JPH0820623B2 - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH0820623B2
JPH0820623B2 JP2160017A JP16001790A JPH0820623B2 JP H0820623 B2 JPH0820623 B2 JP H0820623B2 JP 2160017 A JP2160017 A JP 2160017A JP 16001790 A JP16001790 A JP 16001790A JP H0820623 B2 JPH0820623 B2 JP H0820623B2
Authority
JP
Japan
Prior art keywords
birefringent crystal
polarization
light
optical
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2160017A
Other languages
Japanese (ja)
Other versions
JPH0451214A (en
Inventor
裕 太田
範行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinkosha KK
Original Assignee
Shinkosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkosha KK filed Critical Shinkosha KK
Priority to JP2160017A priority Critical patent/JPH0820623B2/en
Priority to US07/612,016 priority patent/US5151955A/en
Publication of JPH0451214A publication Critical patent/JPH0451214A/en
Publication of JPH0820623B2 publication Critical patent/JPH0820623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は偏光無依存型の光アイソレータに関するも
のである。
TECHNICAL FIELD The present invention relates to a polarization-independent optical isolator.

(従来の技術) 従来、偏光依存性のない光アイソレータとして、例え
ば特公昭58−28561号及び同60−49297号等種々のものが
提案されている。
(Prior Art) Conventionally, various optical isolators having no polarization dependence have been proposed, such as Japanese Patent Publication Nos. 58-28561 and 60-49297.

そこで、従来の一例を第2図を参照して説明する。光
アイソレータは第2図(ア)に示すように同じ厚さの2
枚の複屈折結晶板9,10、45度のファラデー回転角を有す
る磁気光学材料11及び入射光の偏光方向と出射光の偏光
方向とが45度だけ異なるように光軸と厚さとを設定した
旋光性結晶板12とで構成されているものであり、対向す
る2本の光ファイバ13,14の間に配置される。
Therefore, a conventional example will be described with reference to FIG. The optical isolator has the same thickness of 2 as shown in Fig. 2 (a).
Birefringent crystal plates 9, 10, the magneto-optical material 11 having a Faraday rotation angle of 45 degrees, and the optical axis and the thickness were set so that the polarization direction of the incident light and the polarization direction of the emitted light differ by 45 degrees. It is composed of an optical rotatory crystal plate 12 and is arranged between two optical fibers 13 and 14 facing each other.

入射光は、光ファイバ13側の第1の複屈折結晶板9に
よって常光と異常光とに分岐されて、その後磁気光学材
料11を通過した光の偏光方向が光ファイバ14側から見て
反時計方向(左回り)に45度回転し、さらに旋光性結晶
板12で45度回転されて、第2の複屈折結晶板10に入射
し、常光と異常光とが再び合成されて、光ファイバ14へ
入射する。
The incident light is split into ordinary light and extraordinary light by the first birefringent crystal plate 9 on the optical fiber 13 side, and then the polarization direction of the light passing through the magneto-optical material 11 is counterclockwise when viewed from the optical fiber 14 side. 45 ° in the direction (counterclockwise), further rotated by 45 ° by the optical rotatory crystal plate 12, enters the second birefringent crystal plate 10, and ordinary light and extraordinary light are recombined, and the optical fiber 14 Incident on.

光ファイバー14から出た逆方向の光は、第2の複屈折
結晶板10と旋光性結晶板12とを通過する際には、その偏
光方向は順方向の光の偏光方向と変らないが、磁気光学
材料11に入射すると、ファラデー効果によって光ファイ
バ14側から見て反時計方向に45度回転されるので、偏光
方向は順方向の光のそれとは90度異なることになり、さ
らに第1の複屈折結晶板9内に入射した光は、常光と異
常光とに分岐されたまま合成されず、順方向の入射軸と
は異なる位置に光ファイバ13側に出射することになる。
When the backward light emitted from the optical fiber 14 passes through the second birefringent crystal plate 10 and the optical rotatory crystal plate 12, its polarization direction is the same as that of the forward light, but When the light enters the optical material 11, it is rotated by 45 degrees counterclockwise as viewed from the side of the optical fiber 14 due to the Faraday effect, so that the polarization direction differs from that of the light in the forward direction by 90 degrees. The light that has entered the refraction crystal plate 9 is not combined as it is divided into ordinary light and extraordinary light, and is emitted to the optical fiber 13 side at a position different from the incident axis in the forward direction.

