JPH08211342A - Semiconductor optical function element - Google Patents

Semiconductor optical function element

Info

Publication number
JPH08211342A
JPH08211342A JP7016642A JP1664295A JPH08211342A JP H08211342 A JPH08211342 A JP H08211342A JP 7016642 A JP7016642 A JP 7016642A JP 1664295 A JP1664295 A JP 1664295A JP H08211342 A JPH08211342 A JP H08211342A
Authority
JP
Japan
Prior art keywords
waveguide
mode conversion
conversion region
semiconductor optical
functional device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7016642A
Other languages
Japanese (ja)
Inventor
Hideaki Takano
秀明 鷹野
Hirohisa Sano
博久 佐野
Tatsuro Kanetake
達郎 金武
Masateru Ohira
昌輝 大平
Makoto Suzuki
鈴木  誠
Hiroaki Inoue
宏明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7016642A priority Critical patent/JPH08211342A/en
Priority to US08/593,051 priority patent/US5710847A/en
Publication of JPH08211342A publication Critical patent/JPH08211342A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2077Methods of obtaining the confinement using lateral bandgap control during growth, e.g. selective growth, mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To make it possible to lower end face reflectivity and to lessen the coupling loss with fibers by providing the above element with a mode conversion region having end faces diagonal with a direction for guiding light. CONSTITUTION: This semiconductor optical function element 20 is constituted by providing the optical function part 22 on a substrate 1 laminated with a buffer layer of InP, etc., on a semiconductor substrate of InP, etc., with a waveguide type light emitting element 2 laminated with an active layer (core layer) of InGaAsP, etc., a clad layer of InP, etc., and a contact layer of InGaAsP, etc., and a waveguide 3 laminated with a core layer of InGaAsP, etc., and a clad layer of InP, etc., for changing a beam spot diameter in the state of plane waves to the mode conversion region 23 by inclining both at an angle θ with the normal direction of the end faces 21 of the substrate 1. The beam spot diameter is expanded in the case of the guided light from the optical function part 22 toward the fiber to be connected. The beam spot diameter is reduced in the case of the guided light from the fiber to be connected toward the optical function part 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザや半導体
光増幅器、これらを集積した集積化光源や光スイッチ及
び光変調器などの半導体光機能素子に係り、特に端面反
射率を低減できると共にファイバとの結合損失を小さく
できる半導体光機能素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, a semiconductor optical amplifier, and a semiconductor optical functional element such as an integrated light source, an optical switch and an optical modulator, which are integrated with the semiconductor laser and the semiconductor optical amplifier. The present invention relates to a semiconductor optical functional device capable of reducing the coupling loss with.

【0002】[0002]

【従来の技術】この種の半導体光機能素子は光通信や情
報処理などに用いられるが、反射戻り光による特性の劣
化が大きな問題となるため、従来から端面反射率を低減
する構造が種々提案されてきた。その代表的な例に、窓
構造および斜め導波路構造がある。
2. Description of the Related Art This type of semiconductor optical functional element is used for optical communication and information processing, but deterioration of characteristics due to reflected return light poses a serious problem. Therefore, various structures for reducing end face reflectance have been conventionally proposed. It has been. Typical examples thereof are a window structure and a diagonal waveguide structure.

【0003】前者は、図14(a)の概略図に示すよう
に、半導体レーザ又は半導体増幅器などの半導体光機能
素子30の活性領域31の端面とデバイス端面35との
間に、活性領域よりもバンドギャップの大きい材料で形
成した窓領域と呼ばれる領域32を設けることにより、
端面反射率を低減する構造である。活性領域31内の導
波路33を導波した導波光34は、活性領域端面からレ
ーザ光として出射される。窓領域32はレ−ザ光を吸収
しない透明領域となるため、レーザ光は導波路33を形
成していない窓領域32内を回折効果によりビ−ムスポ
ット径を広げながら反射面となるデバイス端面35まで
伝播し、透過光36として出射される成分と、反射面に
よって反射される成分すなわち反射光37(図中、不完
全な球面波として2点鎖線で示す。)に別れる。この反
射光37は、進行方向が反転して再び活性領域31に向
かってビ−ムスポット径を広げながら伝播する。従っ
て、入射ビ−ムと反射ビ−ムとの重ねあわせ積分によっ
て定義される反射率は、反射ビ−ム径が拡大されている
ことにより低減される。尚、図14(a)において参照
符号40は広がって入射して来る不完全な球面波の透過
光36を平行光に変えるレンズ、50は入射端面が平坦
なフラットファイバ、51はファイバのクラッド部、5
2はファイバのコア部を示し、コア部内の等間隔の実線
はコア部内を進む光の平面波を表わしたものである。
As shown in the schematic view of FIG. 14 (a), the former is located between the end face of the active region 31 and the device end face 35 of the semiconductor optical functional device 30 such as a semiconductor laser or a semiconductor amplifier rather than the active region. By providing a region 32 called a window region formed of a material having a large band gap,
This is a structure for reducing the end face reflectance. The guided light 34 guided through the waveguide 33 in the active region 31 is emitted from the end face of the active region as laser light. Since the window region 32 is a transparent region that does not absorb laser light, the laser light is a device end surface that serves as a reflection surface while expanding the beam spot diameter in the window region 32 where the waveguide 33 is not formed due to the diffraction effect. A component that propagates up to 35 and is emitted as transmitted light 36 and a component that is reflected by a reflecting surface, that is, reflected light 37 (indicated by an alternate long and two short dashes line in the figure as an incomplete spherical wave) are separated. The reflected light 37 reverses its traveling direction and propagates toward the active region 31 again while expanding the beam spot diameter. Therefore, the reflectance defined by the superposition integral of the incident beam and the reflected beam is reduced due to the enlarged diameter of the reflected beam. In FIG. 14A, reference numeral 40 is a lens for converting the transmitted light 36 of the incomplete spherical wave that spreads and is incident into parallel light, 50 is a flat fiber having a flat incident end face, and 51 is a clad portion of the fiber. 5,
Reference numeral 2 denotes a core portion of the fiber, and solid lines at equal intervals in the core portion represent plane waves of light traveling in the core portion.

【0004】このような窓領域を備えた半導体光機能素
子としては、例えば、エレクトロニクスレターズ、19
89年8月31日、第25巻、第18号、第1241〜
1242頁(ELECTRONICS LETTERS 31st August 1989 V
ol.25 No.18 pp.1241-1242)に記載された半導体光増幅
器がある。この半導体光増幅器は、InGaAs活性層
の両端に各々35μmと55μmのInP窓領域を形成
し、反射率1%程度の無反射膜と組み合わせることによ
り平均端面反射率0.06%を達成している。すなわ
ち、無反射膜だけによる端面反射率1%の場合に比べ
て、窓構造により端面反射率を更に1桁以上低減してい
る。
As a semiconductor optical functional element having such a window region, for example, Electronics Letters, 19
August 31, 1989, Vol. 25, No. 18, 1241-
1242 pages (ELECTRONICS LETTERS 31st August 1989 V
ol.25 No.18 pp.1241-1242). This semiconductor optical amplifier achieves an average end face reflectance of 0.06% by forming InP window regions of 35 μm and 55 μm on both ends of the InGaAs active layer and combining with an antireflection film having a reflectance of about 1%. . That is, the window structure further reduces the end face reflectance by one digit or more as compared with the case where the end face reflectance is 1% only by the non-reflection film.

【0005】また、後者の斜め導波路構造は、図15の
概略図に示すように、半導体レーザまたは半導体光増幅
器などの半導体光機能素子30内の活性層を含むストラ
イプ状導波路38を、デバイス端面35に対して90°
からずらして斜めに設けることにより、端面反射率を低
減する構造である。このようにすることにより、斜め導
波路38を導波した導波光34はデバイス端面35から
透過光36として出射されると共にデバイス端面35す
なわち反射面によって反射される成分があるが、反射光
37のほとんどが端面に垂直な法線に対して導波路と対
称な方向に生じるため反射光は伝播せず、従って入射ビ
ームと反射ビームとの重ね合わせ積分によって定義され
る反射率は低減される。
In the latter oblique waveguide structure, as shown in the schematic view of FIG. 15, a stripe waveguide 38 including an active layer in a semiconductor optical functional device 30 such as a semiconductor laser or a semiconductor optical amplifier is provided as a device. 90 ° to the end face 35
It is a structure in which the end face reflectance is reduced by arranging it so as to be offset from it. By doing so, the guided light 34 guided through the oblique waveguide 38 is emitted from the device end surface 35 as transmitted light 36 and has a component reflected by the device end surface 35, that is, the reflecting surface, but the reflected light 37 The reflected light does not propagate because it occurs mostly in a direction symmetrical to the waveguide with respect to the normal to the end face, thus reducing the reflectivity defined by the superposition integration of the incident and reflected beams.

【0006】このような斜め導波路を備えた半導体光機
能素子としては、例えば、エレクトロニクスレターズ、
1987年9月10日、第23巻、第19号、第990
〜991頁(ELECTRONICS LETTERS 10th September 198
7 Vol.23 No.19 pp.990-991)に記載されたレーザ増幅
器がある。このレーザ増幅器は、InGaAsP活性層
を含む導波路をへき開面に対して7°傾けることによっ
て、導波路と反射面との成す角度を90°から7°ずら
し、無反射膜を用いずに平均端面反射率0.2%を達成
している。すなわち、斜め導波路構造により、無反射膜
を用いない場合の通常の端面反射率30%程度に対し
て、端面反射率を2桁以上低減している。
Examples of the semiconductor optical functional device having such an oblique waveguide include, for example, Electronics Letters,
Sept. 10, 1987, Volume 23, No. 19, 990
~ 991 (ELECTRONICS LETTERS 10th September 198
7 Vol.23 No.19 pp.990-991). This laser amplifier shifts the angle formed by the waveguide and the reflecting surface from 90 ° to 7 ° by tilting the waveguide including the InGaAsP active layer by 7 ° with respect to the cleavage plane, and does not use a non-reflective film. A reflectance of 0.2% is achieved. That is, due to the oblique waveguide structure, the end face reflectance is reduced by two digits or more as compared with the normal end face reflectance of about 30% when the non-reflection film is not used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
た導波構造を形成していない窓領域内をビームスポット
径を広げながら反射面まで伝播することを利用して反射
率を低減する窓構造を設ける場合は、図14(a),
(b)に示したように、球面波の透過光36を平面波に
変換するレンズ40を介してフラットファイバ50に接
続するか、もしくは先球ファイバ55を用いる必要があ
る。すなわち、ファイバとの接続にレンズ系を必要とす
るためコストが高くなる難点がある。更に、通常用いる
レンズは、完全な球面波を完全な平面波に変換するもの
であるが、導波路33から出射する場合は点光源ではな
く面光源となるので、その分透過光36は不完全な球面
波となり、不完全な分、シングルモードファイバとの結
合損失が生じるという問題点がある。前述した窓構造を
有する半導体光増幅器の例によれば、窓構造の導入によ
り端面反射率を1桁以上低減しているけれども、ファイ
バとの結合損失は通常の3dBと比べて各端面につき5
dBであり、改善されていない。また、窓構造の作製に
は埋込み成長を行い、劈開して形成する必要があるが、
この埋込み成長および劈開による窓領域の長さの制御と
いったプロセス技術はいずれも困難な部類に属するた
め、歩留まりが低下するという難点もある。
However, a window structure for reducing the reflectance is provided by utilizing the fact that the beam spot diameter is expanded and propagates to the reflecting surface in the window region where the waveguide structure is not formed. In the case of FIG. 14 (a),
As shown in (b), it is necessary to connect to the flat fiber 50 via the lens 40 for converting the transmitted light 36 of the spherical wave into the plane wave, or to use the front spherical fiber 55. That is, since a lens system is required for connection with the fiber, there is a drawback that the cost becomes high. Further, the lens that is normally used converts a perfect spherical wave into a perfect plane wave, but when it is emitted from the waveguide 33, it is not a point light source but a surface light source, so the transmitted light 36 is incomplete. Since it becomes a spherical wave, there is a problem that coupling loss with the single mode fiber occurs due to the imperfections. According to the example of the semiconductor optical amplifier having the window structure described above, although the end face reflectance is reduced by one digit or more by the introduction of the window structure, the coupling loss with the fiber is 5 for each end face as compared with the usual 3 dB.
dB, not improved. Further, in order to manufacture the window structure, it is necessary to perform buried growth and cleave it,
Since both process technologies such as the buried growth and the control of the length of the window region by cleavage belong to the difficult category, there is a drawback that the yield is lowered.

