A - Semiconductor element and its manufacture - Google Patents

Semiconductor element and its manufacture

Info

Publication number
JPH08213392A
JPH08213392A JP7014831A JP1483195A JPH08213392A JP H08213392 A JPH08213392 A JP H08213392A JP 7014831 A JP7014831 A JP 7014831A JP 1483195 A JP1483195 A JP 1483195A JP H08213392 A JPH08213392 A JP H08213392A
Authority
JP
Japan
Prior art keywords
silicon oxide
forming
film
oxide film
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7014831A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoki
浩 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP7014831A priority Critical patent/JPH08213392A/en
Publication of JPH08213392A publication Critical patent/JPH08213392A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Formation Of Insulating Films (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: To provide a semiconductor element in which the capacitance at each slit between wires is reduced by not completely covering the slits with a silicon oxide film, but forming void sections of the slits, and the manufacturing method of the element. CONSTITUTION: The uppermost wiring 203 of a semiconductor element is formed in an inverted trapezoidal shape and void sections 207 are formed of a silicon oxide film 204 coating the wiring 203.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子及びその製
造方法に係り、特にその最終保護膜の構造及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method, and more particularly to the structure of its final protective film and its manufacturing method.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、以下に示すようなものがあった。図4はかかる
従来の半導体素子の断面図である。この図において、半
導体基板101上には絶縁膜102が形成され、この絶
縁膜102上に最上層の配線パターン103が形成され
た後に、最終保護膜105が生成されるのが一般的であ
る。
2. Description of the Related Art Conventionally, techniques in such a field include:
For example, there were the following. FIG. 4 is a sectional view of such a conventional semiconductor device. In this figure, an insulating film 102 is formed on a semiconductor substrate 101, and a final protective film 105 is generally formed after the wiring pattern 103 of the uppermost layer is formed on the insulating film 102.

【0003】この最終保護膜105としては、耐水性に
優れたシリコン窒化膜が多く使われている。
As the final protective film 105, a silicon nitride film excellent in water resistance is often used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の最上層配線の場合、隣り合った配線間を考える
と、配線間にシリコン窒化膜105が存在する寄生容量
108が形成される。このシリコン窒化膜105は誘電
率が7.5と、シリコン酸化膜3.9に比較して大き
く、特に、最小スリット部ではこの寄生容量108によ
り伝送される信号の伝達スピードの低下を引き起こし、
タイミングがずれることにより、技術的に満足できるも
のが得られなかった。
However, in the case of the conventional uppermost layer wiring described above, a parasitic capacitance 108 in which the silicon nitride film 105 exists between the wirings is formed considering the space between adjacent wirings. The silicon nitride film 105 has a dielectric constant of 7.5, which is larger than that of the silicon oxide film 3.9, and particularly, in the minimum slit portion, the transmission speed of the signal transmitted by the parasitic capacitance 108 is lowered,
Due to the deviation of the timing, we could not obtain a technically satisfactory product.

【0005】つまり、シリコン窒化膜以外の材料を使用
した場合、十分な耐水性が得られず信頼性の低下をもた
らすという問題点があった。本発明は、上記問題点を除
去し、配線間のスリットがシリコン酸化膜ですべて被わ
れておらず、中に空洞部を形成することにより、配線間
のスリットにおける寄生容量の減少を図り得る半導体素
子及びその製造方法を提供することを目的とする。
That is, when a material other than the silicon nitride film is used, there is a problem that sufficient water resistance cannot be obtained and reliability is lowered. The present invention eliminates the above-mentioned problems, and a slit between wirings is not entirely covered with a silicon oxide film, and a cavity is formed therein, so that a parasitic capacitance in the slit between wirings can be reduced. An object is to provide an element and a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (1)請求項1記載の半導体素子において、最上層配線
203が逆台形状をしており、かつ、その最上層配線2
03を被うシリコン酸化膜204により、空洞部207
が形成されるようにしたものである。
In order to achieve the above object, the present invention provides: (1) In the semiconductor device according to claim 1, the uppermost layer wiring 203 has an inverted trapezoidal shape, and Upper layer wiring 2
The silicon oxide film 204 covering the cavity 03 forms the cavity 207.
Are formed.