光ファイバ13から光ファイバ14へ進む順方向の点P1,P
2,P3,P4,P5における偏光方向の変化を第2図(イ)を参
照して説明する。なお、(イ)の入射時点で垂直偏光成
分F1は点線で、水平偏光成分F2は実線で示し、偏光成分
の中心C1,C2をドットで、入射光の進行する中心軸Oを
白抜きの丸で示している。
Forward points P1 and P from optical fiber 13 to optical fiber 14
The change of the polarization direction in 2, P3, P4 and P5 will be described with reference to FIG. At the time of incidence of (a), the vertical polarization component F1 is shown by a dotted line, the horizontal polarization component F2 is shown by a solid line, the centers C1 and C2 of the polarization components are dots, and the central axis O where the incident light travels is a white circle. It shows with.

入射光は、第1の複屈折結晶板9内では垂直偏光方向
の偏光成分F1が常光として直進し、水平偏光成分F2が異
常光として平行移動して出射するので、点P2に示すよう
に偏光成分F2の中心C2が移動して、偏光成分F1の中心C1
とは位置を異にする。
In the incident light, the polarization component F1 in the vertical polarization direction goes straight as ordinary light in the first birefringent crystal plate 9 and the horizontal polarization component F2 moves in parallel as extraordinary light and exits. The center C2 of the component F2 moves and the center C1 of the polarization component F1 moves.
And the position is different.

第1の複屈折結晶板9を出た光の偏光成分は、磁気光
学材料11を通過する際に、磁化によってその偏光方向を
光ファイバ14側から見て反時計方向に45度回転させられ
るので、点P3に示すように偏光成分F1及び偏光成分F2が
45度傾く。
The polarization component of the light emitted from the first birefringent crystal plate 9 is rotated 45 degrees counterclockwise when viewed from the optical fiber 14 side by the magnetization when passing through the magneto-optical material 11. , The polarization component F1 and the polarization component F2 are
Tilt 45 degrees.

さらに点P4に示すようにこれらの光の偏光成分は、旋
光性結晶板12に入射して、45度回転するので、第1の複
屈折結晶板9への入射時の偏光方向と比較すると、90度
回転していることになる。
Further, as shown by a point P4, the polarization components of these lights are incident on the optical rotatory crystal plate 12 and are rotated by 45 degrees, so when compared with the polarization direction at the time of incidence on the first birefringent crystal plate 9, It means that it is rotated 90 degrees.

そしてこれらの光の偏光成分は、第2の複屈折結晶板
10に入射して、偏光成分F1が平行移動し、偏光成分F2が
直進するので、点P5に示すように偏光成分F1,F2の中心C
1,C2が一致することになる。
The polarization components of these lights are the second birefringent crystal plate.
When incident on 10, the polarization component F1 moves in parallel and the polarization component F2 goes straight, so as shown by the point P5, the center C of the polarization components F1, F2
1, C2 will match.

また第2図(ウ)に示すように、逆方向の光の偏光成
分F1a,F2aは、点P5,P4,P3に示すように順方向の光の偏
光成分と同様に点P3まで進む。そして点P2に示すように
偏光成分F1a,F2aは、磁気光学材料11の磁化によって45
度回転させられ、その後点P1において偏光成分P1aと偏
光成分P2aは、その中心C1a,C2aが入射軸Oから離れた所
に位置する。
Further, as shown in FIG. 2C, the polarization components F1a and F2a of the backward light travel to the point P3 in the same manner as the polarization components of the forward light as shown by the points P5, P4 and P3. Then, as shown by the point P2, the polarization components F1a and F2a are changed to 45 by the magnetization of the magneto-optical material 11.
After being rotated by a degree, at the point P1, the polarization components P1a and P2a are located such that their centers C1a and C2a are apart from the incident axis O.

