JPH0820819A - Production of shape steel of low yield ratio for refractory use - Google Patents

Production of shape steel of low yield ratio for refractory use

Info

Publication number
JPH0820819A
JPH0820819A JP15992794A JP15992794A JPH0820819A JP H0820819 A JPH0820819 A JP H0820819A JP 15992794 A JP15992794 A JP 15992794A JP 15992794 A JP15992794 A JP 15992794A JP H0820819 A JPH0820819 A JP H0820819A
Authority
JP
Japan
Prior art keywords
rolling
yield ratio
steel
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15992794A
Other languages
Japanese (ja)
Other versions
JP3127721B2 (en
Inventor
Sadahiro Yamamoto
定弘 山本
Hiroyasu Yokoyama
泰康 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP06159927A priority Critical patent/JP3127721B2/en
Publication of JPH0820819A publication Critical patent/JPH0820819A/en
Application granted granted Critical
Publication of JP3127721B2 publication Critical patent/JP3127721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a shape steel having refractoriness and low yield ratio by forming a stock rolled into a shape steel while specifying the contents of C, Si, Mn, and Mo and rolling finishing temp., respectively, and then subjecting this shape steel to air cooling and to accelerated cooling under respectively specified conditions after the completion of rolling. CONSTITUTION:A stock, which has a composition containing, by weight, 0.03-0.18% C, 0.05-1.5% Si, 0.3-2.0% Mn, and 0.1-0.7% Mo and further containing, if necessary, one or >=2 kinds among 0.01-0.30% V, 0.003-0.030% Ti, 0.02-1.5% Cu, 0.02-1.5% Ni, 0.05-1.0% Cr, and 0.0005-0.0050% B and is rolled into a shape steel so that rolling finishing temp. (Tf) becomes not higher than the Ar3 point, is prepared. After rolling is finished, this stock is air-cooled for >=(Ar3-Tf)X0.8(sec) and then subjected to accelerated cooling down to 300-550 deg.C at a rate of (2 to 20) deg.C/sec. By this method, the shape steel with low yield ratio for refractory use, reduced in yield ratio at ordinary temp. and improved in high temp. strength, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主に建築用の構造部材と
して用いられる耐火性、低降伏比特性を有する形鋼の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a shaped steel having fire resistance and low yield ratio characteristics, which is mainly used as a structural member for construction.

【0002】[0002]

【従来の技術】建築用の構造部材の分野においては、限
界状態設計法の採用及び1987年4月の新耐火設計法
の制定等の動向に伴い、鋼材に要求される特性として低
降伏比及び高温での高強度化が重要視されてきている。
2. Description of the Related Art In the field of structural members for construction, along with the adoption of the limit state design method and the enactment of a new fireproof design method in April 1987, the low yield ratio and Higher strength at high temperature has been emphasized.

【0003】このような動向に対応し低降伏比と耐火性
とを兼備した鋼材の製造方法が種々提案されている。こ
れらは、特開平2−77523号、特開平2−1633
41号、特開平3−271342号各公報に代表される
ようにAr3 点以上のオーステナイト高温域で圧延を終
了するものが主体であり、γ+α2相域における圧延に
よる降伏比の上昇を回避している。
In response to such a trend, various methods of manufacturing a steel material having both a low yield ratio and fire resistance have been proposed. These are disclosed in JP-A-2-77523 and JP-A-2-1633.
No. 41 and Japanese Patent Laid-Open No. 3-271342, the rolling is mainly completed in the austenite high temperature region of Ar 3 or more, and the increase of the yield ratio due to rolling in the γ + α2 phase region is avoided. There is.

【0004】一方、特開平3−277715号公報では
γ+α2相域で圧延を行い、その後直ちに加速冷却を実
施し、C,Nにより固着されたフェライトとベイナイト
又はマルテンサイトの混合組織とすることにより降伏強
さを低くするとともに一様伸びを増加させている。
On the other hand, in Japanese Unexamined Patent Publication (Kokai) No. 3-277715, rolling is performed in the γ + α2 phase region, immediately followed by accelerated cooling to yield a mixed structure of ferrite and bainite or martensite fixed by C and N. The strength is lowered and the uniform elongation is increased.

【0005】[0005]

【発明が解決しようとする課題】建築用の構造部材に用
いられる形鋼においては、厳しい圧延造形上の制約によ
り圧延仕上温度が低下する傾向がある。またシリーズ、
サイズの多様化に伴い、圧延仕上温度(本出願では材質
に実質的な影響を及ぼすユニバーサルミル(R2)の仕
上温度と定義する)は650℃〜850℃の広範囲にわ
たり変化する。このような圧延上の制約に加え、材質面
では低降伏比、高温での高強度化に加え、低炭素当量化
が要求される。
In the shaped steel used for structural members for construction, the rolling finish temperature tends to decrease due to severe restrictions on the rolling shaping. Also series,
With the diversification of sizes, the rolling finishing temperature (defined in this application as the finishing temperature of a universal mill (R2) that substantially affects the material) changes over a wide range of 650 ° C to 850 ° C. In addition to such restrictions on rolling, in terms of material, a low yield ratio, high strength at high temperature, and low carbon equivalent are required.