【0008】一方、前述した後者の斜め導波路構造を設
ける場合、斜め導波路構造の反射率の低減の効果は導波
路幅のほぼ2乗に比例して大きくなるが、消費電力は導
波路幅に比例して増加する難点がある。すなわち、低消
費電力となる導波路幅は通常1μm程度であり、この導
波路幅では無反射化の効果は小さく、斜めにする角度を
大きくする必要がある。その場合、スネルの屈折法則に
従って、端面からの出射光の、端面法線からのずれも大
きくなり、ファイバとの結合がとりにくい上に、図15
に示したように、この場合も窓構造の場合と同様にレン
ズ系を用いてコストが高くなり、しかも透過光36が不
完全な球面波で、かつ、出射光強度分布も斜めに出射す
るため円形状からずれるので、その分さらに結合損失が
大きくなるという問題点がある。前述した斜め導波路構
造を有するレーザ増幅器の例によれば、斜め導波路構造
の導入により、端面反射率を2桁以上も低減できたけれ
ども、導波路幅が約5μmとなっているため、通常の1
μm導波路幅に比べて約5倍の消費電力を必要としてい
るだけでなく、端面からの出射光が端面に垂直な法線に
対して24°も傾いてしまうため、ファイバとの結合損
失は各端面につき7dBと、通常の3dBに比べて改善
されていない。また、斜め導波路を形成するには、ドラ
イエッチングやウエットエッチングで形成する必要があ
るが、導波路における伝播損失を低くするため異方性を
有するドライエッチングやウエットエッチングで形成す
ることが多い。このような異方性エッチング技術は面方
位の影響を受けやすく、このため、斜めにする角度が大
きくなれば、それだけ所望の構造を形成することが困難
になるという問題点もある。
On the other hand, when the latter oblique waveguide structure described above is provided, the effect of reducing the reflectance of the oblique waveguide structure increases in proportion to approximately the square of the waveguide width, but the power consumption is the waveguide width. There is a drawback that increases in proportion to. That is, the width of the waveguide for low power consumption is usually about 1 μm, and the effect of non-reflection is small with this waveguide width, and it is necessary to increase the angle of inclination. In that case, according to Snell's law of refraction, the deviation of the light emitted from the end face from the end face normal becomes large, and it is difficult to couple with the fiber.
In this case, as in the case of the window structure, the cost is increased by using the lens system, the transmitted light 36 is an incomplete spherical wave, and the emitted light intensity distribution is also obliquely emitted. Since it deviates from the circular shape, there is a problem that the coupling loss becomes larger accordingly. According to the example of the laser amplifier having the oblique waveguide structure described above, although the end face reflectance can be reduced by two digits or more by introducing the oblique waveguide structure, since the waveguide width is about 5 μm, Of 1
Not only does it require about 5 times the power consumption as compared with the μm waveguide width, but the light emitted from the end face is inclined by 24 ° with respect to the normal line perpendicular to the end face, so the coupling loss with the fiber is small. It is 7 dB for each end face, which is not an improvement compared with the usual 3 dB. Further, to form the oblique waveguide, it is necessary to form it by dry etching or wet etching, but in order to reduce the propagation loss in the waveguide, it is often formed by anisotropic dry etching or wet etching. Such an anisotropic etching technique is easily affected by the plane orientation, and therefore, the larger the angle of inclination, the more difficult it is to form a desired structure.

【0009】そこで、本発明の目的は、作製工程を複雑
化すること無く、端面の反射率を低減できると共にファ
イバとの結合損失を小さくできる半導体光機能素子を提
供することにある。
Therefore, an object of the present invention is to provide a semiconductor optical functional device which can reduce the reflectance of the end face and the coupling loss with the fiber without complicating the manufacturing process.

【0010】[0010]

【課題を解決するための手段】本発明に係る半導体光機
能素子は、上記の目的を達成するため、半導体基板上に
形成された光機能部すなわち光増幅器や半導体レーザ或
いは導波路型光スイッチなどの光機能を構成する部分の
入射端面および/または出射端面に導波光のビーム径を
変化させるモード変換領域を備えると共に、このモード
変換領域のファイバと接続される側の端面を、光の導波
方向に対して斜めに設けたことを特徴とするものであ
る。前記半導体光機能素子において、光機能部とモード
変換領域とを構成する層の一部である活性層の近傍に、
この活性層に比べてバンドギャップ波長が短いガイド層
を更に設ければ好適である。
In order to achieve the above object, a semiconductor optical functional device according to the present invention has an optical functional portion formed on a semiconductor substrate, that is, an optical amplifier, a semiconductor laser, a waveguide type optical switch, or the like. Is provided with a mode conversion region for changing the beam diameter of the guided light at the incident end face and / or the emission end face of the portion that constitutes the optical function of the optical waveguide, and the end face on the side connected to the fiber of the mode conversion region is guided by the optical waveguide. It is characterized in that it is provided obliquely to the direction. In the semiconductor optical functional device, in the vicinity of an active layer which is a part of layers constituting an optical functional section and a mode conversion region,
It is preferable to further provide a guide layer having a bandgap wavelength shorter than that of the active layer.

【0011】或いは、本発明に係る半導体光機能素子
は、半導体基板上に形成された光機能部すなわち光増幅
器や半導体レーザ或いは導波路型光スイッチなどの入射
端面および/または出射端面に曲がり導波路を介して導
波光のビーム径を変化させるモード変換領域を備えると
共に、モード変換領域のファイバと接続される側の端面
を、光の導波方向に対して斜めに設けるように構成して
もよい。この場合も、前記光機能部と曲がり導波路とモ
ード変換領域とを構成する層の一部である活性層の近傍
に、この活性層に比べてバンドギャップ波長が短いガイ
ド層を更に設けることができる。
Alternatively, a semiconductor optical functional element according to the present invention is a waveguide having a curved optical waveguide formed on an optical functional portion formed on a semiconductor substrate, that is, an optical amplifier, a semiconductor laser, a waveguide type optical switch, or the like. A mode conversion region for changing the beam diameter of the guided light is provided, and the end face of the mode conversion region on the side connected to the fiber may be provided obliquely with respect to the light guiding direction. . Also in this case, a guide layer having a bandgap wavelength shorter than that of the active layer may be further provided in the vicinity of the active layer, which is a part of the layers forming the optical function part, the curved waveguide, and the mode conversion region. it can.

【0012】また、前記光機能部を複数の導波路を有す
る導波路型光スイッチとして機能するように構成すると
共に、前記モード変換領域を前記複数の導波路の各々に
設けるように構成してもよい。この場合、前記複数の導
波路の各々に設けられたモード変換領域のビーム広がり
角度が、導波路ごとに異なるように形成すれば好適であ
る。
Further, the optical function section may be configured to function as a waveguide type optical switch having a plurality of waveguides, and the mode conversion region may be provided in each of the plurality of waveguides. Good. In this case, it is preferable that the beam divergence angle of the mode conversion region provided in each of the plurality of waveguides be different for each waveguide.

【0013】更に、前記モード変換領域に電流注入構造
を設けることができる。また、前記モード変換領域は、
導波路の大きさを光の伝播方向に沿って徐々に変化させ
て構成すれば好適である。前記モード変換領域が積層構
造の導波路から構成される場合、この導波路の積層面内
および/または積層方向の大きさを光の伝播方向に沿っ
て徐々に変化させてモード変換領域を構成してもよい。
Furthermore, a current injection structure can be provided in the mode conversion region. Further, the mode conversion area is
It is preferable to construct the waveguide by gradually changing the size of the waveguide along the light propagation direction. When the mode conversion region is composed of a waveguide having a laminated structure, the size of the waveguide in the lamination plane and / or the lamination direction is gradually changed along the light propagation direction to form the mode conversion region. May be.

【0014】[0014]

【作用】本発明に係る半導体光機能素子によれば、光の
導波方向に対して斜めの端面を有するモード変換領域
は、平面波のまま導波光のビーム径を変化、すなわち光
機能部から接続されるファイバ方向への導波光の場合は
ビームスポット径を拡大し、或いは接続されるファイバ
から光機能部方向への導波光の場合はビームスポット径
を縮小するので、従来の斜め導波路構造による反射率低
減効果を更に大きくすることができると共に、従来例の
ように球面波を平面波に直すレンズ系が不要となる。
According to the semiconductor optical function element of the present invention, the mode conversion region having the end face oblique to the light guiding direction changes the beam diameter of the guided light as a plane wave, that is, is connected from the optical function section. In the case of guided light in the fiber direction, the beam spot diameter is enlarged, or in the case of guided light from the connected fiber to the optical function part, the beam spot diameter is reduced. The effect of reducing the reflectance can be further increased, and a lens system for converting a spherical wave into a plane wave as in the conventional example becomes unnecessary.

【0015】また、モード変換領域を設けたことによ
り、光機能部として半導体レーザや光増幅器を構成した
場合、導波路幅を消費電力が小さくできる1μm程度と
したままで、デバイス端からの透過光のビーム径を、実
用的な1%以下の反射率が得られる5μm以上にするこ
とができる。
Further, when a semiconductor laser or an optical amplifier is configured as an optical function portion by providing the mode conversion region, the transmitted light from the device end is left with the width of the waveguide kept at about 1 μm which can reduce the power consumption. The beam diameter can be set to 5 μm or more that can obtain a practical reflectance of 1% or less.

【0016】さらに、活性層の近傍に設けた、この活性
層よりもバンドギャップ波長が短いガイド層は、導波光
の発散を防止して導波路方向に概略揃える働きがあるの
で、放射損失を少なくしてモード変換領域における導波
光のビーム径の変更を行うことができる。光機能部とモ
ード変換領域とを曲がり導波路を介して接続することに
より、エッチングに面方位依存性があって光機能部を斜
め導波路構造にしたくない場合でも、モード変換領域を
斜め導波路構造とすることができる。
Further, the guide layer provided near the active layer and having a bandgap wavelength shorter than that of the active layer has a function of preventing the divergence of the guided light and substantially aligning it in the waveguide direction, so that the radiation loss is reduced. Then, the beam diameter of the guided light in the mode conversion region can be changed. By connecting the optical function unit and the mode conversion region via the curved waveguide, even if the optical function unit is not desired to have the oblique waveguide structure due to the plane orientation dependence of the etching, the mode conversion region is formed into the oblique waveguide. It can be a structure.

【0017】光機能部を複数の導波路を有する導波路型
光スイッチとして機能するように構成し、モード変換領
域を複数の導波路の各々に設けることにより、導波路型
光スイッチとファイバとの接続面における反射率が低減
すると共に、結合損失を低減することができる。この場
合、更に各モード変換領域のビーム広がり角度を導波路
ごとに異なるように形成することにより、接続されるフ
ラットファイバの端面を揃えた通常の低コストの平行フ
ァイバ束を用いることができる。
By constructing the optical function part so as to function as a waveguide type optical switch having a plurality of waveguides and providing a mode conversion region in each of the plurality of waveguides, a waveguide type optical switch and a fiber are formed. It is possible to reduce the reflectance at the connection surface and the coupling loss. In this case, by forming the beam divergence angle of each mode conversion region differently for each waveguide, it is possible to use a normal low-cost parallel fiber bundle in which the end faces of the connected flat fibers are aligned.