点P2,P3,P4において、偏光成分F1aの中心C1aは中心軸
O上に位置しており、このため逆方向の光の偏光成分が
順方向入射光の中心軸O上を第1の複屈折結晶板9に入
射するまで経過することになる。したがって、この構成
のアイソレータの性能は、複屈折結晶板9の性能及び組
立精度に大きく依存する。
At points P2, P3, and P4, the center C1a of the polarization component F1a is located on the central axis O, so that the polarization component of the light in the opposite direction has the first birefringence on the central axis O of the forward incident light. It will pass until it enters the crystal plate 9. Therefore, the performance of the isolator having this configuration largely depends on the performance of the birefringent crystal plate 9 and the assembly accuracy.

(発明が解決しようとする課題) 上例の光アイソレータにおいて、光源側光ファイバに
は逆方向からの入射した光が戻らないようにする機能を
高めるための手段として、上記2枚の複屈折結晶板と磁
気光学材料と旋光性結晶板とを1ユニットとして、複数
ユニットで組合せることが容易に考えられる。しかしな
がら、単純にユニット数を増加させて、増加した分だけ
性能が向上しても、それに伴なって部品点数も増え、コ
スト高となり、さらには小型化ができない不都合が生じ
る。また戻り光(逆方向の光)が順方向入射光の中心軸
上を第1の複屈折結晶板に入射するまで経過するので、
性能が劣化しやすい。
(Problems to be Solved by the Invention) In the optical isolator of the above example, the two birefringent crystals are used as a means for enhancing the function of preventing the light incident from the opposite direction from returning to the optical fiber on the light source side. It is easily conceivable to combine the plate, the magneto-optical material, and the optical rotatory crystal plate as one unit, and to combine a plurality of units. However, even if the number of units is simply increased and the performance is improved by the increased amount, the number of parts is also increased accordingly, resulting in higher cost and further inconvenience in that the size cannot be reduced. Also, since the return light (light in the backward direction) passes on the central axis of the forward incident light to the first birefringent crystal plate,
Performance tends to deteriorate.

この発明の目的は、少い部品点数で性能の高い光アイ
ソレータを提供することである。
An object of the present invention is to provide an optical isolator having a high performance with a small number of parts.

(課題を解決するための手段) この発明の光アイソレータは、2つの光導波路間に設
けられている4枚の平板状の複屈折結晶(第1の複屈折
結晶,第2の複屈折結晶,第3の複屈折結晶,第4の複
屈折結晶)と、磁化によって入射光と出射光の偏光方向
がほぼ45度だけ異なるように長さを決めた2つの磁気光
学材料とを具備するものである。
(Means for Solving the Problem) The optical isolator according to the present invention comprises four plate-shaped birefringent crystals (first birefringent crystal, second birefringent crystal, which are provided between two optical waveguides, A third birefringent crystal and a fourth birefringent crystal), and two magneto-optical materials whose lengths are determined so that the polarization directions of the incident light and the outgoing light differ by about 45 degrees due to magnetization. is there.

上記第1の複屈折結晶と第4の複屈折結晶との間に第
2及び第3の複屈折結晶をそれぞれ配置すると共に、第
1の複屈折結晶と第2の複屈折結晶との間に上記第1の
磁気光学材料を、第3の複屈折結晶と第4の複屈折結晶
との間に上記第2の磁気光学材料をそれぞれ配置してあ
る。
The second and third birefringent crystals are respectively arranged between the first birefringent crystal and the fourth birefringent crystal, and the first and second birefringent crystals are arranged between the first and second birefringent crystals. The first magneto-optical material is placed between the third birefringent crystal and the fourth birefringent crystal, and the second magneto-optical material is placed between them.

上記第1の複屈折結晶の厚さと第4の複屈折結晶の厚
さとは等しい。上記第2の複屈折結晶及び第3の複屈折
結晶のそれぞれの厚さは、上記第1の複屈折結晶(又は
第4の複屈折結晶)の厚さの√2倍である。
The thickness of the first birefringent crystal and the thickness of the fourth birefringent crystal are equal. The thickness of each of the second birefringent crystal and the third birefringent crystal is √2 times the thickness of the first birefringent crystal (or the fourth birefringent crystal).