【0006】上述した従来の技術では、低降伏比及び高
温での高強度を得るために、Mo,Nb,V等の合金元
素を複合添加した鋼を採用することと、Ar3 点以上の
オーステナイト高温域で圧延を終了することに主眼をお
いているため、形鋼のように圧延仕上温度がAr3 点以
下のγ+α2相域となる比率が高い場合には、低降伏比
の要求を満足することが困難である。
In the above-mentioned conventional technique, in order to obtain a low yield ratio and a high strength at high temperature, a steel in which alloying elements such as Mo, Nb, and V are added together is employed, and austenite having an Ar 3 point or more is used. Since the main focus is to finish rolling in the high temperature range, the requirement of low yield ratio is satisfied when the ratio of rolling finish temperature in the γ + α2 phase region below the Ar 3 point is high, as in shaped steel. Is difficult.

【0007】本発明はかかる事情に鑑みてなされたもの
であって、Ar3 点以下の圧延仕上温度を採用して、低
降伏比の耐火用形鋼を製造することができる耐火用低降
伏比形鋼の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to manufacture a fire resistant shaped steel having a low yield ratio by using a rolling finishing temperature of 3 points or less of Ar, and a low yield ratio for fire resistant. An object is to provide a method for manufacturing a shaped steel.

【0008】[0008]

【課題を解決するための手段及び作用】本発明は、上記
課題を解決するために、第1に、重量%で、C:0.0
3〜0.18%、Si:0.05〜1.5%、Mn:
0.3〜2.0%、Mo:0.1〜0.7%を含有し、
圧延仕上温度(Tf )がAr3 点以下となるように形鋼
圧延された素材に対し、圧延終了後(Ar3 −Tf )×
0.8(秒)以上の間放冷し、その後2〜20℃/sの
速度で300〜550℃の温度範囲まで加速冷却を行う
ことを特徴とする耐火用低降伏比形鋼の製造方法を提供
する。
In order to solve the above-mentioned problems, according to the present invention, firstly, in% by weight, C: 0.0.
3 to 0.18%, Si: 0.05 to 1.5%, Mn:
0.3-2.0%, Mo: 0.1-0.7% is contained,
After the rolling is completed (Ar 3 −T f ) × for the material rolled into the shape steel so that the rolling finishing temperature (T f ) is equal to or lower than the Ar 3 point.
A method for producing a low-yield ratio steel for refractory, characterized by allowing to cool for 0.8 (seconds) or more and then performing accelerated cooling at a rate of 2 to 20 ° C / s to a temperature range of 300 to 550 ° C. I will provide a.

【0009】また、第2に、重量%で、C:0.03〜
0.18%、Si:0.05〜1.5%、Mn:0.3
〜2.0%、Mo:0.1〜0.7%を含有し、さらに
V:0.01〜0.30%、Ti:0.003〜0.0
30%、Cu:0.02〜1.5%、Ni:0.02〜
1.5%、Cr:0.05〜1.0%、B:0.000
5〜0.0050%のうち1種または2種以上を含有
し、圧延仕上温度(Tf)がAr3 点以下となる形鋼圧
延された素材に対し、圧延終了後(Ar3 −Tf)×
0.8(秒)以上の間放冷し、その後2〜20℃/sの
速度で300〜550℃の温度範囲まで加速冷却を行う
ことを特徴とする耐火用低降伏比形鋼の製造方法を提供
する。
Secondly, C: 0.03% by weight.
0.18%, Si: 0.05 to 1.5%, Mn: 0.3
.About.2.0%, Mo: 0.1 to 0.7%, V: 0.01 to 0.30%, Ti: 0.003 to 0.0
30%, Cu: 0.02-1.5%, Ni: 0.02-
1.5%, Cr: 0.05 to 1.0%, B: 0.000
5 to 0.0050% of one or two or more of them are contained, and the rolled steel having a rolling finish temperature (T f ) of Ar 3 point or less is used after rolling (Ar 3 −T f). ) ×
A method for producing a low-yield ratio steel for refractory, characterized by allowing to cool for 0.8 (seconds) or more and then performing accelerated cooling at a rate of 2 to 20 ° C / s to a temperature range of 300 to 550 ° C. I will provide a.

【0010】本願発明者らは、耐火性の観点から優れた
高温強度と常温での低降伏比が必要な耐火用形鋼を製造
するにあたり、造形上の制約より圧延仕上温度がAr3
点以下となる場合においても優れた高温強度と低降伏比
を有する形鋼の製造方法について検討した結果、成分系
と圧延後の冷却条件の最適化を図り、特にγ+α域での
圧延により加工硬化したフェライトを意図的に放冷し回
復・再結晶させた後、加速冷却を行うことにより上記特
性が満足されることを見出し、本発明を完成させた。
In order to manufacture a fire-resistant shaped steel which requires excellent high-temperature strength and a low yield ratio at room temperature from the viewpoint of fire resistance, the inventors of the present invention have a rolling finish temperature of Ar 3 due to restrictions in shaping.
As a result of investigating the manufacturing method of shaped steel having excellent high temperature strength and low yield ratio even when the temperature is below the point, the composition system and cooling conditions after rolling were optimized, and work hardening especially by rolling in the γ + α range The inventors have found that the above characteristics are satisfied by intentionally allowing the ferrite to cool, recover and recrystallize, and then perform accelerated cooling, and completed the present invention.

【0011】従ってγ+α域で圧延し加速冷却を行う点
においては特開平3−277715号公報に開示された
技術と類似しているが、特開平3−277715号公報
では圧延後直ちに加速冷却を行いフェライトの転位密度
が高い状態から加速冷却を行うのに対し、本発明は圧延
後意図的に放冷し、回復・再結晶によりフェライトの転
位密度が低い状態から加速冷却を行う点で根本的に異な
る。
Therefore, although the technique disclosed in Japanese Patent Laid-Open No. 3-277715 is similar to the technique disclosed in Japanese Patent Laid-Open No. 3-277715 in that it is rolled and accelerated cooled in the γ + α region, the Japanese Patent Laid-Open No. 3-277715 discloses accelerated cooling immediately after rolling. In contrast to performing accelerated cooling from the state in which the dislocation density of ferrite is high, the present invention is fundamentally in the point of performing accelerated cooling from the state in which the dislocation density of ferrite is low by recovery and recrystallization by intentionally allowing it to cool. different.