【0018】モード変換領域に電流注入構造を設けるこ
とにより、導波光の吸収を少なくしてモード変換領域に
おける損失を補償することができる。モード変換領域に
おける導波路の大きさを光の伝播方向に沿って徐々に変
化させることにより、例えばモード変換領域が積層構造
の導波路から構成されている場合には導波路の積層面内
および/または積層方向の大きさを光の伝播方向に沿っ
て徐々に変化させることにより、平面波を維持したまま
導波光のビーム径を変えることができる。このようなモ
ード変換領域を形成するためには、周知の選択領域成長
技術、例えば有機金属気相成長(MOCVD:Metal Organic
Chemical VaporDeposition又はMOVPE:Metal Organic Va
por Phase Epitaxy)法を用いて、成長前に選択成長用
SiO2マスクを予め形成しておくだけで良いので、作
製工程が複雑化せず、歩留まりが低下することもない。
また、斜めにする端面の角度が小さくて済むので斜め導
波路形成時のエッチング工程において面方位の影響を受
けることもなく作製プロセスが容易となる。更に、無反
射コート膜の膜厚誤差を緩く設定しても反射率を充分に
低くできるので、作製プロセスが容易となる。
By providing the current injection structure in the mode conversion region, the absorption of the guided light can be reduced and the loss in the mode conversion region can be compensated. By gradually changing the size of the waveguide in the mode conversion region along the propagation direction of light, for example, in the case where the mode conversion region is composed of a waveguide having a laminated structure, Alternatively, the beam diameter of the guided light can be changed while maintaining the plane wave by gradually changing the size in the stacking direction along the light propagation direction. In order to form such a mode conversion region, a well-known selective region growth technique such as metal organic chemical vapor deposition (MOCVD) is used.
Chemical Vapor Deposition or MOVPE: Metal Organic Va
por phase epitaxy method, a SiO 2 mask for selective growth need only be formed in advance before growth, so that the manufacturing process is not complicated and the yield is not reduced.
Further, since the angle of the end face to be slanted can be small, the manufacturing process is facilitated without being affected by the plane orientation in the etching step when forming the slanted waveguide. Furthermore, the reflectance can be made sufficiently low even if the film thickness error of the antireflection coating film is set loosely, so that the manufacturing process becomes easy.

【0019】[0019]

【実施例】次に、本発明に係る半導体光機能素子の実施
例につき、添付図面を参照しながら以下詳細に説明す
る。
Embodiments of the semiconductor optical functional device according to the present invention will be described below in detail with reference to the accompanying drawings.

【0020】<実施例1>図1は、本発明に係る半導体
光機能素子の一実施例を示す斜視図である。図1におい
て、参照符号1は基板を示し、この基板1は実際にはI
nP等の半導体基板上にInP等のバッファ層を積層し
たものであるが、図中では省略してある。この基板1上
の光機能部22にInGaAsP等の活性層(コア
層)、InP等のクラッド層およびInGaAsPなど
のコンタクト層を積層した導波路型発光素子2と、モー
ド変換領域23に平面波のままビームスポット径を変化
させるInGaAsPなどのコア層およびInPなどの
クラッド層を積層した導波路3とを、基板1の端面21
の法線方向に対して角度θだけ斜めにして設けて半導体
光機能素子20を構成する。また、図1の構成の場合、
すなわち、コア層の側面が露出したリッジ型導波路構造
の場合、導波光は導波路3の直下の基板1の深さ方向へ
ビームスポット径を広げながら端面21方向へ導波す
る。
<Embodiment 1> FIG. 1 is a perspective view showing an embodiment of a semiconductor optical functional device according to the present invention. In FIG. 1, reference numeral 1 indicates a substrate, which is actually I
Although a buffer layer of InP or the like is laminated on a semiconductor substrate of nP or the like, it is omitted in the drawing. A waveguide type light emitting device 2 in which an active layer (core layer) such as InGaAsP, a clad layer such as InP, and a contact layer such as InGaAsP are laminated on the optical function portion 22 on the substrate 1, and a plane wave remains in the mode conversion region 23. An end face 21 of the substrate 1 is provided with a waveguide 3 in which a core layer such as InGaAsP and a clad layer such as InP for changing the beam spot diameter are laminated.
The semiconductor optical functional device 20 is configured by being provided at an angle of θ with respect to the normal direction. In addition, in the case of the configuration of FIG.
That is, in the case of the ridge type waveguide structure in which the side surface of the core layer is exposed, the guided light is guided in the direction of the end face 21 while expanding the beam spot diameter in the depth direction of the substrate 1 immediately below the waveguide 3.

【0021】このような構成を有する本実施例の半導体
光機能素子の効果を確認するために、レーザ光を端面に
対して1°〜9°まで傾けて照射した際の実効的な端面
反射率のビームスポット径依存性を、3次元BPM(Be
am Propagation Method)法により計算した結果を図2
に示す。計算で使用したパラメータは、通常の半導体レ
ーザ(波長λ=1.55μm)を考慮してコア層の屈折
率を3.38、コア層の厚さを0.3μm、クラッド層
の屈折率を3.17とし、コア層の幅すなわち図1にお
ける導波路幅WGを0.5μm〜10μmまで変化させ
た。尚、ビームスポット径は光強度がピーク値から1/
2になる幅であるが、コア層の側面が露出する場合に
はこの幅は導波路幅WGに略等しい。
In order to confirm the effect of the semiconductor optical functional device of the present embodiment having such a structure, the effective end face reflectance when the laser light is irradiated at an angle of 1 ° to 9 ° with respect to the end face. Of the beam spot diameter dependence of 3D BPM (Be
Figure 2 shows the results calculated by the am Propagation Method).
Shown in The parameters used in the calculation are as follows: the refractive index of the core layer is 3.38, the thickness of the core layer is 0.3 μm, and the refractive index of the cladding layer is 3 in consideration of an ordinary semiconductor laser (wavelength λ = 1.55 μm). .17, and the width of the core layer, that is, the waveguide width WG in FIG. 1 was changed from 0.5 μm to 10 μm. The beam spot diameter is 1 /
The width is e 2 , but when the side surface of the core layer is exposed, this width is substantially equal to the waveguide width WG.

【0022】図2によれば、従来の典型的なシングルモ
ードの導波路幅WG=1μm、θ=7°の斜め導波路に
よって得られる端面反射率は、17.6%(同図中に、
●で示す)であるが、このビームスポット径を例えば5
μmに広げた場合、同じ端面反射率はθ=3度以下(同
図中に、→で示す)の斜め導波路で得られ、θ=7°の
ままであれば1%以下の端面反射率(同図中に、↓で示
す)を得られることが分かる。従って、図1の本実施例
の半導体光機能素子20においてθ=7°の角度に設定
しても、モード変換領域23に設けたビームスポット径
を変化させる導波路3によって、発光素子2から出射さ
れた1μmのビームスポット径が端面21において5μ
mに広がっていれば、同じ導波路幅(=1μm)でかつ
同じ角度の斜め導波路構造を有する従来の半導体光機能
素子に比べて1桁以上の反射率低減を実現することがで
きる。また、導波路3によりモード変換領域23から
は、平面波のままビームスポット径を拡大して出射する
ので、ファイバと接続する場合に球面波を平面波に直す
レンズ系が不要となり、フラットファイバだけで良く、
構成が簡単になる。更に、導波路型発光素子2の導波路
から面光源として出射しても、ほぼ完全な平面波となっ
てファイバに入射するので、ファイバとの結合損失が小
さい。端面21に対して導波構造が垂直な場合(θ=0
°)、結合損失は1dB以下にすることができるが、本
実施例の半導体光機能素子20では反射率を低減するた
めに斜めにしているので、若干影響を受けるが、θ=3
°程度までなら垂直な場合とほぼ同じ1dB以下にで
き、θ=7°でも2dB程度と従来に比べて小さい。す
なわち、斜め導波路構造による反射率低減効果を著しく
増大できると共に、ファイバとの結合損失も小さくする
ことができる。また、導波路型発光素子2の導波路幅を
5μmに広げなくとも1μm程度の幅で端面反射率1%
以下が得られるので、導波路幅を5μmとした場合の消
費電力の1/5程度の低消費電力で低反射率化が図れ
る。そして、導波路の角度θを小さくできる分、斜め導
波路形成時のエッチング工程において面方位の影響を受
けにくくなるので、作製プロセスも容易である。
According to FIG. 2, the end face reflectance obtained by the conventional typical single mode waveguide width WG = 1 μm and θ = 7 ° is 17.6% (in the figure,
(Denoted by ●), but this beam spot diameter is, for example, 5
When it is widened to μm, the same end facet reflectance is obtained with an oblique waveguide with θ = 3 degrees or less (indicated by → in the figure), and if θ = 7 °, the end facet reflectance is 1% or less. It can be seen that (shown by ↓ in the figure) can be obtained. Therefore, even if the angle is set to θ = 7 ° in the semiconductor optical functional device 20 of the present embodiment of FIG. 1, the light is emitted from the light emitting device 2 by the waveguide 3 provided in the mode conversion region 23 for changing the beam spot diameter. The beam spot diameter of 1 μm is 5 μm at the end face 21.
If it spreads to m, the reflectance can be reduced by one digit or more as compared with the conventional semiconductor optical functional device having the same waveguide width (= 1 μm) and the oblique waveguide structure of the same angle. Further, since the beam spot diameter is expanded from the mode conversion region 23 by the waveguide 3 and is emitted as a plane wave, a lens system for converting a spherical wave into a plane wave is unnecessary when connecting with a fiber, and only a flat fiber is required. ,
Simpler configuration. Furthermore, even if the light is emitted from the waveguide of the waveguide light emitting element 2 as a surface light source, it becomes a substantially complete plane wave and enters the fiber, so that the coupling loss with the fiber is small. When the waveguide structure is perpendicular to the end face 21 (θ = 0
), The coupling loss can be set to 1 dB or less, but since the semiconductor optical functional device 20 of this embodiment is inclined to reduce the reflectance, it is slightly affected, but θ = 3.
Up to about 0 °, the level can be reduced to 1 dB or less, which is almost the same as in the vertical case, and even at θ = 7 °, it is about 2 dB, which is smaller than the conventional case. That is, the effect of reducing the reflectance due to the oblique waveguide structure can be significantly increased, and the coupling loss with the fiber can be reduced. Further, even if the waveguide width of the waveguide type light emitting device 2 is not widened to 5 μm, the end face reflectance of 1% is obtained with a width of about 1 μm.
Since the following is obtained, it is possible to achieve a low reflectance with a power consumption of about ⅕ of the power consumption when the waveguide width is 5 μm. Since the angle θ of the waveguide can be made smaller, the influence of the plane orientation is less likely to be exerted in the etching step when forming the oblique waveguide, so that the manufacturing process is also easy.

【0023】図示はしないが、本実施例を従来の無反射
コ−ト膜との併用による反射率低減方法に適用すれば、
本実施例による反射率低減効果が大きいので、無反射コ
ート膜が不必要もしくは無反射コ−ト膜の屈折率、膜厚
誤差を従来よりも緩く設定することができる。したがっ
て、前者の場合は作製プロセスが1つ減り、後者の場合
は必ずしも膜厚モニタ付属の精巧な成膜装置を用いなく
ても、所望の低い反射率を得られ、作製プロセスが容易
となる。特に、反射率の低減はスポットサイズに比例し
て増大するため、導波路型発光素子2の導波路幅を1μ
mとしても、モ−ド変換領域によって10μm程度まで
スポットサイズを広げるならば、端面反射率1%程度を
導波路の角度θが4°程度で実現でき、ファイバとの結
合損失も2dBにすることも可能である。これは、フラ
ットファイバのコア径は通常10μm程度であるので、
モ−ド変換領域によってスポットサイズが10μmにな
ればファイバのコア径と等しくなり、ファイバとの結合
損失を小さくできるからである。
Although not shown in the drawings, if this embodiment is applied to a reflectance reducing method using a conventional non-reflective coating film in combination,
Since the effect of reducing the reflectance according to the present embodiment is great, the antireflection coating film is unnecessary, or the refractive index and the film thickness error of the antireflection coating film can be set looser than before. Therefore, in the former case, the number of manufacturing processes is reduced by one, and in the latter case, the desired low reflectance can be obtained and the manufacturing process can be facilitated without necessarily using the delicate film forming device attached to the film thickness monitor. In particular, since the reduction in reflectance increases in proportion to the spot size, the waveguide width of the waveguide type light emitting element 2 is set to 1 μm.
Even if m, if the spot size is expanded to about 10 μm depending on the mode conversion region, the end face reflectance of about 1% can be realized with the waveguide angle θ of about 4 °, and the coupling loss with the fiber should be 2 dB. Is also possible. This is because the core diameter of the flat fiber is usually about 10 μm,
This is because if the spot size becomes 10 μm due to the mode conversion region, it becomes equal to the core diameter of the fiber, and the coupling loss with the fiber can be reduced.

【0024】もちろん、従来の反射率低減方法と組み合
わせることにより、従来では実現できなかった低い反射
率を実現することができることは明らかである。尚、モ
−ド変換領域23の導波路3を形成するためには、周知
の選択領域成長技術、例えば有機金属気相成長法を用い
て、成長前に選択成長用マスクをあらかじめ形成してお
くだけで良く、作製工程が複雑化せず、歩留りが低下す
ることもない。
Of course, it is clear that by combining with the conventional reflectance reduction method, it is possible to realize a low reflectance which could not be realized in the past. Incidentally, in order to form the waveguide 3 of the mode conversion region 23, a well-known selective region growth technique, for example, a metal organic chemical vapor deposition method is used to form a selective growth mask in advance before the growth. The manufacturing process does not become complicated and the yield does not decrease.