上記第2の複屈折結晶の偏光面(透過端面に垂直で、
かつ結晶光軸を含む面)は、第1の複屈折結晶の偏光面
に対して(45+90m)゜(ただし、mは0以上の整数)
回転させ、第3の複屈折結晶の偏光面は、第2の複屈折
結晶の偏光面に対して直交し、第4の複屈折結晶の偏光
面は第3の複屈折結晶の偏光面に対して(45+90n)゜
(ただし、nは0以上の整数)回転させてある。
The plane of polarization of the second birefringent crystal (perpendicular to the transmission end face,
And the plane including the crystal optical axis) is (45 + 90m) ° with respect to the plane of polarization of the first birefringent crystal (where m is an integer of 0 or more).
The polarization plane of the third birefringent crystal is orthogonal to the polarization plane of the second birefringent crystal, and the polarization plane of the fourth birefringent crystal is rotated with respect to the polarization plane of the third birefringent crystal. (45 + 90n) degrees (where n is an integer of 0 or more).

(実施例) 以下この発明の実施例を第1図に基いて説明する。(Embodiment) An embodiment of the present invention will be described below with reference to FIG.

この発明における光アイソレータは、4枚の平板状の
複屈折結晶1,2,3,4と2つの磁気光学材料5,6とを組合せ
て構成されたものである。これらの構成部材1〜6は2
つの光導波路である光ファイバ7,8間に配置される。配
置順序は、光の進行方向(図下方向)に向けて、光ファ
イバ7側の第1の複屈折結晶1から第1の磁気光学材料
5、第2の複屈折結晶2、第3の複屈折結晶3、第2の
磁気光学材料6及び第4の複屈折結晶4の順である。複
屈折結晶1〜4はルチルを用いており、第1、第4の複
屈折結晶1,4は板厚tとし、第2、第3の複屈折結晶2,3
は板厚√2tとしている。
The optical isolator according to the present invention is configured by combining four plate-shaped birefringent crystals 1, 2, 3, 4 and two magneto-optical materials 5, 6. These constituent members 1 to 6 are 2
It is arranged between the optical fibers 7 and 8 which are two optical waveguides. The arrangement order is from the first birefringent crystal 1 on the optical fiber 7 side to the first magneto-optical material 5, the second birefringent crystal 2, and the third birefringent crystal 2 in the light traveling direction (downward direction in the figure). The refraction crystal 3, the second magneto-optical material 6 and the fourth birefringence crystal 4 are in this order. The birefringent crystals 1 to 4 use rutile, the first and fourth birefringent crystals 1 and 4 have a plate thickness t, and the second and third birefringent crystals 2 and 3 are used.
Is the plate thickness √2t.

第2、第3の複屈折結晶2,3の偏光面(透過端面に垂
直で、かつ結晶光軸を含む面)は、互いに直交してお
り、第1の複屈折結晶1の偏光面に対して、それぞれ45
度回転させてある。第4の複屈折結晶4の偏光面は第
2、第3の複屈折結晶2,3の偏光面に対して45度回転さ
せてあり、第1の複屈折結晶1の偏光面に対しては、18
0度回転させてある。
The polarization planes of the second and third birefringent crystals 2 and 3 (the planes perpendicular to the transmission end face and including the crystal optical axis) are orthogonal to each other, and the polarization planes of the first birefringent crystal 1 are different from each other. 45 each
It is rotated once. The polarization plane of the fourth birefringent crystal 4 is rotated by 45 degrees with respect to the polarization planes of the second and third birefringent crystals 2 and 3, and the polarization plane of the first birefringent crystal 1 is , 18
It is rotated 0 degrees.

第1、第2の磁気光学材料5,6としてガーネットを使
用しており、入射光と出射光の偏光方向がほぼ45度だけ
異なるように長さを決めている。
Garnet is used as the first and second magneto-optical materials 5 and 6, and the length is determined so that the polarization directions of the incident light and the emitted light are different by about 45 degrees.

次に、光アイソレータの作用を説明する。 Next, the operation of the optical isolator will be described.