【0012】上記特性のうち、高温強度の上昇に関して
は、従来よりMo,Nb,Vが有効であることが知られ
ている。従って、このように高温強度の上昇に有効なM
o,Nb,Vを添加した表1に示す組成を前提とし、低
降伏比の形鋼を得る観点から実験を行った。なお、表1
中、鋼1はMo−V添加鋼、鋼2はMo添加鋼、鋼3は
Mo−Nb添加鋼である。また、Ar3 の値の求め方は
表1の欄外に示した。
Among the above characteristics, Mo, Nb, and V have been known to be effective in increasing the high temperature strength. Therefore, M which is effective in increasing the high temperature strength in this way
Based on the composition shown in Table 1 in which o, Nb, and V were added, an experiment was conducted from the viewpoint of obtaining shaped steel with a low yield ratio. In addition, Table 1
Among them, Steel 1 is a Mo-V-added steel, Steel 2 is a Mo-added steel, and Steel 3 is a Mo-Nb-added steel. The method for obtaining the value of Ar 3 is shown in the margin of Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】図1は、表1に示す鋼1を用いて製造した
フランジ厚さ12mmの形鋼において、R2仕上温度が
730℃となった場合について、その後の冷却開始まで
の時間を変化させて5℃/sで500℃まで冷却した場
合の引張特性を示す。この図に示すように、加速冷却で
は空冷材に比べ8kg/mm2 程度高い引張強度(T
S)が得られている。TSは冷却開始までの放冷時間に
伴いほとんど変化しないが、降伏強度(YS)は放冷時
間が25秒までは、放冷時間の増加に伴って減少する
が、それ以上ではほぼ一定値となる。従って降伏比(Y
R)は圧延後直ちに冷却した場合は79%であるのに対
し、25秒以上放冷した後に加速冷却を行った場合は6
6%以下まで低下する。
FIG. 1 shows the case where the flange thickness 12 mm manufactured from the steel 1 shown in Table 1 has a R2 finishing temperature of 730 ° C. and the time until the start of cooling is changed. The tensile properties when cooled to 500 ° C at 5 ° C / s are shown. As shown in FIG, 8 kg / mm 2 higher degree than the air-cooled material is accelerated cooling tensile strength (T
S) is obtained. TS hardly changes with the cooling time until the start of cooling, but the yield strength (YS) decreases as the cooling time increases until the cooling time reaches 25 seconds, but it remains almost constant beyond that. Become. Therefore, the yield ratio (Y
R) is 79% when cooled immediately after rolling, whereas it is 6% when accelerated cooling is performed after cooling for 25 seconds or more.
It drops to 6% or less.

【0015】図2は、表1に示す鋼2,3を用いて製造
した図1と同様のフランジ厚さ12mmの形鋼におい
て、R2仕上温度が730℃となった場合について、圧
延終了(R2)後の冷却開始までの時間を変化させ4℃
/sで450℃まで冷却した場合の引張特性を示す。M
oを含有する鋼2では図1の鋼1の場合と同様に、YS
は放冷時間が25秒までは、放冷時間の増加に伴って減
少し、YRが低下するが、それ以上では飽和する。一
方、Mo及びNbを含有する鋼3の場合は、圧延終了
(R2)後50秒放冷し、その後加速冷却を行った場合
においてもYSの低下量は小さく、低YR化を図ること
が難しい。従って、低降伏比化の観点からはNb添加は
望ましくないことがわかる。
FIG. 2 shows that, in the case of a shaped steel having a flange thickness of 12 mm produced by using the steels 2 and 3 shown in Table 1 and having a flange thickness of 12 mm, the rolling is completed (R2 ) Change the time until the start of cooling after 4 ℃
The tensile properties when cooled to 450 ° C. at 1 / s are shown. M
For steel 2 containing o, as in the case of steel 1 in FIG.
Up to 25 seconds, the YR decreases with an increase in the cooling time, and YR decreases, but it becomes saturated when the cooling time exceeds 25 seconds. On the other hand, in the case of steel 3 containing Mo and Nb, the YS decrease amount is small even if the steel is left to cool for 50 seconds after the end of rolling (R2) and then accelerated cooling is performed, and it is difficult to achieve low YR. . Therefore, it is understood that Nb addition is not desirable from the viewpoint of lowering the yield ratio.

【0016】図3は、表1に示す鋼1を用いて製造した
フランジ厚さ9mmの形鋼において、ウェッブ高さが変
化し、圧延仕上温度が660℃〜730℃まで変化した
場合について、冷却開始までの時間を変化させ5℃/s
で500℃まで冷却した際の降伏比(YR)の変化を示
す。図中白丸中の数字が降伏比である。図3から明らか
なように、いずれの圧延仕上温度においても冷却開始ま
での時間が増加するに伴いYRが低下しある時間以上で
ほぼ一定となる。この限界時間はt=(Ar3−Tf
×0.8で示される。なお、ここでAr3 は供試鋼の変
態開始点、Tfは圧延の仕上温度である。
FIG. 3 shows cooling in the case where a flange height of 9 mm and a shaped steel manufactured using the steel 1 shown in Table 1 change the web height and the rolling finishing temperature changes from 660 ° C. to 730 ° C. Change the time to start 5 ℃ / s
The change in the yield ratio (YR) when cooled to 500 ° C is shown. The number in the white circle in the figure is the yield ratio. As is clear from FIG. 3, at any rolling finishing temperature, YR decreases as the time until the start of cooling increases, and becomes substantially constant over a certain time. This limit time is t = (Ar3- Tf )
It is shown by × 0.8. Here, Ar 3 is the transformation start point of the sample steel, and T f is the rolling finishing temperature.