【0025】<実施例2>図3は、本発明に係る半導体
光機能素子の別の実施例を示す斜視図である。尚、図3
において、実施例1の図1で示した構成部分と同じ部分
については同一の参照符号を付して、その詳細な説明を
省略する。すなわち、本実施例の半導体光機能素子20
は、基板1上に光機能部22に斜め導波路型光増幅器4
を形成し、光機能部22の両側にモード変換領域23,
23を設けて、それぞれのモード変換領域にビームスポ
ット径を変化させる導波路3,3を入出射端面21,2
1に対して角度θだけ傾けて形成している点が実施例1
と相違する。
<Embodiment 2> FIG. 3 is a perspective view showing another embodiment of the semiconductor optical functional device according to the present invention. FIG.
In FIG. 3, the same parts as those shown in FIG. 1 of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. That is, the semiconductor optical functional device 20 of the present embodiment.
Is an oblique waveguide type optical amplifier 4 on the optical function part 22 on the substrate 1.
Are formed on both sides of the optical function part 22, and the mode conversion regions 23,
23, and the waveguides 3 and 3 for changing the beam spot diameter are provided in the respective mode conversion regions, and the input / output end faces 21 and
The first embodiment is that it is formed by inclining by an angle θ with respect to the first embodiment.
Is different from.

【0026】このように構成することによっても、実施
例1で述べたのと同様の効果を得ることができる。従っ
て、斜め導波路構造による反射率低減効果の増大と、フ
ァイバとの結合損失の低減、低消費電力等を図った光増
幅器機能を有する半導体光機能素子を得ることができ
る。尚、入射端面のモード変換領域に設けた導波路3
は、入射端面に例えばファイバ(不図示)から入射され
る光のビームスポット径を縮小して光増幅器4へ導波
し、出射端面のモード変換領域に設けた導波路3は光増
幅器から出射されるビームスポット径を拡大しながら出
射端面21へ導波する。
With this structure, the same effect as described in the first embodiment can be obtained. Therefore, it is possible to obtain a semiconductor optical functional element having an optical amplifier function that achieves an increase in the reflectance reduction effect due to the oblique waveguide structure, a reduction in coupling loss with the fiber, and low power consumption. The waveguide 3 provided in the mode conversion region of the incident end face
For example, the beam spot diameter of light incident from a fiber (not shown) on the incident end face is reduced and guided to the optical amplifier 4, and the waveguide 3 provided in the mode conversion region of the emitting end face is emitted from the optical amplifier. The beam is guided to the emission end face 21 while expanding the beam spot diameter.

【0027】また、同様の効果を得るためには、必ずし
もモード変換領域23,23を光機能部22に近接して
設ける必要はなく、図4に示すように曲がり導波路5な
どで接続しても良い。この場合は、素子形成プロセスに
おいて、例えばエッチングに面方位依存性があり、光機
能部22に形成する素子を斜め導波路構造にしたくない
場合に好適である。
Further, in order to obtain the same effect, it is not always necessary to provide the mode conversion regions 23, 23 in the vicinity of the optical function part 22, and they are connected by the curved waveguide 5 as shown in FIG. Is also good. In this case, in the device forming process, for example, etching has a plane orientation dependency, which is suitable when it is not desired to form the device formed in the optical function section 22 into the oblique waveguide structure.

【0028】更にまた、同様の効果を得るためには、必
ずしも斜め導波路構造の劈開面である端面21を利用す
る必要はなく、図5に示すように、通常のホトリソグラ
フィと、ドライまたはウエットエッチング工程により、
導波路方向と斜めになるように端面21a,21aを形
成してもよい。
Furthermore, in order to obtain the same effect, it is not always necessary to use the end face 21 which is the cleavage plane of the oblique waveguide structure, and as shown in FIG. 5, ordinary photolithography and dry or wet are used. By the etching process,
The end faces 21a, 21a may be formed so as to be oblique to the waveguide direction.

【0029】<実施例3>図6は、本発明に係る半導体
光機能素子の更に別の実施例を示す斜視図であり、活性
層側面が露出するリッジ型導波路構造に適用した場合で
ある。図6において参照符号10はInP基板を示し、
このInP基板10上にInPバッファ層11が設けら
れ、更にInPバッファ層11上に、光機能部22とこ
の部分を挟むモード変換領域23,23にはInGaA
sP活性層12、InPの上部クラッド層13、InG
aAsPコンタクト層14が順次積層された構造で活性
層12の側面が露出したリッジ型の導波路構造が設けら
れている。そして、全面を覆うように絶縁膜のポリイミ
ド膜16が設けられ、光機能部22にはp電極17が設
けられている。本実施例の場合、光機能部22は光増幅
器として機能するように形成される。また、モード変換
領域23,23は、積層方向の厚さすなわち導波路幅が
光機能部22からそれぞれの端面21,21に向かって
徐々に薄くなるように構成されていると共に、端面21
に垂直な法線に対して水平方向にθの角度で斜めに設け
られている。
<Embodiment 3> FIG. 6 is a perspective view showing still another embodiment of the semiconductor optical functional device according to the present invention, which is applied to a ridge type waveguide structure in which the side surface of the active layer is exposed. . In FIG. 6, reference numeral 10 indicates an InP substrate,
An InP buffer layer 11 is provided on the InP substrate 10, and further, on the InP buffer layer 11, the optical function part 22 and the mode conversion regions 23 and 23 sandwiching this part are made of InGaA.
sP active layer 12, InP upper cladding layer 13, InG
A ridge-type waveguide structure is provided in which the side surface of the active layer 12 is exposed in a structure in which the aAsP contact layers 14 are sequentially stacked. An insulating polyimide film 16 is provided so as to cover the entire surface, and a p-electrode 17 is provided in the optical function section 22. In the case of the present embodiment, the optical function section 22 is formed so as to function as an optical amplifier. Further, the mode conversion regions 23, 23 are configured such that the thickness in the stacking direction, that is, the waveguide width is gradually reduced from the optical function portion 22 toward the respective end faces 21, 21, and the end face 21 is formed.
It is provided at an angle of θ in the horizontal direction with respect to the normal line perpendicular to the.

【0030】以下、このように構成される本実施例の半
導体光機能素子20の製造方法を、図7〜図10を用い
て説明する。この製造方法は、周知の選択領域成長技術
を用いることにより、プロセスを複雑化することなく、
本実施例の半導体光機能素子を製造できる方法の一つで
ある。
Hereinafter, a method of manufacturing the semiconductor optical functional device 20 of this embodiment having the above-described structure will be described with reference to FIGS. This manufacturing method uses a well-known selective area growth technique without complicating the process.
This is one of the methods by which the semiconductor optical functional device of this embodiment can be manufactured.

【0031】図7(a)は平面図であり、(b)は同平
面図にA−A’線で示した部分の断面図、(c)はB−
B’線で示した部分の断面図、(d)はC−C’線で示
した部分の断面図である。以下、各図において(a)〜
(d)は、同様に同じ部分の平面図および断面図を示
す。先ず、各断面図(b)〜(c)に示すように、MO
CVD法によりInP基板10上にバッファ層11とな
るInPを成長する。
FIG. 7 (a) is a plan view, FIG. 7 (b) is a sectional view of a portion indicated by line AA 'in the same plan view, and FIG. 7 (c) is B-.
Sectional drawing of the part shown by the B'line, (d) is sectional drawing of the part shown by the CC 'line. Hereinafter, in each figure, (a)-
Similarly, (d) shows a plan view and a sectional view of the same portion. First, as shown in each of the sectional views (b) to (c), the MO
InP to be the buffer layer 11 is grown on the InP substrate 10 by the CVD method.

【0032】次に、図8において、InPバッファ層1
1上にSiO2層を堆積した後、通常のホトリソグラフ
ィ技術によりエッチング加工して選択領域成長用SiO
2マスク15を形成する。次いで、InGaAsPの活
性層12、InPの上部クラッド層13、およびInG
aAsPのコンタクト層14をMOCVD法により順次
成長して積層構造を形成する。この時、同図(a)〜
(d)から分かるようにSiO2マスク15上には成長
せず、InPバッファ層11が露出した部分だけに選択
的に成長する。しかもSiO2マスク15の幅の広いと
ころでは成長速度が大きく、幅の狭いところでは成長速
度が小さいという性質があるため、モード変換領域2
3,23は導波路に沿って厚さが徐々に薄く形成され
る。このような選択領域成長技術に関しては、例えば、
青木等による信学技法MW94−33,OPE94−2
6(1994−06),第67〜72頁の「選択MOV
PEによる基板面内膜厚制御法を用いた光変調器集積波
長多重光源」に記載された成長技術があり、これを用い
ることができる。
Next, referring to FIG. 8, the InP buffer layer 1
After depositing a SiO 2 layer on the SiO 2 , a SiO 2 layer for selective region growth is formed by etching using a normal photolithography technique.
2 The mask 15 is formed. Next, the InGaAsP active layer 12, the InP upper cladding layer 13, and the InG
The contact layer 14 of aAsP is sequentially grown by the MOCVD method to form a laminated structure. At this time, FIG.
As can be seen from (d), it does not grow on the SiO 2 mask 15, but grows selectively only on the exposed portion of the InP buffer layer 11. Moreover, since the growth rate is large in the wide width of the SiO 2 mask 15 and low in the narrow width, the mode conversion region 2
The thicknesses 3 and 23 are gradually reduced along the waveguide. Regarding such selective area growth technology, for example,
Aoki et al.'S Technical Techniques MW94-33, OPE94-2
6 (1994-06), pp. 67-72, "Selected MOV".
There is a growth technique described in "Optical modulator integrated wavelength multiplexing light source using PE in-plane film thickness control method", and this can be used.

【0033】次に、図9において、絶縁膜としてポリイ
ミド膜16で表面を被覆した後、光増幅器となる光機能
部22に、通常のホトリソグラフィ技術により窓27を
開け、同図(a),(b)に示すように、CF4プラズ
マエッチングによって選択的にポリイミド膜16を除去
する。
Next, in FIG. 9, after the surface is covered with a polyimide film 16 as an insulating film, a window 27 is opened in the optical function section 22 serving as an optical amplifier by a normal photolithography technique. As shown in (b), the polyimide film 16 is selectively removed by CF 4 plasma etching.

【0034】最後に、図10において、例えば、Au/
Ti等の金属を真空蒸着した後、ホトリソグラフィ技術
により同図(a)に示すようにパターニングして、p電
極17を形成する。尚、本実施例では、説明の便宜上、
半導体光機能素子20を最初から直方体の基板10を用
いたような図で示したが、実際には通常の円形状のウエ
ハを用い、最後に劈開により直方体に形成することは言
うまでもない。また、図では省略したが、例えば、Au
/Pt/Ti等の金属を真空蒸着して基板10の裏面に
n電極を形成するのは勿論である。
Finally, referring to FIG. 10, for example, Au /
After a metal such as Ti is vacuum-deposited, it is patterned by photolithography as shown in FIG. In the present embodiment, for convenience of explanation,
Although the semiconductor optical functional device 20 is shown from the beginning using the rectangular parallelepiped substrate 10, it is needless to say that an ordinary circular wafer is actually used, and finally the semiconductor optical functional device 20 is formed into a rectangular parallelepiped by cleavage. Although omitted in the figure, for example, Au
Of course, a metal such as / Pt / Ti is vacuum-deposited to form the n-electrode on the back surface of the substrate 10.

【0035】このように、図7〜図10で示した製造方
法によれば、通常の半導体光増幅器構造の製造プロセス
となんら変わることなく、モ−ド変換領域23を集積化
することができる。さらに、本実施例の光増幅器を備え
た半導体光機能素子20は、実施例2の図3に示した半
導体光機能素子と同様に、反射率の低減およびファイバ
との結合損失の低減、低消費電力等の効果を奏する。ま
た、p電極17から注入された電流は、モード変換領域
23,23にも注入される構造となっているので、モー
ド変換領域における導波光の吸収を少なくして損失を補
償することができる。
As described above, according to the manufacturing method shown in FIGS. 7 to 10, the mode conversion region 23 can be integrated without any change from the manufacturing process of the normal semiconductor optical amplifier structure. Further, the semiconductor optical functional device 20 provided with the optical amplifier of the present embodiment, like the semiconductor optical functional device shown in FIG. 3 of the second embodiment, has reduced reflectance, reduced coupling loss with the fiber, and low consumption. It produces an effect such as electric power. Further, since the current injected from the p-electrode 17 is also injected into the mode conversion regions 23, 23, the absorption of the guided light in the mode conversion regions can be reduced to compensate the loss.