光源からの光は、まず光ファイバ7から第1の複屈折
結晶1に入射されるが、そこでは常光と異常光に分岐さ
れて、その後第1の磁気光学材料5を通過して偏光方向
が光ファイバ8側から見て時計方向(右回り)に45度回
転し、さらに第2、第3の複屈折結晶2,3で平行移動さ
れて、第2の磁気光学材料6に入射して偏光方向がさら
に45度回転されて出射され、光ファイバ8側の第4の複
屈折結晶4内では、分岐されていた光は再び合成され
て、光ファイバ8へ入射する。
The light from the light source is first incident on the first birefringent crystal 1 from the optical fiber 7, where it is split into ordinary light and extraordinary light, and then passes through the first magneto-optical material 5 to change the polarization direction. It rotates 45 degrees clockwise (clockwise) when viewed from the side of the optical fiber 8 and is translated by the second and third birefringent crystals 2 and 3, and then enters the second magneto-optical material 6 and is polarized. The direction is further rotated by 45 degrees and the light is emitted, and in the fourth birefringent crystal 4 on the optical fiber 8 side, the branched lights are combined again and enter the optical fiber 8.

光ファイバ8から出た戻り(逆方向)の光は、第4の
複屈折結晶4を通過し、第4の複屈折結晶で分岐された
常光と異常光とは第2の磁気光学材料6にて45度回転さ
せられ、第3、第2の複屈折結晶3,2を通過して平行移
動した後に第1の磁気光学材料5にてさらに45度回転さ
せられ、第1の複屈折結晶1に入射するが、ここでは常
光と異常光はそれぞれが順方向入射光の中心軸から大き
く離れた位置を光ファイバ7側に進む。
The returning (reverse direction) light emitted from the optical fiber 8 passes through the fourth birefringent crystal 4, and the ordinary light and the extraordinary light branched by the fourth birefringent crystal enter the second magneto-optical material 6. The first birefringent crystal 1 is rotated further 45 degrees by the first magneto-optical material 5 after being translated by the first and second birefringent crystals 3 and 2 and translated in parallel. The ordinary light and the extraordinary light travel toward the optical fiber 7 at positions far away from the central axis of the forward incident light.

ここで、光ファイバ7から光ファイバ8へ進む光の各
点P1,P2,P3,P4,P5,P6,P7における偏光方向の変化を第1
図(イ)に基づいて説明し、また逆方向の光の上記各点
における偏光方向の変化を同図(ウ)に基づいて説明す
る。
Here, the change in the polarization direction at each point P1, P2, P3, P4, P5, P6, P7 of the light traveling from the optical fiber 7 to the optical fiber 8 is first described.
The change in the polarization direction of the light in the opposite direction at each of the above points will be described with reference to FIG.

なお、第2図(イ)(ウ)と対応するものについては
符号を一致させている。
It is to be noted that the parts corresponding to those in FIGS. 2A and 2B have the same reference numerals.

第1図(イ)の入射光は、第1の複屈折結晶1におい
て、入射時点での垂直偏光成分F1が常光としてまっすぐ
進み、水平偏光成分F2が異常光として平行移動するの
で、点P2において偏光成分F1の中心C1と偏光成分F2の中
心C2とは位置を異にする。
In the incident light of FIG. 1 (a), in the first birefringent crystal 1, the vertical polarization component F1 at the time of incidence goes straight as ordinary light, and the horizontal polarization component F2 moves in parallel as extraordinary light, so at the point P2. The center C1 of the polarization component F1 and the center C2 of the polarization component F2 have different positions.

点P3に示すように、第1の複屈折結晶1を出た光の偏
光成分F1,F2は、第1の磁気光学材料5において、磁化
によってその偏光方向を45度回転させられる。
As shown by the point P3, the polarization components F1 and F2 of the light emitted from the first birefringent crystal 1 are rotated in the polarization direction by 45 degrees by the magnetization in the first magneto-optical material 5.