【0017】このように、Ar3 以下の圧延仕上温度を
採用する場合には、高温強度の確保に有効であるMo,
Nb,V等の合金元素のうち、降伏比を高めその後に放
冷を行った場合においても降伏比の低下が少ないNbを
添加せず、Mo又はMo−V系を主体とする鋼を用い、
圧延終了後t=(Ar3 −Tf )×0.8秒以上の時間
を意図的に放冷後、加速冷却を行うことにより、圧延後
直ちに加速冷却を行う場合に比べ大幅に低い降伏比及び
同等以上の引張強度を有する耐火用低降伏比形鋼が得ら
れるのである。
As described above, when a rolling finishing temperature of Ar 3 or less is adopted, Mo, which is effective for securing high temperature strength,
Among alloy elements such as Nb and V, Nb, which does not decrease the yield ratio little even when the yield ratio is increased and then the material is allowed to cool, is used, and steel mainly composed of Mo or Mo-V is used.
After the rolling is finished, t = (Ar 3 −T f ) × 0.8 seconds or more is intentionally allowed to cool and then accelerated cooling is performed, so that the yield ratio is significantly lower than that in the case of performing accelerated cooling immediately after rolling. And a low yield ratio steel for fireproofing having a tensile strength equal to or higher than that.

【0018】すなわち、高温強度の上昇に有効であるM
o,Nb,Vはいずれも析出強化により高温強度を確保
しているが、圧延仕上温度がAr3 点以下の場合、フェ
ライトへ転位が導入され、上記の析出型元素はこのよう
な転位を固着するため、フェライトの回復・再結晶が抑
制され、その結果低降伏比が得にくい。特に引張強度を
上昇させるために圧延後に加速冷却を行う場合には、圧
延完了後直ちに冷却するため加工硬化したフェライトが
室温においても存在し、降伏比が上昇する。そして、こ
のようなフェライトの回復・再結晶の抑制効果は上記元
素のうちNbが最も大きい。従って、本発明では、高温
強度の上昇に有効である上記元素のうち、フェライトの
回復・再結晶の抑制効果が最も大きいNbを無添加と
し、かつAr3 点及び圧延仕上温度によって定まる特定
時間以上の時間放冷してフェライトを回復・再結晶させ
た後に加速冷却を行うことにより、Ar3 点以下で圧延
が終了する場合においても、優れた高温強度と低降伏比
を有し、かつ空冷材に比べて引張強度が向上した形鋼の
製造が可能となるのである。
That is, M which is effective in increasing the high temperature strength
All of o, Nb, and V ensure high-temperature strength by precipitation strengthening, but when the rolling finishing temperature is below the Ar 3 point, dislocations are introduced into the ferrite, and the above-mentioned precipitation-type elements fix such dislocations. Therefore, recovery / recrystallization of ferrite is suppressed, and as a result, it is difficult to obtain a low yield ratio. In particular, when accelerated cooling is performed after rolling in order to increase tensile strength, work-hardened ferrite exists even at room temperature because cooling is performed immediately after completion of rolling, and the yield ratio increases. Of these elements, Nb has the greatest effect of suppressing the recovery and recrystallization of such ferrite. Therefore, in the present invention, among the above-mentioned elements that are effective in increasing the high temperature strength, Nb, which has the largest effect of suppressing ferrite recovery and recrystallization, is not added, and the specific time determined by the Ar 3 point and the rolling finishing temperature is not less than By allowing the material to cool for a period of time to recover and recrystallize the ferrite and then perform accelerated cooling, it has excellent high-temperature strength and low yield ratio even when the rolling is completed at the Ar 3 point or less, and it is an air-cooled material. It is possible to manufacture shaped steel with improved tensile strength compared to.

【0019】次に、本発明における各元素の含有量の限
定理由を示す。なお、%表示はいずれも重量%である。
Cは鋼の常温強度、高温強度を安定して確保するために
有効な元素である。しかし、0.03%未満では十分な
強度を得るのが困難であり、また0.18%を超えると
溶接性が劣化する。従って、C量を0.03〜0.18
%Cとした。
Next, the reasons for limiting the content of each element in the present invention will be shown. In addition, all percentages are by weight.
C is an element effective for stably ensuring the room temperature strength and high temperature strength of steel. However, if it is less than 0.03%, it is difficult to obtain sufficient strength, and if it exceeds 0.18%, the weldability deteriorates. Therefore, the C content is 0.03 to 0.18.
% C.

【0020】Siは脱酸、強度上昇に有効に元素であ
り、そのためには0.05%以上の添加が必要であるが
1.5%を超えると溶接性を損う。従って,Si量を
0.05〜1.5%とした。
Si is an element effective in deoxidizing and increasing the strength. For that purpose, it is necessary to add 0.05% or more, but if it exceeds 1.5%, the weldability is impaired. Therefore, the amount of Si is set to 0.05 to 1.5%.