【0036】以上の説明では、モ−ド変換領域23,2
3と光機能部22の光増幅器とを同時に作製し、通常の
半導体光増幅器構造の成長プロセス数と同じにしたが、
モ−ド変換領域23,23を光機能部22と同時に作製
せずに、別々に作りつけても良い。この場合は、光機能
部22の光増幅器に選択的に電流が注入されるため、消
費電力を更に小さくすることができる。また、光機能部
22に半導体光増幅器の代わりに、半導体レーザを形成
しても良いことは勿論である。
In the above description, the mode conversion areas 23, 2
3 and the optical amplifier of the optical function section 22 were manufactured at the same time, and the number of growth processes was the same as that of a normal semiconductor optical amplifier structure.
The mode conversion regions 23 and 23 may be separately formed instead of being formed at the same time as the optical function unit 22. In this case, since the current is selectively injected into the optical amplifier of the optical function unit 22, the power consumption can be further reduced. Further, it goes without saying that a semiconductor laser may be formed in the optical function section 22 instead of the semiconductor optical amplifier.

【0037】さらに以上の説明では、モード変換領域2
3,23のビームスポット径を変化させる導波路とし
て、導波路幅が積層方向に変わる例を示したが、図11
(a)〜(d)に示すように積層面内で導波路幅を変え
ることにより実現してもよい。この場合、選択領域成長
を行う必要がなく、通常のフォトリソグラフィの際に、
ホトマスク形状を修正するだけででき、プロセスの複雑
化は全くないまま、本発明の半導体光機能素子を実現す
ることができる。
Further, in the above description, the mode conversion area 2
An example in which the waveguide width is changed in the stacking direction is shown as the waveguide for changing the beam spot diameters of 3 and 23.
It may be realized by changing the width of the waveguide in the stacking plane as shown in (a) to (d). In this case, there is no need to perform selective area growth, and during normal photolithography,
The semiconductor optical functional device of the present invention can be realized without modifying the photomask shape and complicating the process.

【0038】勿論、図12(a)〜(d)に示すよう
に、モード変換領域23,23の導波路幅を、積層方向
と積層面内との2つを変化させる方法を同時に行うこと
により本発明の半導体光機能素子を実現しても良い。こ
の場合、積層方向、並びに積層面内方向の両方におい
て、前述した反射率の低減およびファイバとの結合損失
の低減、低消費電力等の効果が増強される。また、これ
らの効果とともに、入出射光の形状を円形状に近く制御
することが可能なため、ファイバとの結合損失がゼロに
近づき、より理想的になる。
As a matter of course, as shown in FIGS. 12A to 12D, by simultaneously performing the method of changing the waveguide width of the mode conversion regions 23, 23 in the stacking direction and in the stacking plane. The semiconductor optical functional device of the present invention may be realized. In this case, the effects of the above-described reduction of reflectance, reduction of coupling loss with the fiber, low power consumption, and the like are enhanced in both the stacking direction and the stacking plane direction. In addition to these effects, the shape of the incoming and outgoing light can be controlled close to a circular shape, so that the coupling loss with the fiber approaches zero, which makes it more ideal.

【0039】更に、本実施例では、活性層12をバッフ
ァ層11の直上に設けているが、図13に示すように、
活性層12の近傍に、この活性層12に比べてバンドギ
ャップ波長が短いいわゆる光ガイド層18を設けること
により、光ガイド層18は導波光の発散を防止して導波
路方向に概略揃える働きがあるので、放射損失を少なく
してモード変換領域における導波光のビーム径の変更を
より適切に行うことができる。
Further, in this embodiment, the active layer 12 is provided directly on the buffer layer 11, but as shown in FIG.
By providing a so-called optical guide layer 18 having a bandgap wavelength shorter than that of the active layer 12 in the vicinity of the active layer 12, the optical guide layer 18 has a function of preventing divergence of guided light and roughly aligning in the waveguide direction. Therefore, it is possible to reduce the radiation loss and more appropriately change the beam diameter of the guided light in the mode conversion region.

【0040】また、本実施例では、リッジ型導波路構造
で、活性層(コア層)側面が露出する場合について説明
したが、図示はしないが、活性層(コア層)側面の露出
しないリッジ型導波路構造、および埋込型導波路構造で
も同様の効果が得られるのは、明らかである。
In the present embodiment, the ridge type waveguide structure has been described in which the side surface of the active layer (core layer) is exposed, but although not shown, the side surface of the active layer (core layer) is not exposed. It is obvious that the same effect can be obtained with the waveguide structure and the buried waveguide structure.

【0041】ここで図16を用いて、モード変換領域2
3が図11〜図13に示した積層面内で導波路幅が徐々
に変化している導波路構造を有する場合を例に作用・効
果について更に詳細に説明する。図16は、半導体光機
能素子20とこれに接続されるフラットファイバ50と
の出射端面における光路の様子を示す概略上面図であ
る。
Here, referring to FIG. 16, the mode conversion area 2
The operation and effect will be described in more detail by taking as an example the case where 3 has a waveguide structure in which the waveguide width gradually changes in the laminated plane shown in FIGS. 11 to 13. FIG. 16 is a schematic top view showing a state of an optical path on the emission end face of the semiconductor optical functional device 20 and the flat fiber 50 connected thereto.

【0042】図16において、光機能部22の光増幅器
24およびモード変換領域23の導波路28は、デバイ
ス端面21に対して斜めに形成されている。また、導波
路28は積層面内に導波路幅が変化している。光機能部
22からの導波光26は、モード変換領域23を介して
デバイス端面21から出射され、光ファイバ50へ入力
される。このとき導波光26は、モード変換領域23の
導波路28において、平面波のままそのビームスポット
径が変わり、出射されるが、デバイス端面21に対して
斜めに形成されると共にビーム径が広くなっているので
反射光25は光機能部22へ伝播せず、従来の斜め導波
路だけの場合或いは窓構造だけの場合よりも更に端面反
射率が低減する。すなわち、斜め導波路による端面反射
率低減化の増大効果がある。また、窓構造が不要である
から、埋込み成長工程を追加しなくても形成でき、歩留
まりが悪化することもない。更に、斜め導波路による端
面反射率低減の増大効果により、所望の端面反射率を得
るために必要な斜めの角度θが、半導体増幅器の導波路
幅から予測される角度よりも小さくて済むので、結晶方
位によりエッチング形状が異なる影響を、従来よりも小
さくすることができ、所望の角度のデバイス構造を形成
し易いという利点もある。
In FIG. 16, the optical amplifier 24 of the optical function portion 22 and the waveguide 28 of the mode conversion region 23 are formed obliquely with respect to the device end face 21. In addition, the waveguide width of the waveguide 28 is changed in the stacking plane. The guided light 26 from the optical function unit 22 is emitted from the device end face 21 via the mode conversion region 23 and input to the optical fiber 50. At this time, in the waveguide 28 of the mode conversion region 23, the beam spot diameter of the guided light 26 changes as it is as a plane wave and is emitted, but it is formed obliquely with respect to the device end face 21 and the beam diameter becomes wide. Therefore, the reflected light 25 does not propagate to the optical function portion 22, and the end face reflectance is further reduced as compared with the case of only the conventional oblique waveguide or the case of only the window structure. That is, the oblique waveguide has an effect of increasing the reduction of the end face reflectance. Further, since the window structure is not necessary, it can be formed without adding the buried growth step, and the yield does not deteriorate. Further, due to the effect of increasing the end facet reflectivity reduction by the oblique waveguide, the oblique angle θ required to obtain the desired end facet reflectivity can be smaller than the angle predicted from the waveguide width of the semiconductor amplifier. The effect that the etching shape varies depending on the crystal orientation can be made smaller than in the conventional case, and there is an advantage that a device structure having a desired angle can be easily formed.

【0043】また、一般に半導体レーザや半導体増幅器
への電流注入効率を上げて消費電力を小さくするために
は、1μm程度の導波路幅が良いが、1μmの導波路幅
では、例えばθ=7°の斜め導波路構造を用いただけで
は、図2から分かるように端面反射率は18%程度にし
かならなず、導波路幅が5μm以上になってはじめて実
用的な端面反射率1%以下が得られる。しかし、半導体
レーザや半導体増幅器の導波路幅を5μmにすると、1
μmの場合よりも消費電力は5倍となる。これに対して
本発明の半導体光機能素子は光機能部に形成する半導体
レーザや半導体増幅器の導波路幅は、消費電力を小さく
できる1μm程度の幅としたままで低反射率化が図れる
ので、消費電力を低減できる。
Generally, in order to increase the current injection efficiency to the semiconductor laser and the semiconductor amplifier and reduce the power consumption, a waveguide width of about 1 μm is preferable, but with a waveguide width of 1 μm, for example, θ = 7 °. As can be seen from FIG. 2, the end face reflectance can only be about 18% by using only the oblique waveguide structure, and the practical end face reflectance of 1% or less cannot be obtained until the waveguide width becomes 5 μm or more. To be However, if the waveguide width of the semiconductor laser or semiconductor amplifier is 5 μm,
The power consumption is 5 times that in the case of μm. On the other hand, in the semiconductor optical functional device of the present invention, since the waveguide width of the semiconductor laser or the semiconductor amplifier formed in the optical functional portion can be reduced to about 1 μm which can reduce the power consumption, the reflectance can be reduced. Power consumption can be reduced.

【0044】そして、モード変換領域23では、導波光
26は平面波のままそのビーム径が変わるので、図14
及び図15で示した従来例のように球面波を平面波に直
すレンズ系が不要となり、フラットファイバだけで良く
構成が簡単になる分コストが低減する。
In the mode conversion region 23, the guided light 26 changes its beam diameter as a plane wave.
Further, unlike the conventional example shown in FIG. 15, a lens system for converting a spherical wave into a plane wave is not necessary, and the cost can be reduced because the structure can be simplified by using only the flat fiber.

【0045】また更に、モード変換領域23の導波路2
8では導波光26は平面波のままそのビーム径が変わ
り、透過光29として出射される。従って、光機能部2
2が面光源として出射されても、ほぼ完全な平面波とな
ってファイバ50のコア部52に入射される。導波構造
が劈開面すなわちデバイス端面21に対して垂直な場合
には、ファイバとの結合損失を1dB以下にすることが
できるが、導波路28が端面21に対して斜めであるの
で、ビーム形状は斜めの効果をわずかに受けて、θ=3
°程度までならば端面21に対して垂直な場合とほぼ同
じ結合損失1dB以下が得られ、θ=7°でも結合損失
2dB程度を得ることができ、ファイバとの結合損失を
従来例よりも小さくすることができる。尚、完全な平面
波として出射した場合には、ビーム形状は、斜めの影響
をまったく受けないが、実際にはわずかに不完全な平面
波であるので、斜めの影響をわずかに受けるのである。
Furthermore, the waveguide 2 in the mode conversion region 23
In 8, the guided light 26 is emitted as transmitted light 29 with its beam diameter changed as it is as a plane wave. Therefore, the optical function unit 2
Even when 2 is emitted as a surface light source, it becomes a substantially complete plane wave and is incident on the core portion 52 of the fiber 50. When the waveguide structure is perpendicular to the cleavage plane, that is, the device end face 21, the coupling loss with the fiber can be 1 dB or less, but the waveguide 28 is oblique to the end face 21, so that the beam shape is small. Is slightly affected by the diagonal effect, θ = 3
Up to about 0 °, a coupling loss of 1 dB or less, which is almost the same as in the case of being perpendicular to the end face 21, can be obtained even at θ = 7 °, and the coupling loss with the fiber is smaller than that of the conventional example. can do. When the beam is emitted as a perfect plane wave, the beam shape is not affected by the diagonal at all, but is actually a slightly imperfect plane wave, and thus is slightly affected by the diagonal.