点P4に示すように、第2の複屈折結晶2に入射した、
成分F1は直進し、そして点P5に示すように、第3の複屈
折結晶3に入射した偏光成分F2が直進し、偏光成分F1が
平行移動する。
As shown by the point P4, the light is incident on the second birefringent crystal 2.
The component F1 goes straight, and as shown by a point P5, the polarization component F2 incident on the third birefringent crystal 3 goes straight and the polarization component F1 moves in parallel.

点P6に示すように第2の磁気光学材料6において、偏
光成分F1,F2はファラデー効果によりさらにその偏光方
向を45度回転させられ、そして点P7に示すように、第4
の複屈折結晶4に入射した偏光成分F1及び偏光成分F2の
中心C1,C2が一致することになる。
In the second magneto-optical material 6 as shown at point P6, the polarization components F1 and F2 have their polarization directions further rotated by 45 degrees by the Faraday effect, and as shown at point P7,
The centers C1 and C2 of the polarized light component F1 and the polarized light component F2 incident on the birefringent crystal 4 of are coincident with each other.

また光ファイバ8から逆方向に出射する光の偏方向の
変化は、下記のとおりである。
The change in the polarization direction of the light emitted from the optical fiber 8 in the opposite direction is as follows.

点P7,P6に示すように、逆方向の光は、第4の複屈折
結晶4を通過することにより分岐され、偏光成分F1aの
中心C1aが移動する。
As shown by points P7 and P6, the light in the opposite direction is branched by passing through the fourth birefringent crystal 4, and the center C1a of the polarization component F1a moves.

点P5に示すように、偏光成分F1a,F2aが第2の磁気光
学材料6に入射すると、45度回転するので、その偏光方
向は順方向の点P5での偏光成分F1,F2のそれぞれの偏光
方向とは90度ずつ異なることになる。
As shown at point P5, when the polarization components F1a and F2a are incident on the second magneto-optical material 6, they are rotated by 45 degrees, so that their polarization directions are the polarization directions of the polarization components F1 and F2 at the forward point P5. It will differ from the direction by 90 degrees.

点P4に示すように第3の複屈折結晶3に入射した偏光
成分F1aが直進し、偏光成分F2aが水平移動するので、偏
光成分F2aの中心C2aが移動する。
As shown by the point P4, the polarization component F1a incident on the third birefringent crystal 3 goes straight and the polarization component F2a horizontally moves, so that the center C2a of the polarization component F2a moves.

点P3に示すように第2の複屈折結晶2に入射した偏光
成分F2aが直進し、偏光成分F1aが平行移動して出射する
ので、偏光成分F1aの中心C1aが移動する。
As shown by the point P3, the polarized light component F2a that has entered the second birefringent crystal 2 advances straight, and the polarized light component F1a moves in parallel and then exits, so that the center C1a of the polarized light component F1a moves.

点P2に示すように偏光成分F1a,F2aは、第1の磁気光
学材料5において、その偏光方向が45度回転させられ、
点P1に示すように、第1の複屈折結晶1内で偏光成分F1
aが直進し、偏光成分F2aが平行移動するので、偏光成分
F2aの中心C2aが移動する。
As shown by the point P2, the polarization components F1a and F2a have their polarization directions rotated by 45 degrees in the first magneto-optical material 5,
As shown by the point P1, in the first birefringent crystal 1, the polarization component F1
a goes straight and the polarization component F2a moves in parallel, so the polarization component
The center C2a of F2a moves.

中心軸Oと逆方向の光の偏光成分F1a,F2aとの関係を
説明すると、点P7から点P1に至るまで、偏光成分F1a,F2
aの中心C1a,中心C2aはいずれも中心軸O上に位置しな
い。点P1においては、他の点P7〜P2と比較して両偏光成
分F1a,F2aの中心C1a,C2aと順方向入射光の中心軸Oとの
距離が一層大きく離れている。
The relationship between the central axis O and the polarization components F1a and F2a of the light in the opposite direction will be described. From the point P7 to the point P1, the polarization components F1a and F2
Neither center C1a nor center C2a of a is located on the central axis O. At the point P1, the distances between the centers C1a and C2a of the polarization components F1a and F2a and the central axis O of the forward incident light are far apart from each other as compared with the other points P7 to P2.