【0021】Mnは強度確保の上で有効な元素であり、
そのためには0.3%以上の添加が必要である。一方、
2.0%を超える添加は溶接性を損う。従って、Mn量
を0.3〜2.0%とした。
Mn is an element effective in securing strength,
For that purpose, it is necessary to add 0.3% or more. on the other hand,
Addition exceeding 2.0% impairs weldability. Therefore, the Mn amount is set to 0.3 to 2.0%.

【0022】Moは焼入性の向上,析出強化等により鋼
の高強度化に効果があり、特に中・高温強度に対して有
効である。このような効果を発揮するためには0.1%
以上が必要であるが、0.7%を超える添加はコスト上
昇を招くと共に、溶接性を劣化させる。従って、Mo量
を0.1〜0.7%とした。
Mo is effective in increasing the strength of steel by improving hardenability and precipitation strengthening, and is particularly effective for medium and high temperature strength. 0.1% to exert such effect
Although the above is required, addition of more than 0.7% causes an increase in cost and deteriorates weldability. Therefore, the amount of Mo is set to 0.1 to 0.7%.

【0023】本発明では以上の必須成分に加えて、必要
に応じて以下の1種又は2種を添加することができる。
Vは微量添加においても常温,高温強度の上昇に有効で
あり、そのためには0.01%以上の添加が必要であ
る。一方0.3%を超える添加は溶接性を劣化させる。
従って、V量を0.01〜0.30%とした。
In the present invention, in addition to the above essential components, one or two of the following can be added, if desired.
V is effective for increasing the strength at ordinary temperature and high temperature even when added in a small amount, and for this purpose, addition of 0.01% or more is necessary. On the other hand, addition of more than 0.3% deteriorates weldability.
Therefore, the V amount is set to 0.01 to 0.30%.

【0024】TiはTiNを形成しオーステナイト粒を
微細化する効果があり、靭性向上に有効であり、その効
果を奏するためには0.003%以上が必要であるが、
0.03%を超えるとTiCを形成し、上述したNbと
同様にAr3 点以下の圧延におけるフェライトの回復・
再結晶を著しく抑制する。従って、Ti量を0.003
〜0.030%とした。
Ti has the effect of forming TiN and refining the austenite grains, and is effective in improving the toughness. To achieve this effect, 0.003% or more is necessary.
When it exceeds 0.03%, TiC is formed, and like the above-mentioned Nb, the recovery of ferrite during rolling at the Ar 3 point or less.
Recrystallization is significantly suppressed. Therefore, the Ti content is 0.003
Was set to 0.030%.

【0025】Cuは強度上昇に有効な元素であり、その
ためには0.02%以上必要であるが、1.5%を超え
る添加はコスト上昇に加え、表面疵の問題があるため、
0.02〜1.5%とした。
Cu is an element effective for increasing the strength, and for that purpose 0.02% or more is necessary. However, addition of more than 1.5% causes an increase in cost and a surface flaw problem.
It was set to 0.02 to 1.5%.

【0026】Niは強化に有効であるとともに低温靭性
の向上にも効果があり、そのためには0.02%以上が
必要であるが、高価であるため0.02%〜1.5%と
した。
Ni is effective not only for strengthening but also for improving the low temperature toughness. For that purpose, 0.02% or more is required, but since it is expensive, it is 0.02% to 1.5%. .

【0027】Crは常温及び高温強度の上昇に有効であ
り、そのためには0.05%以上の添加が必要である
が、1.0%を超えると溶接性が劣化する。従ってCr
量を0.05〜1.0%とした。
Cr is effective for increasing the strength at ordinary temperature and high temperature, and for that purpose, it is necessary to add 0.05% or more, but if it exceeds 1.0%, the weldability deteriorates. Therefore Cr
The amount was 0.05-1.0%.

【0028】Bは焼入性を向上させる元素であり、その
観点からは0.0005%以上必要であるが、0.00
5%を超えると溶接性を劣化させる。従って、B量を
0.0005〜0.005%とした。
B is an element that improves the hardenability, and from this viewpoint, 0.0005% or more is necessary, but 0.00
If it exceeds 5%, the weldability is deteriorated. Therefore, the B content is set to 0.0005 to 0.005%.

【0029】次に、製造条件の限定理由を示す。製造条
件のうち本発明において重要であるのは、圧延仕上温度
がAr3 点以下であることを前提として、圧延終了後、
加速冷却を行う前の放冷時間、及び加速冷却条件であ
り、その他の条件は特に規定されない。
Next, the reasons for limiting the manufacturing conditions will be described. Of the manufacturing conditions, what is important in the present invention is that after the rolling is completed, it is assumed that the rolling finishing temperature is at or below the Ar 3 point.
The cooling time before the accelerated cooling and the accelerated cooling conditions are other conditions, and other conditions are not particularly specified.

【0030】本発明における圧延終了後の放冷時間は、
Ar3 の値及び圧延終了温度Tf によって定まり、(A
3 −Tf )×0.8秒以上である。この範囲であれ
ば、加速冷却開始までの間にフェライトの回復・再結晶
が十分に生じ、十分に低い降伏比を得ることができる。
The cooling time after completion of rolling in the present invention is
Determined by the value of Ar 3 and the rolling end temperature T f , (A
r 3 −T f ) × 0.8 seconds or more. Within this range, ferrite recovery / recrystallization sufficiently occurs before the start of accelerated cooling, and a sufficiently low yield ratio can be obtained.