【0007】(2)請求項2記載の半導体素子の製造方
法において、半導体基板201上に絶縁膜202を形成
し、この絶縁膜202上に逆台形となるように最上層配
線203を形成する工程と、次いで、シリコン酸化膜2
04を常圧CVD法により形成する工程と、次に、シリ
コン酸化膜204を最小スリット部の上部において接触
させ、この最小スリット部に空洞部207を形成工程
と、次に、最終保護膜となるシリコン窒化膜205を形
成する工程とを施すようにしたものである。
(2) In the method of manufacturing a semiconductor device according to claim 2, a step of forming an insulating film 202 on the semiconductor substrate 201 and forming an uppermost layer wiring 203 on the insulating film 202 so as to form an inverted trapezoid. And then the silicon oxide film 2
04 by the atmospheric pressure CVD method, the silicon oxide film 204 is then brought into contact with the upper portion of the minimum slit portion, and the cavity portion 207 is formed in this minimum slit portion, and then the final protective film is formed. The step of forming the silicon nitride film 205 is performed.

【0008】(3)請求項3記載の半導体素子の製造方
法において、半導体基板201上に絶縁膜202を形成
し、この絶縁膜202上に逆台形となるように最上層配
線203を形成する工程と、次いで、シリコン酸化膜3
01を減圧CVD法により形成する工程と、次に、シリ
コン酸化膜301を最小スリット部の上部において接触
させ、この最小スリット部に空洞部302を形成工程
と、次に、最終保護膜となるシリコン窒化膜303を形
成する工程とを施すようにしたものである。
(3) In the method of manufacturing a semiconductor device according to claim 3, a step of forming an insulating film 202 on the semiconductor substrate 201, and forming an uppermost layer wiring 203 on the insulating film 202 so as to form an inverted trapezoid. And then the silicon oxide film 3
01 by a low pressure CVD method, a silicon oxide film 301 is brought into contact with the upper portion of the minimum slit portion, and a cavity portion 302 is formed in the minimum slit portion, and then a silicon film to be a final protective film. The step of forming the nitride film 303 is performed.

【0009】[0009]

【作用】本発明によれば、上記のように構成したので、 (1)配線間のスリットがシリコン酸化膜ですべて被わ
れておらず、中に空洞部が形成されるため、配線間のス
リットにおける寄生容量の減少を図ることができる。
According to the present invention, since it is configured as described above, (1) the slits between the wirings are not covered with the silicon oxide film and a cavity is formed in the slits. It is possible to reduce the parasitic capacitance in.

【0010】(2)シリコン酸化を常圧CVD法で形成
しているため、逆台形部上面及び角での生成レートが大
きく膜厚が厚くなるため、スリット側壁及び底部での膜
厚を薄くすることができ、空洞部が大きくなるため寄生
容量を、更に低減することができる。 (3)シリコン酸化膜を減圧CVD法で形成しているた
め、空洞部での余分なガスが少なく、より真空に近い状
態となり、その後の熱処理での膨張を抑えることができ
る。
(2) Since the silicon oxide is formed by the atmospheric pressure CVD method, the film formation rate is large on the upper surface and the corners of the inverted trapezoidal portion, and the film thickness is increased. Therefore, the film thickness is reduced on the side wall and the bottom of the slit. Since the cavity is large, the parasitic capacitance can be further reduced. (3) Since the silicon oxide film is formed by the low pressure CVD method, the amount of extra gas in the cavity is small, the state becomes closer to a vacuum, and expansion in the subsequent heat treatment can be suppressed.

【0011】[0011]

【実施例】本発明の実施例について図を参照しながら説
明する。図1は本発明の第1実施例を示す半導体素子の
断面図である。この図において、201は半導体基板、
202はその半導体基板201上に形成される絶縁膜、
203は最上層配線、204はシリコン酸化膜、205
はシリコン窒化膜、207は空洞部である。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device showing a first embodiment of the present invention. In this figure, 201 is a semiconductor substrate,
202 is an insulating film formed on the semiconductor substrate 201,
203 is the uppermost wiring, 204 is a silicon oxide film, 205
Is a silicon nitride film, and 207 is a cavity.