(発明の効果) 以上説明したように、この発明によれば、平板状の第
1、第2、第3及び第4の複屈折結晶と第1及び第2の
磁気光学材料とを組合せることにより、少ない部品点数
により性能が高く小型化を可能にする光アイソレータを
提供できる。また戻り光がいずれの偏光成分も順方向入
射光の中心軸上を通過しないので、性能が安定する。
(Effects of the Invention) As described above, according to the present invention, the first, second, third and fourth birefringent crystals having a flat plate shape are combined with the first and second magneto-optical materials. As a result, it is possible to provide an optical isolator that has a high performance and can be downsized with a small number of parts. Further, since the return light does not pass any polarization component on the central axis of the forward incident light, the performance is stable.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明に係る説明図であって、光ファイバ
8側から見た図、第2図は、従来例を示す説明図であっ
て、光ファイバ14側から見た図である。 1……第1の複屈折結晶、 2……第2の複屈折結晶、 3……第3の複屈折結晶、 4……第4の複屈折結晶、 5……第1の磁気光学材料、 6……第2の磁気光学材料、 7,8……光導波路(光ファイバ)、 F1,F1a,F2,F2a……偏光成分、 O……中心軸。
FIG. 1 is an explanatory view according to the present invention, as viewed from the optical fiber 8 side, and FIG. 2 is an explanatory view showing a conventional example, as viewed from the optical fiber 14 side. 1 ... 1st birefringent crystal, 2 ... 2nd birefringent crystal, 3 ... 3rd birefringent crystal, 4 ... 4th birefringent crystal, 5 ... 1st magneto-optical material, 6 ... Second magneto-optical material, 7,8 ... Optical waveguide (optical fiber), F1, F1a, F2, F2a ... Polarization component, O ... Central axis.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2つの光導波路間に設けられている平板状
の第1,第2,第3及び第4の複屈折結晶と、磁化によって
入射光と出射光の偏光方向がほぼ45度だけ異なるように
長さを決めた第1及び第2の磁気光学材料とを具備して
おり、 第1の複屈折結晶と第4の複屈折結晶との間に第2及び
第3の複屈折結晶をそれぞれ配置すると共に、第1の複
屈折結晶と第2の複屈折結晶との間に上記第1の磁気光
学材料を、第3の複屈折結晶と第4の複屈折結晶との間
に上記第2の磁気光学材料をそれぞれ配置してあり、 上記第1の複屈折結晶の厚さと第4の複屈折結晶の厚さ
とは等しく、上記第2の複屈折結晶及び第3の複屈折結
晶の各厚さは、上記第1の複屈折結晶及び第4の複屈折
結晶の各厚さの√2倍であり、 上記第2の複屈折結晶の偏光面(透過端面に垂直で、か
つ結晶光軸を含む面)は、第1の複屈折結晶の偏光面に
対して(45+90m)゜(ただし、mは0以上の整数)回
転させ、第3の複屈折結晶の偏光面は、第2の複屈折結
晶の偏光面に対して直交し、第4の複屈折結晶の偏光面
は第3の複屈折結晶の偏光面に対して(45+90n)゜
(ただし、nは0以上の整数)回転させてある ことを特徴とする光アイソレータ。
1. A plate-shaped first, second, third and fourth birefringent crystal provided between two optical waveguides, and polarization directions of incident light and outgoing light are approximately 45 degrees due to magnetization. A first and a second magneto-optical material having different lengths, and a second and a third birefringent crystal between the first birefringent crystal and the fourth birefringent crystal. And the first magneto-optical material is placed between the first birefringent crystal and the second birefringent crystal, and the first magneto-optical material is placed between the third birefringent crystal and the fourth birefringent crystal. The second magneto-optical material is arranged respectively, and the thickness of the first birefringent crystal is equal to the thickness of the fourth birefringent crystal, and the second birefringent crystal and the third birefringent crystal have the same thickness. Each thickness is √2 times each thickness of the first birefringent crystal and the fourth birefringent crystal, and the polarization plane of the second birefringent crystal (transmission The plane perpendicular to the plane and containing the crystal optical axis is rotated by (45 + 90m) ° (where m is an integer of 0 or more) with respect to the plane of polarization of the first birefringent crystal, and the third birefringent crystal Is orthogonal to the plane of polarization of the second birefringent crystal, and the plane of polarization of the fourth birefringent crystal is (45 + 90n) ° (where n Is an integer of 0 or more) is rotated. An optical isolator.
JP2160017A 1990-06-20 1990-06-20 Optical isolator Expired - Fee Related JPH0820623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2160017A JPH0820623B2 (en) 1990-06-20 1990-06-20 Optical isolator
US07/612,016 US5151955A (en) 1990-06-20 1990-11-09 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160017A JPH0820623B2 (en) 1990-06-20 1990-06-20 Optical isolator