【0031】加速冷却の目的は、同一成分鋼において放
冷材に比べ高強度化を達成することにある。従って冷却
速度は2℃/s以上が必要である。また20℃/sを超
える冷却速度では冷却歪が顕著になるため、その範囲を
2〜20℃/sとした。また冷却停止温度が300〜5
50℃の範囲をはずれる場合には、加速冷却の効果が得
られないとともに、特性の安定性および歪も大きくなる
ため上記範囲とした。
The purpose of accelerated cooling is to achieve higher strength in steel of the same composition as compared with the cold-release material. Therefore, the cooling rate is required to be 2 ° C./s or more. Further, at a cooling rate exceeding 20 ° C / s, cooling strain becomes remarkable, so the range was set to 2 to 20 ° C / s. The cooling stop temperature is 300 to 5
When the temperature is out of the range of 50 ° C., the effect of accelerated cooling cannot be obtained, and the stability and distortion of the characteristics also increase, so the above range was set.

【0032】なお、上述したように、その他の条件につ
いては、一般的な条件が採用され特に規定されるもので
はないが、圧延の加熱温度は1000〜1350℃が好
ましい。その温度が1000℃未満では圧延仕上温度が
著しく低くなるため最終形状まで圧延を行うことが難し
く、一方1350℃を超える加熱は加熱コストが顕著に
増大するからである。
As described above, other conditions are not specifically defined as general conditions are adopted, but the heating temperature for rolling is preferably 1000 to 1350 ° C. If the temperature is lower than 1000 ° C., the rolling finishing temperature becomes extremely low, so that it is difficult to perform rolling to the final shape. On the other hand, if the temperature exceeds 1350 ° C., the heating cost remarkably increases.

【0033】本発明においては圧延仕上温度がAr3
以下となる場合を対象としているが、その温度は600
℃を超えることが好ましい。圧延仕上げ温度が600℃
以下では加工されたフェライトの回復・再結晶を生じさ
せるための放冷時間が著しく長くなるからである。
In the present invention, the case where the rolling finishing temperature is below the Ar 3 point is targeted, but the temperature is 600.
It is preferable that the temperature exceeds ℃. Rolling finish temperature is 600 ℃
This is because in the following, the cooling time for causing recovery and recrystallization of the processed ferrite becomes extremely long.

【0034】[0034]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表2に示す鋼4、5を用い、Ar3 点以下
で圧延を終了した場合について表3に示す種々の製造条
件で形鋼を製造した。そして、これら形鋼の強度特性を
評価した。その結果も表3に合わせて示す。
Embodiments of the present invention will be described below. (Example 1) Using steels 4 and 5 shown in Table 2, section steels were produced under various production conditions shown in Table 3 when rolling was completed at an Ar 3 point or less. Then, the strength characteristics of these shaped steels were evaluated. The results are also shown in Table 3.

【0035】表3中、記号A〜Eは鋼4を用いフランジ
厚さ25mmウェッブ高さ750mmの形鋼を1250
℃に加熱して圧延した場合の結果である。この場合の圧
延仕上温度は770℃である。Aは圧延完了後すみやか
に加速冷却を行った場合であり、加速冷却開始までの放
冷時間が10秒であり、本発明に規定する放冷時間:
(Ar3 −Tf )×0.8秒以上(この場合は25秒以
上)を満足していないため降伏比が78%と高い。
In Table 3, symbols A to E are steels 1250, which are shaped steels having a flange thickness of 25 mm and a web height of 750 mm.
It is the result when it was heated to ℃ and rolled. The rolling finish temperature in this case is 770 ° C. A is the case where accelerated cooling was performed immediately after the completion of rolling, and the cooling time until the start of accelerated cooling was 10 seconds, and the cooling time specified in the present invention was:
Since (Ar 3 −T f ) × 0.8 seconds or more (25 seconds or more in this case) is not satisfied, the yield ratio is as high as 78%.

【0036】一方B,Cは圧延完了後、意図的に本発明
に規定する25秒以上放冷し、フェライトの回復・再結
晶を促進した後に加速冷却を行っているため、降伏比が
72%と低い。また圧延後放冷したD、及び加速冷却は
実施したが本発明条件範囲より高い650℃で加速冷却
を終了したEは、本発明の範囲であるB,Cより常温で
のTS,高温域でのYSが低い。
On the other hand, B and C are intentionally left to cool for 25 seconds or longer after completion of rolling to accelerate ferrite recovery / recrystallization and then accelerated cooling, so that the yield ratio is 72%. And low. Further, D, which was allowed to cool after rolling, and E, which was subjected to accelerated cooling but completed accelerated cooling at 650 ° C., which is higher than the condition range of the present invention, are TS at room temperature and higher temperature regions than B and C, which are the ranges of the present invention. YS is low.

【0037】また、記号F,G,Hは同じく鋼4を用
い、フランシ厚さ25mmウェッブ高さ700mmの形
鋼を1200℃に加熱して圧延した場合の結果であり、
圧延仕上温度は740℃である。F,G,Hはいずれも
圧延完了後意図的に放冷はしているものの、Fは本発明
に規定する放冷時間:(Ar3 −Tf )×0.8秒以上
(この場合は49秒以上)を満足していないため降伏比
が81%と高いのに対し、G,Hは本発明条件を満足し
ているため降伏比が73%と低い。
The symbols F, G, and H are the results when the steel 4 was also used and a shaped steel having a Franci thickness of 25 mm and a web height of 700 mm was heated to 1200 ° C. and rolled,
The rolling finishing temperature is 740 ° C. F, G, although H is then the cooled either after it is completed rolling intentional, F is allowed to cool time specified in the present invention: (Ar3 -T f) × 0.8 seconds or more (in this case 49 The yield ratio is as high as 81% because it does not satisfy (sec or more), while the yield ratio of G and H is as low as 73% because it satisfies the conditions of the present invention.