【0046】<実施例4>図17は本発明に係る半導体
光機能素子の更に別の実施例を示す概略平面図であり、
全反射型2×2クロスバー光スイッチに適用した場合で
ある。なお、本実施例を理解し易くするために、本実施
例の説明に先立ち、先ず、図18に従来の全反射型2×
2クロスバー光スイッチを示し、その構成及び動作につ
いて説明する。
<Embodiment 4> FIG. 17 is a schematic plan view showing still another embodiment of the semiconductor optical functional device according to the present invention.
This is a case where it is applied to a total reflection type 2 × 2 crossbar optical switch. To facilitate understanding of the present embodiment, prior to the description of the present embodiment, first, FIG.
A two-crossbar optical switch is shown, and its configuration and operation will be described.

【0047】図18において、参照符号60は従来の全
反射型2×2クロスバー光スイッチを示し、この光スイ
ッチ60は入力側の先球ファイバ61および62から入
射した光を、出力側の先球ファイバ63または64のい
ずれかに任意に光路を切り替える半導体光機能素子であ
る。例えば、入力側の先球ファイバ61から入射した光
を出力側の先球ファイバ63または64のいずれかに切
り替える場合について説明する。
In FIG. 18, reference numeral 60 designates a conventional total reflection type 2 × 2 crossbar optical switch, and this optical switch 60 receives light incident from the input spherical fibers 61 and 62 and outputs it. It is a semiconductor optical functional device that arbitrarily switches the optical path to either the spherical fiber 63 or 64. For example, a case will be described in which light incident from the input side spherical fiber 61 is switched to either the output side spherical fiber 63 or 64.

【0048】入力側の先球ファイバ61から入射した光
は、曲がり導波路66aを導波した後、導波路67aを
導波し、電流注入部68に達する。ここで、先球ファイ
バ63に出射させる場合には、電流注入部68に電流を
注入して局所的に屈折率を低下させる。これにより、導
波路67aからの光は電流注入部68により全反射さ
れ、導波路69a及び曲がり導波路70aを導波して出
力側の先球ファイバ63に出射される。また、先球ファ
イバ64に出射させる場合には、電流注入部68に電流
を注入しなければ良い。その場合、導波路67aからの
光は電流注入部68を透過して電流注入部71に達す
る。電流注入部71には電流を注入して局所的に屈折率
を低下させておき、全反射させる。このようにして、先
球ファイバ61から入射した光は出力側の先球ファイバ
64に出射される。ここで、曲がり導波路66a及び導
波路67aの伝播損失と、電流注入部68,71の反射
損失及び透過損失とを補うために、導波路中に半導体光
増幅器72aが設けられている。この半導体光増幅器7
2aがレーザ発振をしないようにするためには低端面反
射率が必要であり、通常はデバイス60の端面に無反射
膜を蒸着している。ここで他の入出力ポート65は使用
しない。また、電流注入による局所的に屈折率を低下さ
せる場合の屈折率低下量は高々1%であることから、全
反射角を5°以上にすることができない。このため、通
常の光スイッチ交差角度φは5°であり、構造的な工夫
を行っても10°程度が限度である。このような半導体
光増幅器が設けられた全反射型クロスバー光スイッチの
従来例としては、例えば、アイ・イー・イー・イー ホ
トニクス・テクノロジーレターズ、1994年2月、第
6巻、第2号、第218〜221頁(IEEE PHOTONICS T
ECHNOLOGY LETTERS, VOL.6,NO.2, FEBRUARY 1994, pp.2
18-221)に記載されたものが挙げられる。
The light incident from the front spherical fiber 61 on the input side is guided through the curved waveguide 66a, then guided through the waveguide 67a, and reaches the current injection portion 68. Here, when the light is emitted to the front spherical fiber 63, a current is injected into the current injection portion 68 to locally reduce the refractive index. As a result, the light from the waveguide 67a is totally reflected by the current injection portion 68, guided through the waveguide 69a and the curved waveguide 70a, and emitted to the output spherical fiber 63. Further, when the light is emitted to the front spherical fiber 64, it is sufficient that the current is not injected into the current injection unit 68. In that case, the light from the waveguide 67 a passes through the current injection unit 68 and reaches the current injection unit 71. A current is injected into the current injection unit 71 to locally lower the refractive index and totally reflect the light. In this way, the light incident from the front spherical fiber 61 is emitted to the front spherical fiber 64 on the output side. Here, a semiconductor optical amplifier 72a is provided in the waveguide in order to compensate for the propagation loss of the curved waveguide 66a and the waveguide 67a and the reflection loss and the transmission loss of the current injection parts 68 and 71. This semiconductor optical amplifier 7
In order to prevent the laser oscillation of 2a, a low end facet reflectance is required, and a non-reflection film is usually deposited on the end face of the device 60. Here, the other input / output port 65 is not used. Further, when the refractive index is locally reduced by current injection, the amount of decrease in the refractive index is at most 1%, so that the total reflection angle cannot be set to 5 ° or more. For this reason, the usual optical switch crossing angle φ is 5 °, and even if structural measures are taken, the limit is about 10 °. As a conventional example of a total reflection type crossbar optical switch provided with such a semiconductor optical amplifier, for example, IEE Photonics Technology Letters, February 1994, Volume 6, No. 2, Pages 218-221 (IEEE PHOTONICS T
ECHNOLOGY LETTERS, VOL.6, NO.2, FEBRUARY 1994, pp.2
18-221).

【0049】これに対して、図17に示したように、全
反射型2×2クロスバー光スイッチ機能を構成した本実
施例の半導体光機能素子80は、図18に示した従来例
と比べて、曲がり導波路部RW1,RW2を除いている
点、及び入出射端面にビームスポット径を変化させる斜
め導波路73a,73bからなるモード変換領域23,
23を設けている点が相違する。このモード変換領域2
3により、実施例1〜3で述べたのと同様の低端面反射
率、低結合損失、等の効果が得られる。従って、入出射
側に接続されるファイバは、廉価なフラットファイバ8
1〜84を使用することができる。更に、光スイッチの
小型化が図れるという利点もある。従来、曲がり導波路
66a,66bは、導波光の曲がり損失を少なくするた
めに、なるべく大きな半径で曲げていた。例えば、図1
8に示した全反射型クロスバー光スイッチ60の従来例
では全長Lが12mmに対して、曲がり導波路部RW
1,RW2の占める部分は約4mmである。これに対し
て本実施例では、曲がり導波路を使用せずに済むので、
その分だけ小型化することができる。
On the other hand, as shown in FIG. 17, the semiconductor optical functional device 80 of this embodiment having a total reflection type 2 × 2 crossbar optical switch function is different from the conventional example shown in FIG. And the mode conversion region 23 including the curved waveguides RW1 and RW2 and the oblique waveguides 73a and 73b for changing the beam spot diameter on the input / output end face.
23 is different. This mode conversion area 2
According to 3, the same effects as low facet reflectivity, low coupling loss and the like as described in Examples 1 to 3 can be obtained. Therefore, the fiber connected to the input / output side is an inexpensive flat fiber 8
1-84 can be used. Further, there is an advantage that the optical switch can be downsized. Conventionally, the curved waveguides 66a and 66b are bent with a radius as large as possible in order to reduce the bending loss of the guided light. For example, FIG.
In the conventional example of the total reflection type crossbar optical switch 60 shown in FIG. 8, the total length L is 12 mm and the curved waveguide RW
The area occupied by 1 and RW2 is about 4 mm. On the other hand, in this embodiment, since it is not necessary to use the bent waveguide,
The size can be reduced accordingly.

【0050】図19及び図20は、図17に示した出射
端面付近を拡大した図である。図19では、モード変換
領域23の導波路73a,73bから出射した2つの光
は、わずかながらビーム径が拡がりながらそれぞれフラ
ットファイバ83,84へ入射する。この際、2つの導
波路73a,73bが全く同じ構造である図19のよう
な場合には、導波路73a,73bの各端面とそれぞれ
に対向するフラットファイバ83,84との距離は、そ
れぞれ最も低い結合損失が得られるように同じ距離にお
かれる。
19 and 20 are enlarged views of the vicinity of the emission end face shown in FIG. In FIG. 19, the two lights emitted from the waveguides 73a and 73b in the mode conversion region 23 are incident on the flat fibers 83 and 84, respectively, while the beam diameters are slightly expanded. In this case, in the case where the two waveguides 73a and 73b have exactly the same structure as shown in FIG. 19, the distances between the respective end faces of the waveguides 73a and 73b and the flat fibers 83 and 84 facing each other are the maximum. They are placed at the same distance so that a low coupling loss is obtained.

【0051】図20は、フラットファイバ83に入射す
るモード変換領域23の導波路73aと、フラットファ
イバ84に入射するモード変換領域23の導波路73b
との構造を変えた場合を示している。すなわち、モード
変換領域23の導波路73aのビーム広がり角よりも、
モード変換領域23の導波路73bのビーム広がり角が
小さくなるように、すなわちモード変換領域の導波路ご
とに異なるビーム広がり角になるようにすれば、フラッ
トファイバ83,84の端面を図20に示すように揃え
ても均一な結合効率を得ることができる。これにより、
図19の場合のようなファイバ83,84の端面が少し
ずつずれた特殊なフラットファイバ束を用いることな
く、通常の安価なフラットファイバ束をそのままの形で
利用することによって、フラットファイバ83,84へ
の均一な結合が可能となる効果がある。
FIG. 20 shows a waveguide 73a in the mode conversion region 23 incident on the flat fiber 83 and a waveguide 73b in the mode conversion region 23 incident on the flat fiber 84.
The case where the structure of and is changed is shown. That is, rather than the beam divergence angle of the waveguide 73a of the mode conversion region 23,
If the beam divergence angle of the waveguide 73b in the mode conversion region 23 is reduced, that is, the beam divergence angle is different for each waveguide in the mode conversion region 23, the end faces of the flat fibers 83 and 84 are shown in FIG. Even if they are aligned as described above, uniform coupling efficiency can be obtained. This allows
Instead of using a special flat fiber bundle in which the end faces of the fibers 83 and 84 are slightly shifted as in the case of FIG. 19, the flat fiber 83, 84 can be used by using an ordinary inexpensive flat fiber bundle as it is. There is an effect that a uniform bond can be obtained.

【0052】以上、本発明の好適な実施例について説明
したが、本発明は前記実施例に限定されることなく、本
発明の精神を逸脱しない範囲内において種々の設計変
更、例えば、材料系はInGaAsP系に限ることな
く、GaAsなどの他の半導体材料系であっても、或い
は活性層に多重量子井戸を採用してもよく、また、光機
能部としては、半導体レ−ザや半導体光増幅器単体だけ
でなく、これらを集積した集積化光源や、光スイッチ、
変調器、などであっても、同様になし得ることは勿論で
ある。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-mentioned embodiments, and various design changes, such as material systems, can be made without departing from the spirit of the present invention. The semiconductor layer is not limited to the InGaAsP type, but may be other semiconductor material type such as GaAs, or multiple quantum wells may be adopted for the active layer, and the optical function section may be a semiconductor laser or a semiconductor optical amplifier. Not only a single unit, integrated light source that integrates these, optical switch,
Of course, a modulator or the like can be used in the same manner.

【0053】[0053]

【発明の効果】前述した実施例から明らかなように、本
発明によれば、光機能部の入射端面及び/または出射端
面に導波光のビーム径を変化させるモード変換領域とし
ての導波路構造をファイバと接続される側の端面に対し
て斜めに設けることにより、従来の斜め導波路の端面反
射率低減効果を更に大幅に向上することができる。ま
た、反射率低減に必要な端面の角度が小さくて済む上
に、モード変換領域によるビームスポット径の拡大によ
り、ファイバとの結合損失をも同時に低減することがで
きる。更に、端面の角度の小さい斜め導波路構造、モ−
ド変換領域の集積化工程は、何ら複雑な工程を追加する
必要がなく容易であり、良好な歩留が期待できる。
As is apparent from the above-described embodiments, according to the present invention, the waveguide structure as the mode conversion region for changing the beam diameter of the guided light is provided at the incident end face and / or the emitting end face of the optical function portion. By providing it obliquely with respect to the end surface on the side connected to the fiber, the effect of reducing the end surface reflectance of the conventional oblique waveguide can be further greatly improved. In addition, the angle of the end face required to reduce the reflectance is small, and the beam spot diameter is enlarged by the mode conversion region, so that the coupling loss with the fiber can be reduced at the same time. Furthermore, an oblique waveguide structure with a small angle of the end face,
The integration process of the conversion region is easy without adding any complicated process, and a good yield can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体光機能素子の一実施例を示
す斜視図である。
FIG. 1 is a perspective view showing an embodiment of a semiconductor optical functional device according to the present invention.