【0012】この実施例では、最上層配線203は、逆
台形の形状をしており、かつ、スリットはすべてシリコ
ン酸化膜204で埋め込まれず、中に空洞部207が形
成されている。以下、本発明の第1実施例を示す半導体
素子の製造方法について説明する。図2は本発明の第1
実施例を示す半導体素子の製造工程断面図である。
In this embodiment, the uppermost layer wiring 203 has an inverted trapezoidal shape, and all the slits are not filled with the silicon oxide film 204, and a hollow portion 207 is formed therein. Hereinafter, a method for manufacturing a semiconductor device showing the first embodiment of the present invention will be described. FIG. 2 shows the first of the present invention.
FIG. 7 is a sectional view of a semiconductor element in the manufacturing process showing the example.

【0013】(1)まず、図2(a)に示すように、半
導体基板201上に絶縁膜202を形成し、この絶縁膜
202上に最上層配線203を形成する。この時、最上
層配線203を逆台形となるように形成する。 (2)次に、図2(b)に示すように、シリコン酸化膜
204を常圧CVD法により形成する。
(1) First, as shown in FIG. 2A, an insulating film 202 is formed on a semiconductor substrate 201, and an uppermost layer wiring 203 is formed on the insulating film 202. At this time, the uppermost layer wiring 203 is formed so as to have an inverted trapezoidal shape. (2) Next, as shown in FIG. 2B, a silicon oxide film 204 is formed by an atmospheric pressure CVD method.

【0014】(3)次いで、図2(c)に示すように、
シリコン酸化膜204を最小スリット部の上部において
接触させる。 (4)この後は、反応ガスがスリット部へは入らないた
め、図2(d)に示すように、スリット部に空洞部20
7が形成される。 (5)しかる後に、図2(e)に示すように、最終保護
膜となるシリコン窒化膜205をCVD法において形成
することにより、本発明の半導体素子を得ることができ
る。
(3) Next, as shown in FIG.
The silicon oxide film 204 is brought into contact with the upper part of the minimum slit portion. (4) After that, since the reaction gas does not enter the slit portion, as shown in FIG. 2D, the hollow portion 20 is formed in the slit portion.
7 is formed. (5) Then, as shown in FIG. 2E, a silicon nitride film 205 to be a final protective film is formed by a CVD method, whereby the semiconductor element of the present invention can be obtained.

【0015】次に、本発明の第2実施例を示す半導体素
子の製造方法について説明する。図3は本発明の第2実
施例を示す半導体素子の製造工程断面図である。 (1)まず、図3(a)に示すように、半導体基板20
1上に絶縁膜202を形成し、この絶縁膜202上に最
上層配線203を形成する。この時、最上層配線203
を逆台形となるように形成する。
Next, a method of manufacturing a semiconductor device showing the second embodiment of the present invention will be described. FIG. 3 is a sectional view of a semiconductor device manufacturing process showing a second embodiment of the present invention. (1) First, as shown in FIG.
The insulating film 202 is formed on the insulating film 202, and the uppermost wiring 203 is formed on the insulating film 202. At this time, the uppermost layer wiring 203
Is formed into an inverted trapezoid.

【0016】(2)次に、図3(b)に示すように、シ
リコン酸化膜301を減圧CVD法により形成する。 (3)次いで、図3(c)に示すように、シリコン酸化
膜301を最小スリット部の上部において接触させる。 (4)この後は、反応ガスがスリット部へは入らないた
め、図3(d)に示すように、スリット部に空洞部30
2が形成される。
(2) Next, as shown in FIG. 3B, a silicon oxide film 301 is formed by a low pressure CVD method. (3) Next, as shown in FIG. 3C, the silicon oxide film 301 is brought into contact with the upper part of the minimum slit portion. (4) After that, since the reaction gas does not enter the slit portion, as shown in FIG. 3D, the cavity portion 30 is formed in the slit portion.
2 is formed.