【0038】記号I,J,K,Lは鋼5を用い、フラン
ジ厚さ16mmウェッブ高さ650mmの形鋼を125
0℃に加熱して圧延した場合の結果である。この場合の
圧延仕上温度は730℃である。本発明条件を満足して
いるJ,Kに比べ、加速冷却までの放冷条件である26
秒以上を満足していないIは降伏比が高い。また加速冷
却条件を満足していないLでは常温でのTS、高温での
YSが低い。
The symbols I, J, K, and L are made of steel 5, and 125 shaped steel having a flange thickness of 16 mm and a web height of 650 mm is used.
It is a result when it is heated to 0 ° C. and rolled. In this case, the rolling finishing temperature is 730 ° C. Compared to J and K satisfying the conditions of the present invention, they are the cooling conditions until accelerated cooling.
I which does not satisfy the second or more has a high yield ratio. Further, in L that does not satisfy the accelerated cooling conditions, TS at room temperature and YS at high temperature are low.

【0039】記号M,N,Oは鋼5を用い、フランジ厚
さ19mmウェッブ高さ750mmの形鋼を1200℃
に加熱して圧延した場合の結果である。この場合の圧延
仕上温度は680℃である。本発明条件を満足している
Oに比べ、加速冷却までの放冷条件である66秒以上を
満足していないM,Nでは降伏比が高い。
The symbols M, N, and O use steel 5 and form steel having a flange thickness of 19 mm and a web height of 750 mm at 1200 ° C.
It is the result when it is heated and rolled. The rolling finishing temperature in this case is 680 ° C. Compared with O satisfying the conditions of the present invention, the yield ratios are higher in M and N which do not satisfy the cooling condition of 66 seconds or longer until accelerated cooling.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】(実施例2)表4に示す鋼6〜16を用
い、Ar3 点以下で圧延を終了した場合について表5に
示す種々の製造条件で形鋼を製造した。そして、これら
形鋼の強度特性を評価した。その結果も表5に合わせて
示す。
(Example 2) Using the steels 6 to 16 shown in Table 4, section steels were produced under various production conditions shown in Table 5 when rolling was completed at an Ar 3 point or less. Then, the strength characteristics of these shaped steels were evaluated. The results are also shown in Table 5.

【0043】表5中、記号P〜Uは鋼6〜11を用い、
フランジ厚さ19mmウェッブ高さ700mmの形鋼を
1280℃に加熱して圧延した後40秒間放冷し、その
後10℃/sで450℃まで加速冷却を行った場合の結
果である。本発明条件を満足しているP,Q,Rはいず
れも常温で70kgf/mm2 以上のTS、70%前後
のYR、600℃において30kgf/mm2 前後のY
Sを有しているのに対し、Tiを過剰に含有している
S、及びNbを含有しているTでは冷却まで40秒間の
放冷ではフェライトの回復が十分に進行しないため、Y
Rが76〜77%と高い。またMoを含有しないUでは
600℃におけるYSが本発明法に比べ著しく低い。
In Table 5, symbols P to U are steels 6 to 11,
This is a result when a shaped steel having a flange thickness of 19 mm and a web height of 700 mm was heated to 1280 ° C., rolled, allowed to cool for 40 seconds, and then accelerated cooling to 450 ° C. at 10 ° C./s. P, Q, and R satisfying the conditions of the present invention are TS of 70 kgf / mm 2 or more at room temperature, YR of about 70%, and Y of about 30 kgf / mm 2 at 600 ° C.
In contrast to S, which contains S in an excess amount of Ti and T which contains Nb, since the recovery of ferrite does not proceed sufficiently by cooling for 40 seconds until cooling, Y
R is as high as 76 to 77%. Further, U containing no Mo has a significantly lower YS at 600 ° C. as compared with the method of the present invention.

【0044】記号V〜Zは鋼12〜16を用い、フラン
ジ厚さ12mmウェッブ高さ550mmの形鋼を128
0℃に加熱して圧延した後50秒間放冷し、その後5℃
/sで540℃まで加速冷却を行った場合の結果であ
る。本発明条件を満足しているV,W,X,Yはいずれ
も常温で50kgf/mm2 以上のTS,70%前後の
YR,600℃において20kgf/mm2 前後のYS
を有しているのに、Moを含有しないZでは600℃に
おけるYSが著しく低い。
Symbols V to Z are steels 12 to 16 and 128 shaped steel having a flange thickness of 12 mm and a web height of 550 mm.
After heating to 0 ℃ and rolling, let it cool for 50 seconds, then 5 ℃
It is a result when accelerated cooling was performed to 540 ° C. at / s. V, W, X, and Y satisfying the conditions of the present invention are all TS of 50 kgf / mm 2 or more at room temperature, YR of about 70%, YS of about 20 kgf / mm 2 at 600 ° C.
However, Z containing no Mo has a significantly low YS at 600 ° C.

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】以上のように、本発明によれば、圧延仕
上温度がAr3 点以下となる形鋼圧延において、圧延仕
上後所定の時間放冷し、フェライトの回復,再結晶が進
行した後加速冷却を行うことにより、常温での降伏比が
低くかつ高温強度が高い耐火用低降伏比形鋼の製造が可
能となる。
As described above, according to the present invention, in the shaped steel rolling in which the rolling finishing temperature is at or below the Ar 3 point, cooling is allowed to cool for a predetermined time after the rolling finishing, and recovery of ferrite and recrystallization proceeded. By performing the post-acceleration cooling, it becomes possible to manufacture a low-yield ratio steel for refractory having a low yield ratio at room temperature and a high strength at high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧延後、加速冷却までの放冷時間に伴う、常温
引張特性の変化を示す図。
FIG. 1 is a diagram showing a change in normal temperature tensile properties with a cooling time after rolling until accelerated cooling.