【図2】本発明に係る半導体光機能素子の効果を確認す
るために、斜め導波路の角度をパラメータに反射率のビ
ームスポット径依存性を示す特性線図である。
FIG. 2 is a characteristic diagram showing the beam spot diameter dependence of reflectance with the angle of the oblique waveguide as a parameter in order to confirm the effect of the semiconductor optical functional device according to the present invention.

【図3】本発明に係る半導体光機能素子の別の実施例を
示す斜視図である。
FIG. 3 is a perspective view showing another embodiment of the semiconductor optical functional device according to the present invention.

【図4】本発明に係る半導体光機能素子のまた別の実施
例を示す斜視図である。
FIG. 4 is a perspective view showing another embodiment of the semiconductor optical functional device according to the present invention.

【図5】本発明に係る半導体光機能素子の更に別の実施
例を示す斜視図である。
FIG. 5 is a perspective view showing still another embodiment of the semiconductor optical functional device according to the present invention.

【図6】本発明に係る半導体光機能素子のまた更に別の
実施例を示す斜視図である。
FIG. 6 is a perspective view showing still another embodiment of the semiconductor optical functional device according to the present invention.

【図7】図6に示した半導体光機能素子を実現する一製
造方法を示す途中工程の図であって、(a)は平面図、
(b)は同平面図にA−A’線で示した部分の断面図、
(c)は同じくB−B’線で示した部分の断面図、
(d)は同じくC−C’線で示した部分の断面図であ
る。
7A and 7B are diagrams of an intermediate step showing a manufacturing method for realizing the semiconductor optical functional device shown in FIG. 6, in which FIG.
(B) is a cross-sectional view of a portion indicated by line AA ′ in the same plan view,
(C) is a cross-sectional view of a portion similarly shown by the line BB ′,
FIG. 6D is a sectional view of a portion similarly shown by the line CC ′.

【図8】図7(a)〜(d)に示した各部分の次の途中
工程における平面図及び断面図である。
8A and 8B are a plan view and a cross-sectional view of each portion shown in FIGS. 7A to 7D in the next intermediate step.

【図9】図8(a)〜(d)に示した各部分の次の途中
工程における平面図及び断面図である。
9A and 9B are a plan view and a cross-sectional view of each part shown in FIGS. 8A to 8D in the next intermediate step.

【図10】図9(a)〜(d)に示した各部分の次の途
中工程における平面図及び断面図である。
FIG. 10 is a plan view and a cross-sectional view of each part shown in FIGS. 9A to 9D in the next intermediate step.

【図11】本発明に係る半導体光機能素子のまた別の実
施例を示す図であって、(a)は平面図、(b)は同平
面図にA−A’線で示した部分の断面図、(c)は同じ
くB−B’線で示した部分の断面図、(d)は同じくC
−C’線で示した部分の断面図である。
11A and 11B are views showing another embodiment of the semiconductor optical functional device according to the present invention, in which FIG. 11A is a plan view and FIG. 11B is a view of a portion taken along the line AA ′ in the plan view. A sectional view, (c) is a sectional view of a portion indicated by the line BB ′, and (d) is also a sectional view.
It is sectional drawing of the part shown by the -C 'line.

【図12】本発明に係る半導体光機能素子の更に別の実
施例を示す図であって、(a)は平面図、(b)は同平
面図にA−A’線で示した部分の断面図、(c)は同じ
くB−B’線で示した部分の断面図、(d)は同じくC
−C’線で示した部分の断面図である。
12A and 12B are views showing still another embodiment of the semiconductor optical functional device according to the present invention, in which FIG. 12A is a plan view and FIG. 12B is a view of a portion taken along line AA ′ in the same plan view. A sectional view, (c) is a sectional view of a portion indicated by the line BB ′, and (d) is also a sectional view.
It is sectional drawing of the part shown by the -C 'line.

【図13】本発明に係る半導体光機能素子のまた更に別
の実施例を示す図であって、(a)は平面図、(b)は
同平面図にA−A’線で示した部分の断面図、(c)は
同じくB−B’線で示した部分の断面図、(d)は同じ
くC−C’線で示した部分の断面図である。
13A and 13B are views showing still another embodiment of the semiconductor optical functional device according to the present invention, in which FIG. 13A is a plan view and FIG. 13B is a portion taken along line AA ′ in the plan view. Is a cross-sectional view of the portion similarly indicated by the line BB ', and (d) is a cross-sectional view of the portion also indicated by the line CC'.

【図14】窓構造を有する半導体光機能素子の従来例を
示す図であって、(a)はフラットファイバと接続する
場合の概略構成図、(b)は先球ファイバと接続する場
合の概略構成図である。
14A and 14B are views showing a conventional example of a semiconductor optical functional device having a window structure, in which FIG. 14A is a schematic configuration diagram when connecting to a flat fiber, and FIG. 14B is a schematic configuration when connecting to a spherical fiber. It is a block diagram.

【図15】斜め導波路構造を有する半導体光機能素子の
従来例とそれに接続されるファイバを示す概略構成図で
ある。
FIG. 15 is a schematic configuration diagram showing a conventional example of a semiconductor optical functional device having an oblique waveguide structure and a fiber connected thereto.

【図16】本発明に係る半導体光機能素子とそれに接続
されるファイバを示す概略構成図である。
FIG. 16 is a schematic configuration diagram showing a semiconductor optical functional device according to the present invention and a fiber connected thereto.

【図17】本発明に係る半導体光機能素子のまた別の実
施例を示す平面図であって、全反射型2×2クロスバー
光スイッチに適用した場合の概略構成図である。
FIG. 17 is a plan view showing still another embodiment of the semiconductor optical functional device according to the present invention, which is a schematic configuration diagram when applied to a total reflection type 2 × 2 crossbar optical switch.

【図18】従来の全反射型2×2クロスバー光スイッチ
の概略構成を示す平面図である。
FIG. 18 is a plan view showing a schematic configuration of a conventional total reflection type 2 × 2 crossbar optical switch.

【図19】図17に示した半導体光機能素子の出射端面
の一例を示す拡大図である。
19 is an enlarged view showing an example of an emission end face of the semiconductor optical functional device shown in FIG.

【図20】図17に示した半導体光機能素子の出射端面
の別の例を示す拡大図である。
20 is an enlarged view showing another example of the emission end face of the semiconductor optical functional device shown in FIG.

【符号の説明】[Explanation of symbols]

1…基板、 2…導波路型発光素子、 3…導波路、 4…導波路型光増幅器、 5…曲がり導波路、 10…InP基板、 11…InPバッファ層、 12…InGaAsP活性層、 13…InP上部クラッド層、 14…InGaAsPコンタクト層、 15…選択領域成長用SiO2マスク、 16…ポリイミド絶縁膜、 17…p電極、 18…InGaAsP光ガイド層、 20,80…半導体光機能素子、 21…デバイス端面、 21a…端面、 22…光機能部、 23…モード変換領域、 24…光増幅器、 25…反射光、 26…導波光、 27…窓、 28…導波路、 29…透過光、 72a,72b…半導体光増幅器、 73a,73b…斜め導波路。DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Waveguide type light emitting element, 3 ... Waveguide, 4 ... Waveguide type optical amplifier, 5 ... Bending waveguide, 10 ... InP substrate, 11 ... InP buffer layer, 12 ... InGaAsP active layer, 13 ... InP upper clad layer, 14 ... InGaAsP contact layer, 15 ... Selective region growth SiO 2 mask, 16 ... Polyimide insulating film, 17 ... P electrode, 18 ... InGaAsP optical guide layer, 20, 80 ... Semiconductor optical functional element, 21 ... Device end face, 21a ... End face, 22 ... Optical function part, 23 ... Mode conversion region, 24 ... Optical amplifier, 25 ... Reflected light, 26 ... Guided light, 27 ... Window, 28 ... Waveguide, 29 ... Transmitted light, 72a, 72b ... Semiconductor optical amplifier, 73a, 73b ... Oblique waveguide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大平 昌輝 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 鈴木 誠 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 井上 宏明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masateru Ohira, Masateru Ohira 1-280, Higashi Koikeku, Kokubunji, Tokyo (72) Central Research Laboratory, Hitachi, Ltd. (72) Makoto Suzuki 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory (72) Inventor Hiroaki Inoue 1-280 Higashi Koikekubo, Kokubunji City, Tokyo Hitachi Central Research Laboratory

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成された光機能部の入射
端面および/または出射端面に導波光のビーム径を変化
させるモード変換領域を備えると共に、モード変換領域
のファイバと接続される側の端面を、光の導波方向に対
して斜めに設けたことを特徴とする半導体光機能素子。
1. A mode conversion region for changing a beam diameter of guided light is provided on an incident end face and / or an emission end face of an optical function portion formed on a semiconductor substrate, and a mode conversion region on a side connected to a fiber is provided. A semiconductor optical functional device having an end face obliquely provided with respect to a light guiding direction.
【請求項2】前記光機能部とモード変換領域とを構成す
る層の一部である活性層の近傍に、該活性層に比べてバ
ンドギャップ波長が短いガイド層を更に設けて成る請求
項1記載の半導体光機能素子。
2. A guide layer having a bandgap wavelength shorter than that of the active layer is further provided in the vicinity of the active layer which is a part of the layer forming the optical function section and the mode conversion region. The semiconductor optical functional device as described above.
【請求項3】半導体基板上に形成された光機能部の入射
端面および/または出射端面に曲がり導波路を介して導
波光のビーム径を変化させるモード変換領域を備えると
共に、モード変換領域のファイバと接続される側の端面
を、光の導波方向に対して斜めに設けたことを特徴とす
る半導体光機能素子。
3. A fiber in a mode conversion region, which is provided with a mode conversion region for changing a beam diameter of guided light via a curved waveguide on an incident end face and / or an output end face of an optical function portion formed on a semiconductor substrate. A semiconductor optical functional device, wherein an end face on a side connected to is provided obliquely to a light guiding direction.
【請求項4】前記光機能部と曲がり導波路とモード変換
領域とを構成する層の一部である活性層の近傍に、該活
性層に比べてバンドギャップ波長が短いガイド層を更に
設けて成る請求項3記載の半導体光機能素子。
4. A guide layer having a bandgap wavelength shorter than that of the active layer is further provided in the vicinity of the active layer, which is a part of layers constituting the optical function part, the curved waveguide and the mode conversion region. 4. The semiconductor optical functional device according to claim 3, which is composed of:
【請求項5】前記光機能部が光増幅器として機能するよ
うに構成される請求項1〜4のいずれか1項に記載の半
導体光機能素子。
5. The semiconductor optical function element according to claim 1, wherein the optical function section is configured to function as an optical amplifier.
【請求項6】前記光機能部が半導体レーザとして機能す
るように構成される請求項1〜4のいずれか1項に記載
の半導体光機能素子。
6. The semiconductor optical function element according to claim 1, wherein the optical function section is configured to function as a semiconductor laser.
【請求項7】前記光機能部が複数の導波路を有する導波
路型光スイッチとして機能するように構成されると共
に、前記モード変換領域が前記複数の導波路の各々に設
けられて成る請求項1〜4のいずれか1項に記載の半導
体光機能素子。
7. The optical function section is configured to function as a waveguide type optical switch having a plurality of waveguides, and the mode conversion region is provided in each of the plurality of waveguides. The semiconductor optical functional device according to any one of 1 to 4.
【請求項8】前記複数の導波路の各々に設けられたモー
ド変換領域のビーム広がり角度が、導波路ごとに異なる
ように形成されて成る請求項7記載の半導体光機能素
子。
8. The semiconductor optical functional device according to claim 7, wherein the mode conversion regions provided in each of the plurality of waveguides are formed so that the beam divergence angles are different for each waveguide.
【請求項9】前記モード変換領域に電流注入構造を更に
設けて成る請求項1〜8のいずれか1項に記載の半導体
光機能素子。
9. The semiconductor optical functional device according to claim 1, further comprising a current injection structure provided in the mode conversion region.
【請求項10】前記モード変換領域は、導波路の大きさ
を光の伝播方向に沿って徐々に変化させて成る請求項1
〜8のいずれか1項に記載の半導体光機能素子。
10. The mode conversion region is formed by gradually changing the size of the waveguide along the light propagation direction.
9. The semiconductor optical functional device according to any one of items 8 to 8.
【請求項11】前記モード変換領域は積層構造の導波路
から構成され、該導波路の積層面内の大きさを光の伝播
方向に沿って徐々に変化させて成る請求項1〜8のいず
れか1項に記載の半導体光機能素子。
11. The mode conversion region is composed of a waveguide having a laminated structure, and the size in the laminated surface of the waveguide is gradually changed along the light propagation direction. 2. The semiconductor optical functional device as described in 1 above.
【請求項12】前記モード変換領域は積層構造の導波路
から構成され、該導波路の積層方向の大きさを光の伝播
方向に沿って徐々に変化させて成る請求項1〜8のいず
れか1項に記載の半導体光機能素子。
12. The mode conversion region is constituted by a waveguide having a laminated structure, and the size of the waveguide in the laminating direction is gradually changed along the light propagation direction. 2. The semiconductor optical functional device according to item 1.
【請求項13】前記モード変換領域は積層構造の導波路
から構成され、該導波路の積層面内および積層方向の大
きさを共に光の伝播方向に沿って徐々に変化させて成る
請求項1〜8のいずれか1項に記載の半導体光機能素
子。
13. The mode conversion region is composed of a waveguide having a laminated structure, and the sizes of the waveguide in the laminating plane and in the laminating direction are gradually changed along the light propagating direction. 9. The semiconductor optical functional device according to any one of items 8 to 8.
JP7016642A 1995-02-03 1995-02-03 Semiconductor optical function element Pending JPH08211342A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7016642A JPH08211342A (en) 1995-02-03 1995-02-03 Semiconductor optical function element
US08/593,051 US5710847A (en) 1995-02-03 1996-01-29 Semiconductor optical functional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7016642A JPH08211342A (en) 1995-02-03 1995-02-03 Semiconductor optical function element