【0017】(5)しかる後に、図3(e)に示すよう
に、最終保護膜となるシリコン窒化膜303をCVD法
において形成することにより、本発明の半導体素子を得
ることができる。 この実施例においては、シリコン酸化膜301を減圧C
VD法において、形成するようにしたので、減圧雰囲気
のため、常圧CVD法での生成時と比較して、空洞部3
02のガス圧力を小さくすることができる。
(5) Then, as shown in FIG. 3 (e), the silicon nitride film 303 to be the final protective film is formed by the CVD method, whereby the semiconductor element of the present invention can be obtained. In this embodiment, the silicon oxide film 301 is reduced in pressure C
Since it is formed in the VD method, the cavity 3 is formed in a reduced pressure atmosphere, as compared with the time of generation in the atmospheric pressure CVD method.
The gas pressure of 02 can be reduced.

【0018】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0019】[0019]

【発明の効果】以上、詳細に説明したように、 (1)請求項1記載の発明によれば、配線間のスリット
がシリコン酸化膜ですべて被われておらず、中に空洞部
が形成されるため、配線間のスリットにおける寄生容量
の減少を図ることができる。
As described above in detail, (1) According to the invention described in claim 1, the slits between the wirings are not entirely covered with the silicon oxide film, and a cavity is formed therein. Therefore, the parasitic capacitance in the slit between the wirings can be reduced.

【0020】(2)請求項2記載の発明によれば、シリ
コン酸化を常圧CVD法で形成しているため、逆台形部
上面及び角での生成レートが大きく膜厚が厚くなるた
め、スリット側壁及び底部での膜厚を薄くすることがで
き、空洞部が大きくなるため寄生容量を更に低減するこ
とができる。 (3)請求項3記載の発明によれば、シリコン酸化膜を
減圧CVD法で形成しているため、空洞部での余分なガ
スが少なく、より真空に近い状態となり、その後の熱処
理での膨張を抑えることができる。
(2) According to the second aspect of the present invention, since the silicon oxide is formed by the atmospheric pressure CVD method, the production rate is large on the upper surface and the corners of the inverted trapezoidal portion, and the film thickness becomes large. Since the film thickness on the side wall and the bottom can be reduced and the cavity becomes large, the parasitic capacitance can be further reduced. (3) According to the invention as set forth in claim 3, since the silicon oxide film is formed by the low pressure CVD method, the amount of extra gas in the cavity is small and the state becomes closer to a vacuum and the expansion in the subsequent heat treatment. Can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す半導体素子の断面図
である。
FIG. 1 is a sectional view of a semiconductor device showing a first embodiment of the present invention.

【図2】本発明の第1実施例を示す半導体素子の製造工
程断面図である。
FIG. 2 is a sectional view of a semiconductor device in the manufacturing process showing the first embodiment of the present invention.

【図3】本発明の第2実施例を示す半導体素子の製造工
程断面図である。
FIG. 3 is a sectional view of a semiconductor device in the manufacturing process showing the second embodiment of the present invention.

【図4】従来の半導体素子の断面図である。FIG. 4 is a sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

201 半導体基板 202 絶縁膜 203 最上層配線(逆台形) 204 シリコン酸化膜(常圧CVD法) 205,303 シリコン窒化膜 207 空洞部(常圧) 301 シリコン酸化膜(減圧CVD法) 302 空洞部(ガス圧小) 201 Semiconductor Substrate 202 Insulating Film 203 Top Wiring (Inverted Trapezoid) 204 Silicon Oxide Film (Normal Pressure CVD Method) 205, 303 Silicon Nitride Film 207 Cavity (Normal Pressure) 301 Silicon Oxide Film (Low Pressure CVD Method) 302 Cavity ( (Small gas pressure)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/768 H01L 21/90 V ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/768 H01L 21/90 V