【図2】圧延後、加速冷却までの放冷時間に伴う、常温
引張特性の変化を示す図。
FIG. 2 is a diagram showing a change in normal temperature tensile properties with a cooling time after rolling until accelerated cooling.

【図3】加速冷却までの放冷時間及びAr3 −Tf が変
化した場合の降伏強度の値を示す図。
FIG. 3 is a diagram showing a cooling time until accelerated cooling and a value of yield strength when Ar 3 −T f is changed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.03〜0.18%、
Si:0.05〜1.5%、Mn:0.3〜2.0%、
Mo:0.1〜0.7%を含有し、圧延仕上温度(T
f )がAr3 点以下となるように形鋼圧延された素材に
対し、圧延終了後(Ar3 −Tf )×0.8(秒)以上
の間放冷し、その後2〜20℃/sの速度で300〜5
50℃の温度範囲まで加速冷却を行うことを特徴とする
耐火用低降伏比形鋼の製造方法。
1. C: 0.03 to 0.18% by weight,
Si: 0.05 to 1.5%, Mn: 0.3 to 2.0%,
Mo: 0.1-0.7% is contained, and rolling finish temperature (T
f ) is left to cool for a period of (Ar 3 −T f ) × 0.8 (seconds) or more after the material is rolled into a shape steel so that Ar 3 points or less, and then 2 to 20 ° C. / 300 ~ 5 at s speed
A method for producing a low-yield ratio steel for refractory, which comprises performing accelerated cooling to a temperature range of 50 ° C.
【請求項2】 重量%で、C:0.03〜0.18%、
Si:0.05〜1.5%、Mn:0.3〜2.0%、
Mo:0.1〜0.7%を含有し、さらにV:0.01
〜0.30%、Ti:0.003〜0.030%、C
u:0.02〜1.5%、Ni:0.02〜1.5%、
Cr:0.05〜1.0%、B:0.0005〜0.0
050%のうち1種または2種以上を含有し、圧延仕上
温度(Tf )がAr3 点以下となるように形鋼圧延され
た素材に対し、圧延終了後(Ar3 −Tf )×0.8
(秒)以上の間放冷し、その後2〜20℃/sの速度で
300〜550℃の温度範囲まで加速冷却を行うことを
特徴とする耐火用低降伏比形鋼の製造方法。
2. C: 0.03 to 0.18% by weight,
Si: 0.05 to 1.5%, Mn: 0.3 to 2.0%,
Contains Mo: 0.1 to 0.7%, and further V: 0.01
~ 0.30%, Ti: 0.003 to 0.030%, C
u: 0.02-1.5%, Ni: 0.02-1.5%,
Cr: 0.05-1.0%, B: 0.0005-0.0
After completion of rolling (Ar 3 −T f ) × for a material that contains one or more of 050% and is shaped steel rolled so that the rolling finishing temperature (T f ) is at or below the Ar 3 point. 0.8
(Sec) Allowed to cool for a second or more, and then accelerated cooling to a temperature range of 300 to 550 ° C. at a rate of 2 to 20 ° C./s, and a method for producing a low yield ratio section steel for fireproofing.
JP06159927A 1994-07-12 1994-07-12 Method for manufacturing low yield ratio steel for fire resistance Expired - Fee Related JP3127721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06159927A JP3127721B2 (en) 1994-07-12 1994-07-12 Method for manufacturing low yield ratio steel for fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06159927A JP3127721B2 (en) 1994-07-12 1994-07-12 Method for manufacturing low yield ratio steel for fire resistance

Publications (2)

Publication Number Publication Date
JPH0820819A true JPH0820819A (en) 1996-01-23
JP3127721B2 JP3127721B2 (en) 2001-01-29

Family

ID=15704196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06159927A Expired - Fee Related JP3127721B2 (en) 1994-07-12 1994-07-12 Method for manufacturing low yield ratio steel for fire resistance

Country Status (1)

Country Link
JP (1) JP3127721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294984A (en) * 2000-04-12 2001-10-26 Nkk Corp Fire resistant rolled steel and its producing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039250A (en) 2011-06-14 2015-02-26 株式会社東芝 Video display device, drive method therefor, and television receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294984A (en) * 2000-04-12 2001-10-26 Nkk Corp Fire resistant rolled steel and its producing method
JP4543492B2 (en) * 2000-04-12 2010-09-15 Jfeスチール株式会社 Rolled refractory section steel and method for producing the same

Also Published As

Publication number Publication date
JP3127721B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JP2001020039A (en) High strength hot rolled steel sheet excellent in stretch flanging property and fatigue characteristic and its production
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JP4705381B2 (en) Manufacturing method of low yield ratio steel
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPH05105957A (en) Production of heat resistant high strength bolt
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPS5842725A (en) Manufacture of high strength hot rolled steel plate with superior workability
JPH09279233A (en) Production of high tension steel excellent in toughness
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
KR102252106B1 (en) Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same
JP3127721B2 (en) Method for manufacturing low yield ratio steel for fire resistance
JPH083636A (en) Production of low yield ratio high toughness steel
JPS583012B2 (en) Manufacturing method of high toughness high tensile strength steel plate
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JPH0774383B2 (en) Method for producing steel sheet with excellent resistance to hydrogen-induced cracking

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131110

LAPS Cancellation because of no payment of annual fees