Publications (1)

Publication Number Publication Date
JPH08211342A true JPH08211342A (en) 1996-08-20

Family

ID=11922015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7016642A Pending JPH08211342A (en) 1995-02-03 1995-02-03 Semiconductor optical function element

Country Status (2)

Country Link
US (1) US5710847A (en)
JP (1) JPH08211342A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307012A (en) * 1995-05-01 1996-11-22 Mitsubishi Electric Corp Mask for selective growth, manufacture of semiconductor optical device, and semiconductor optical device
JPH1130722A (en) * 1997-07-11 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> Optical module
JPH11112073A (en) * 1997-10-03 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser type optical amplifying element
JP2000261087A (en) * 1999-03-11 2000-09-22 Hitachi Cable Ltd Active device with three-dimensional light receiving wave guide circuit
JP2001135887A (en) * 1999-11-01 2001-05-18 Hitachi Ltd Optical semiconductor device and optical transmission system
JP2002518857A (en) * 1998-09-23 2002-06-25 サーノフ コーポレーション High power semiconductor light source
JP2003043537A (en) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source, and optical device
JP2003142777A (en) * 2001-11-02 2003-05-16 Mitsubishi Electric Corp Optical semiconductor element
KR100433298B1 (en) * 1999-02-08 2004-05-27 삼성전자주식회사 Fabricating method of spot-size converter semiconductor optical amplifier
JP2004214226A (en) * 2002-12-26 2004-07-29 Toshiba Corp Semiconductor laser device
WO2004088802A1 (en) * 2003-03-31 2004-10-14 Nippon Telegraph And Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
WO2006013935A1 (en) * 2004-08-05 2006-02-09 Hamamatsu Photonics K.K. Semiconductor laser device and semiconductor laser device array
JP2007142317A (en) * 2005-11-22 2007-06-07 Anritsu Corp Method for manufacturing semiconductor optical element
JP2007243072A (en) * 2006-03-10 2007-09-20 Toyota Central Res & Dev Lab Inc Semiconductor optical amplifier composite semiconductor laser apparatus
JP2011108740A (en) * 2009-11-13 2011-06-02 Seiko Epson Corp Light emitting device and method of manufacturing the same, as well as projector
JP2011124445A (en) * 2009-12-11 2011-06-23 Opnext Japan Inc Semiconductor optical element and method of manufacturing semiconductor optical element
JP2011187579A (en) * 2010-03-05 2011-09-22 Sony Corp Mode-locked semiconductor laser element and driving method thereof
JP2011197453A (en) * 2010-03-19 2011-10-06 Furukawa Electric Co Ltd:The Semiconductor optical waveguide element, semiconductor optical waveguide array element, and method of manufacturing the same
JP2012526273A (en) * 2009-05-08 2012-10-25 ザイニア リミテッド Spectrophotometer
JP2018107310A (en) * 2016-12-27 2018-07-05 古河電気工業株式会社 Semiconductor laser module
JPWO2021106158A1 (en) * 2019-11-28 2021-06-03

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60032393T2 (en) * 1999-10-28 2007-10-11 Fujifilm Corp. Optical wavelength conversion system
JP2002176224A (en) * 2000-12-07 2002-06-21 Fuji Photo Film Co Ltd Laser beam source
US20020158046A1 (en) * 2001-04-27 2002-10-31 Chi Wu Formation of an optical component
US6574381B2 (en) * 2001-08-23 2003-06-03 Robert Stoddard Integrated optical switch/amplifier with modulation capabilities
US20040005108A1 (en) * 2002-07-02 2004-01-08 Kjetil Johannessen Thermal compensation of waveguides by dual material core having negative thermo-optic coefficient inner core
US6921490B1 (en) 2002-09-06 2005-07-26 Kotura, Inc. Optical component having waveguides extending from a common region
US20040191564A1 (en) * 2002-12-17 2004-09-30 Samsung Sdi Co., Ltd. Donor film for low molecular weight full color organic electroluminescent device using laser induced thermal imaging method and method for fabricating low molecular weight full color organic electroluminescent device using the film
US6853793B1 (en) 2003-02-21 2005-02-08 Kotura, Inc. Attenuator having reduced optical loss in the pass mode
JP2005064051A (en) * 2003-08-14 2005-03-10 Fibest Ltd Optical module and optical communication system
US7805037B1 (en) 2003-08-19 2010-09-28 Kotura, Inc. Multiplexer having improved efficiency
US6970611B1 (en) 2003-08-27 2005-11-29 Kotura, Inc. Optical component having reduced interference from radiation modes
JP2007011106A (en) * 2005-07-01 2007-01-18 Yokogawa Electric Corp Light waveform shaping element
SE532380C2 (en) 2008-09-23 2009-12-29 Syntune Ab Waveguide for low reflex switch-off.
US9645311B2 (en) 2013-05-21 2017-05-09 International Business Machines Corporation Optical component with angled-facet waveguide
US9726821B2 (en) 2015-12-01 2017-08-08 Ranovus Inc. Adiabatic elliptical optical coupler device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527130A (en) * 1990-12-07 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide device
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527130A (en) * 1990-12-07 1993-02-05 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide device
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307012A (en) * 1995-05-01 1996-11-22 Mitsubishi Electric Corp Mask for selective growth, manufacture of semiconductor optical device, and semiconductor optical device
JPH1130722A (en) * 1997-07-11 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> Optical module
JPH11112073A (en) * 1997-10-03 1999-04-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser type optical amplifying element
JP2002518857A (en) * 1998-09-23 2002-06-25 サーノフ コーポレーション High power semiconductor light source
KR100433298B1 (en) * 1999-02-08 2004-05-27 삼성전자주식회사 Fabricating method of spot-size converter semiconductor optical amplifier
JP2000261087A (en) * 1999-03-11 2000-09-22 Hitachi Cable Ltd Active device with three-dimensional light receiving wave guide circuit
JP2001135887A (en) * 1999-11-01 2001-05-18 Hitachi Ltd Optical semiconductor device and optical transmission system
JP2003043537A (en) * 2001-08-01 2003-02-13 Matsushita Electric Ind Co Ltd Optical waveguide device, coherent light source, and optical device
JP4660999B2 (en) * 2001-08-01 2011-03-30 パナソニック株式会社 Optical waveguide device, coherent light source and optical apparatus
JP2003142777A (en) * 2001-11-02 2003-05-16 Mitsubishi Electric Corp Optical semiconductor element
JP2004214226A (en) * 2002-12-26 2004-07-29 Toshiba Corp Semiconductor laser device
WO2004088802A1 (en) * 2003-03-31 2004-10-14 Nippon Telegraph And Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
US7474817B2 (en) 2003-03-31 2009-01-06 Nippon Telegraph And Telephone Corporation. Optical semiconductor device and optical semiconductor integrated circuit
US7738520B2 (en) 2003-03-31 2010-06-15 Nippon Telegraph And Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
US7471864B2 (en) 2003-03-31 2008-12-30 Nippon Telegraph And Telephone Corporation Optical semiconductor device and optical semiconductor integrated circuit
US7885305B2 (en) 2004-08-05 2011-02-08 Hamamatsu Photonics K.K. Semiconductor laser device and semiconductor laser device array
WO2006013935A1 (en) * 2004-08-05 2006-02-09 Hamamatsu Photonics K.K. Semiconductor laser device and semiconductor laser device array
JP4489691B2 (en) * 2005-11-22 2010-06-23 アンリツ株式会社 Semiconductor optical device manufacturing method
JP2007142317A (en) * 2005-11-22 2007-06-07 Anritsu Corp Method for manufacturing semiconductor optical element
JP2007243072A (en) * 2006-03-10 2007-09-20 Toyota Central Res & Dev Lab Inc Semiconductor optical amplifier composite semiconductor laser apparatus
JP2012526273A (en) * 2009-05-08 2012-10-25 ザイニア リミテッド Spectrophotometer
JP2011108740A (en) * 2009-11-13 2011-06-02 Seiko Epson Corp Light emitting device and method of manufacturing the same, as well as projector
JP2011124445A (en) * 2009-12-11 2011-06-23 Opnext Japan Inc Semiconductor optical element and method of manufacturing semiconductor optical element
JP2011187579A (en) * 2010-03-05 2011-09-22 Sony Corp Mode-locked semiconductor laser element and driving method thereof
JP2011197453A (en) * 2010-03-19 2011-10-06 Furukawa Electric Co Ltd:The Semiconductor optical waveguide element, semiconductor optical waveguide array element, and method of manufacturing the same
JP2018107310A (en) * 2016-12-27 2018-07-05 古河電気工業株式会社 Semiconductor laser module
JPWO2021106158A1 (en) * 2019-11-28 2021-06-03

Also Published As

Publication number Publication date
US5710847A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JPH08211342A (en) Semiconductor optical function element
US5703989A (en) Single-mode waveguide structure for optoelectronic integrated circuits and method of making same
EP1729382B1 (en) Parabolic waveguide-type collimating device and tunable external cavity laser diode provided with the same
US5805755A (en) Self-aligned transition from ridge to buried heterostructure waveguide, especially for multi-wavelength laser array integration
JP2765545B2 (en) Optical wavelength discriminating circuit and method of manufacturing the same
EP0898346B1 (en) Single-transverse-mode 1 x n multi-mode interferometer type semiconductor laser device
US20060176544A1 (en) Folded cavity semiconductor optical amplifier (FCSOA)
US6163631A (en) Waveguide type optical integrated circuit element and method for fabricating same
US5706374A (en) Compact digital optical switch
JPH1168241A (en) Semiconductor laser
JPH0497206A (en) Semiconductor optical element
US20020154848A1 (en) Integrated optical circuit device and method for producing the same
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JP3666729B2 (en) Semiconductor optical amplifier and method for manufacturing the same
JPH0786624B2 (en) Directional coupler type optical switch
JP2965011B2 (en) Semiconductor optical device and method of manufacturing the same
JP2001185805A (en) Optical semiconductor device
JP3788699B2 (en) Integrated optical circuit element and manufacturing method thereof
JP3116912B2 (en) Semiconductor optical integrated device, optical communication module using the same, optical communication system and method of manufacturing the same
JP3084417B2 (en) Optical coupling device
JP2002026370A (en) Semiconductor light receiving device
JPH0410582A (en) Semiconductor optical element
JP3314796B2 (en) Optical waveguide integrated semiconductor laser and method of manufacturing the same
JP2897371B2 (en) Semiconductor waveguide polarization controller
JPH07146413A (en) Semiconductor light waveguide, manufacture thereof, and light waveguide type element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314