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 最上層配線が逆台形状をしており、か
つ、該最上層配線を被うシリコン酸化膜により空洞部が
形成されていることを特徴とする半導体素子。
1. A semiconductor device, wherein the uppermost layer wiring has an inverted trapezoidal shape, and a cavity is formed by a silicon oxide film covering the uppermost layer wiring.
【請求項2】(a)半導体基板上に絶縁膜を形成し、こ
の絶縁膜上に逆台形となるように最上層配線を形成する
工程と、(b)シリコン酸化膜を常圧CVD法により形
成する工程と、(c)シリコン酸化膜を最小スリット部
の上部において接触させ、該最小スリット部に空洞部を
形成工程と、(d)最終保護膜となるシリコン窒化膜を
形成する工程とを順次施すことを特徴とする半導体素子
の製造方法。
2. A step of (a) forming an insulating film on a semiconductor substrate and forming an uppermost layer wiring on the insulating film so as to form an inverted trapezoid, and (b) forming a silicon oxide film by an atmospheric pressure CVD method. A step of forming, a step of (c) bringing the silicon oxide film into contact with the upper portion of the minimum slit portion to form a cavity in the minimum slit portion, and (d) a step of forming a silicon nitride film to be a final protective film. A method for manufacturing a semiconductor device, which comprises sequentially performing the steps.
【請求項3】(a)半導体基板上に絶縁膜を形成し、こ
の絶縁膜上に逆台形となるように最上層配線を形成する
工程と、(b)シリコン酸化膜を減圧CVD法により形
成する工程と、(c)シリコン酸化膜を最小スリット部
の上部において接触させ、該最小スリット部に空洞部を
形成工程と、(d)最終保護膜となるシリコン窒化膜を
形成する工程とを順次施すことを特徴とする半導体素子
の製造方法。
3. A step of (a) forming an insulating film on a semiconductor substrate and forming an uppermost layer wiring on the insulating film so as to form an inverted trapezoid, and (b) forming a silicon oxide film by a low pressure CVD method. Step, (c) contacting the silicon oxide film at the upper part of the minimum slit part to form a cavity in the minimum slit part, and (d) forming a silicon nitride film to be the final protective film in this order. A method of manufacturing a semiconductor element, which comprises applying the method.
JP7014831A 1995-02-01 1995-02-01 Semiconductor element and its manufacture Pending JPH08213392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7014831A JPH08213392A (en) 1995-02-01 1995-02-01 Semiconductor element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7014831A JPH08213392A (en) 1995-02-01 1995-02-01 Semiconductor element and its manufacture

Publications (1)

Publication Number Publication Date
JPH08213392A true JPH08213392A (en) 1996-08-20

Family

ID=11871989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7014831A Pending JPH08213392A (en) 1995-02-01 1995-02-01 Semiconductor element and its manufacture

Country Status (1)

Country Link
JP (1) JPH08213392A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978875A1 (en) * 1998-08-07 2000-02-09 STMicroelectronics S.r.l. Integrated circuit comprising conductive lines with "negative" profile and related method of fabrication
US6242336B1 (en) 1997-11-06 2001-06-05 Matsushita Electronics Corporation Semiconductor device having multilevel interconnection structure and method for fabricating the same
WO2002054493A1 (en) * 2000-12-28 2002-07-11 Infineon Technologies North America Corp. Conductive lines with reduced pitch
KR100355867B1 (en) * 1999-12-31 2002-10-12 아남반도체 주식회사 a manufacturing method of a semiconductor device
JP2003521757A (en) * 1999-04-19 2003-07-15 シュラムバーガー システムズ A device having an integrated circuit protected against attacks made by the controlled destruction of additional thin films.
KR100505608B1 (en) * 1998-06-24 2005-09-26 삼성전자주식회사 Trench isolation structure for semiconductor device & manufacturing method thereof
US6992394B2 (en) 2000-12-28 2006-01-31 Infineon Technologies Ag Multi-level conductive lines with reduced pitch
JP2009503814A (en) * 2005-07-19 2009-01-29 マイクロン テクノロジー, インク. Semiconductor structure, memory array, electronic system, and method for forming semiconductor structure
US7557029B2 (en) 2002-11-15 2009-07-07 Sharp Kabushiki Kaisha Semiconductor device and fabrication process thereof
US7867890B2 (en) 2006-10-27 2011-01-11 Oki Semiconductor Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
US8598043B2 (en) 2006-04-11 2013-12-03 Micron Technology Inc. Methods of forming semiconductor constructions
US8829643B2 (en) 2005-09-01 2014-09-09 Micron Technology, Inc. Memory arrays

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242336B1 (en) 1997-11-06 2001-06-05 Matsushita Electronics Corporation Semiconductor device having multilevel interconnection structure and method for fabricating the same
US6545361B2 (en) 1997-11-06 2003-04-08 Matsushita Electric Industrial Co., Ltd. Semiconductor device having multilevel interconnection structure and method for fabricating the same
KR100505608B1 (en) * 1998-06-24 2005-09-26 삼성전자주식회사 Trench isolation structure for semiconductor device & manufacturing method thereof
EP0978875A1 (en) * 1998-08-07 2000-02-09 STMicroelectronics S.r.l. Integrated circuit comprising conductive lines with "negative" profile and related method of fabrication
JP2003521757A (en) * 1999-04-19 2003-07-15 シュラムバーガー システムズ A device having an integrated circuit protected against attacks made by the controlled destruction of additional thin films.
KR100355867B1 (en) * 1999-12-31 2002-10-12 아남반도체 주식회사 a manufacturing method of a semiconductor device
WO2002054493A1 (en) * 2000-12-28 2002-07-11 Infineon Technologies North America Corp. Conductive lines with reduced pitch
US6992394B2 (en) 2000-12-28 2006-01-31 Infineon Technologies Ag Multi-level conductive lines with reduced pitch
US7557029B2 (en) 2002-11-15 2009-07-07 Sharp Kabushiki Kaisha Semiconductor device and fabrication process thereof
JP2009503814A (en) * 2005-07-19 2009-01-29 マイクロン テクノロジー, インク. Semiconductor structure, memory array, electronic system, and method for forming semiconductor structure
US8829643B2 (en) 2005-09-01 2014-09-09 Micron Technology, Inc. Memory arrays
US9559163B2 (en) 2005-09-01 2017-01-31 Micron Technology, Inc. Memory arrays
US9929233B2 (en) 2005-09-01 2018-03-27 Micron Technology, Inc. Memory arrays
US10622442B2 (en) 2005-09-01 2020-04-14 Micron Technology, Inc. Electronic systems and methods of forming semiconductor constructions
US11171205B2 (en) 2005-09-01 2021-11-09 Micron Technology, Inc. Semiconductor constructions, memory arrays, electronic systems, and methods of forming semiconductor constructions
US11626481B2 (en) 2005-09-01 2023-04-11 Micron Technology, Inc. Semiconductor constructions, memory arrays, electronic systems, and methods of forming semiconductor constructions
US8598043B2 (en) 2006-04-11 2013-12-03 Micron Technology Inc. Methods of forming semiconductor constructions
US7867890B2 (en) 2006-10-27 2011-01-11 Oki Semiconductor Co., Ltd. Manufacturing method of semiconductor device and semiconductor device

Similar Documents

Publication Publication Date Title
JPH08213392A (en) Semiconductor element and its manufacture
US5326715A (en) Method for forming a field oxide film of a semiconductor device
JPH05190663A (en) Manufacture of semiconductor integrated circuit
JPH11330230A (en) Semiconductor device and its manufacture
JP2000174116A (en) Semiconductor device and manufacture thereof
JPH063804B2 (en) Semiconductor device manufacturing method
JP2000183149A (en) Semiconductor device
JPS5898943A (en) Manufacture of semiconductor device
JPH0744178B2 (en) Method for manufacturing semiconductor device
JPH05849B2 (en)
JPH04311059A (en) Decreasing method of wiring capacity
JP3259363B2 (en) Method of forming bonding pad structure for semiconductor device
JPS613431A (en) Semiconductor device with multilayer interconnection and manufacture thereof
JPH05206282A (en) Manufacturing method of multilayer wiring structure of semiconductor device
JPH0529603A (en) Manufacture of semiconductor device
JPH09199582A (en) Fabrication of semiconductor device
JPS63299142A (en) Manufacture of semiconductor device having multilayer interconnection structure
JPS59167029A (en) Manufacture of semiconductor device
JPH0258778B2 (en)
JPH1187264A (en) Semiconductor device and manufacture thereof
JPH07288254A (en) Semiconductor device and manufacture thereof
JPS6310898B2 (en)
JP2001351972A (en) Semiconductor device and its manufacturing method
JPH0689941A (en) Semiconductor device and its manufacture
JP2595949B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021001