Publications (2)

Publication Number Publication Date
JPH0451214A JPH0451214A (en) 1992-02-19
JPH0820623B2 true JPH0820623B2 (en) 1996-03-04

Family

ID=15706178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160017A Expired - Fee Related JPH0820623B2 (en) 1990-06-20 1990-06-20 Optical isolator

Country Status (1)

Country Link
JP (1) JPH0820623B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712970Y2 (en) * 1990-11-30 1995-03-29 株式会社島津製作所 Optical isolator
US5428477A (en) * 1991-06-14 1995-06-27 Tokin Corporation Optical isolator operating independent of polarization of an incident beam
JPH05196890A (en) * 1992-01-22 1993-08-06 Nec Corp Optical isolator
JP6681320B2 (en) 2016-12-05 2020-04-15 信越化学工業株式会社 Polarization-independent optical isolator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051690B2 (en) * 1978-05-11 1985-11-15 三菱電機株式会社 optical device
JPS54159245A (en) * 1978-06-06 1979-12-15 Mitsubishi Electric Corp Optical device
JPS5828561B2 (en) * 1978-08-04 1983-06-16 日本電信電話株式会社 optical isolator
JPS5828561A (en) * 1981-07-27 1983-02-19 Toyota Motor Corp Method of controlling internal combustion engine equipped with turbocharger, at deceleration
JPS6049297A (en) * 1983-08-29 1985-03-18 石川島播磨重工業株式会社 Volume reduction method of radioactive waste water
JPS6051690A (en) * 1983-08-31 1985-03-23 Toshiba Corp Manufacturing apparatus of single crystal
US4600646A (en) * 1984-08-15 1986-07-15 E. I. Du Pont De Nemours And Company Metal oxide stabilized chromatography packings
JPS6388821U (en) * 1986-08-19 1988-06-09
JP2572627B2 (en) * 1988-05-13 1997-01-16 ティーディーケイ株式会社 Optical isolator and optical circulator
JPH0244310A (en) * 1988-08-05 1990-02-14 Namiki Precision Jewel Co Ltd Optical isolator

Also Published As

Publication number Publication date
JPH0451214A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US5237445A (en) Optical isolator
US5151955A (en) Optical isolator
JP3160319B2 (en) Optical isolator
US6757451B2 (en) Optical circulator
US6091543A (en) Apparatus for providing non-reciprocal termination of parallel like polarization modes
JPH0990279A (en) Polarization independent type optical isolator and optical circulator
JPH0820623B2 (en) Optical isolator
JPH0668585B2 (en) Optical isolator
US6370287B1 (en) Compact fiber optical circulator
JP3161885B2 (en) Optical isolator
JP2905847B2 (en) Optical isolator device
US20020141034A1 (en) Compact optical circulator with three ports
JPH0391715A (en) Optical isolator
JP3388377B2 (en) Polarization-independent optical circulator
JPH04149406A (en) Optical isolator
JP2989983B2 (en) Optical isolator
US20030048529A1 (en) Optical circulator
JPH06324289A (en) Polarization beam splitter and optical circulator using this splitter and optical switch
JPH0454929B2 (en)
JP3569873B2 (en) Polarization-independent optical isolator
JPS63220109A (en) Deflection separating/synthesizing prism
JPS5810726B2 (en) optical circulator
JPH04216522A (en) 3-terminal optical circulator
JPS63276020A (en) Polarization plane maintaining optical isolator
JPH04140709A (en) Optical isolator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees