JP2989983B2 - Optical isolator - Google Patents
Optical isolatorInfo
- Publication number
- JP2989983B2 JP2989983B2 JP5031766A JP3176693A JP2989983B2 JP 2989983 B2 JP2989983 B2 JP 2989983B2 JP 5031766 A JP5031766 A JP 5031766A JP 3176693 A JP3176693 A JP 3176693A JP 2989983 B2 JP2989983 B2 JP 2989983B2
- Authority
- JP
- Japan
- Prior art keywords
- birefringent crystal
- crystal plate
- light
- polarization
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は複屈折結晶板を用いた光
アイソレータに関し、さらに詳しくは入射光の偏光面を
考慮する事なく作動する偏光無依存型光アイソレータに
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator using a birefringent crystal plate, and more particularly to a polarization-independent optical isolator that operates without considering the plane of polarization of incident light.
【0002】[0002]
【従来技術】一般に光ファイバを用いた光伝送系におい
て、信号光が光ファイバを長距離伝送する場合、信号光
の偏光面は保存されない。そのため光ファイバを用いた
光伝送系には、光の偏光方向に依存せずに光アイソレー
タとしての機能を果たす偏光無依存型光アイソレータが
使用される。2. Description of the Related Art In an optical transmission system using an optical fiber, when signal light is transmitted over an optical fiber over a long distance, the plane of polarization of the signal light is not preserved. Therefore, in an optical transmission system using an optical fiber, a polarization-independent optical isolator that functions as an optical isolator without depending on the polarization direction of light is used.
【0003】また、最近はErドープファイバを使用し
た光ファイバ増幅器が注目されているが、この場合でも
各光部品や接続点からの反射戻り光によりErドープフ
ァイバ内で発振し、それが雑音増加の原因となるため、
反射戻り光を除去する光アイソレータが必要となる。信
号光がErドープファイバを伝送する場合、信号光の偏
光面は保存されないため、光ファイバ増幅器には信号光
の偏光方向に依存しない偏光無依存型光アイソレータが
使用される。偏光無依存型光アイソレータとしては特開
平1−287528号及び実開平4−75311号等種
々のものが提案されている。Recently, an optical fiber amplifier using an Er-doped fiber has been attracting attention. Even in this case, the optical fiber amplifier oscillates in the Er-doped fiber due to return light reflected from each optical component or a connection point, which increases noise. Cause
An optical isolator for removing reflected return light is required. When the signal light is transmitted through the Er-doped fiber, the polarization plane of the signal light is not preserved. Therefore, a polarization-independent optical isolator that does not depend on the polarization direction of the signal light is used for the optical fiber amplifier. Various types of polarization-independent optical isolators have been proposed, such as JP-A-1-287528 and JP-A-4-75311.
【0004】ここで従来例の一例を図4、図5を用いて
説明する。図4と図5の各(b)図は従来例の構成を示
し、各(a)と(c)図は光ファイバF1側から見たと
き、光が各構成素子を通過した時の偏光状態を示す。
(a)図は順方向(+Z方向)、(c)図は逆方向(−
Z方向)を示す。順方向において、入射時点で屈折光の
異常光波動ベクトルと複屈折結晶板の光学軸を含む面
(以後、これを主断面とする)に対して直交する偏光成
分をP1、平行な偏光成分をP2とし、それぞれの偏光
成分の中心には黒丸、また各偏光成分を区別するため
に、直交偏光成分P1については偏光成分の片側先端に
白抜き丸を記す。さらに入射光の進行する中心軸を黒丸
で示す。なお、順方向の入射時点での偏光成分P1、P
2は逆方向にも使用する。また、各複屈折結晶板の主断
面に対して直交する偏光成分を常光、平行な偏光成分を
異常光とする。Here, an example of a conventional example will be described with reference to FIGS. 4 and 5. FIG. 4 (b) show the configuration of the conventional example, and FIGS. 4 (a) and 4 (c) show the polarization state when light passes through each component when viewed from the optical fiber F1 side. Is shown.
(A) is a forward direction (+ Z direction), (c) is a reverse direction (-
Z direction). In the forward direction, at the time of incidence, the polarization component orthogonal to the plane including the extraordinary wave vector of the refracted light and the optical axis of the birefringent crystal plate (hereinafter referred to as the main cross section) is P1, and the parallel polarization component is P1. P2, a black circle at the center of each polarized light component, and an open circle at one end of the polarized light component P1 for the orthogonal polarized light component P1 to distinguish each polarized light component. Further, the central axis in which the incident light travels is indicated by black circles. Note that the polarization components P1, P at the time of forward incidence
2 is also used in the reverse direction. Further, a polarized light component orthogonal to the main cross section of each birefringent crystal plate is defined as ordinary light, and a polarized light component parallel thereto is defined as extraordinary light.
【0005】図4において、(b)図より、光ファイバ
F1,F2間に入射方向から収束レンズ(省略)、複屈
折結晶板7、透過光の偏光面を45°回転するファラデ
ー回転子11、複屈折結晶板8、複屈折結晶板9、複屈
折結晶板10の順に配置されている。前記複屈折結晶板
7、8、9、10の光学軸は光軸に対し45°の傾斜角
を持ち、厚さの比は√2:1:(1+√2/2):√2
/2で構成される。前記複屈折結晶板9、10の主断面
は一致しているが、前記複屈折結晶板8の主断面とは直
交している。さらに前記複屈折結晶板9、10の主断面
と前記複屈折結晶板8の主断面は前記複屈折結晶板7の
主断面に対して、それぞれ45°回転したものである。
(a)図において、複屈折結晶板7への入射光は主断面
に対して常光P1、異常光P2に分離する。常光P1は
そのまま直進し、異常光P2は√2L水平移動して複屈
折結晶板7からファラデー回転子11へ出射される。フ
ァラデー回転子11により偏光面が45°回転され、P
1、P2は複屈折結晶板8に入射する。複屈折結晶板8
に対してもP1は常光、P2は異常光となるため、P1
はそのまま直進し、P2がさらにL水平移動して複屈折
結晶板8から出射する。このときのP1、P2の移動距
離は、P1が0に対して、P2は(1+√2)Lであ
る。複屈折結晶板9に入射した直交する偏光成分P1、
P2は複屈折結晶板9に対してはP1が異常光、P2が
常光となるため、P2は直進し、P1が(1+√2/
2)L水平移動して複屈折結晶板9から出射される。こ
のときのP1、P2の移動距離は共に(1+√2)Lと
なるために、直交する2偏光成分の光路長は等しいが、
光の入出射位置は同一直線上にはない。[0005] In FIG. 4, from FIG. 4 (b), a converging lens (omitted), a birefringent crystal plate 7, a Faraday rotator 11 for rotating the polarization plane of transmitted light by 45 ° from the incident direction between the optical fibers F 1 and F 2, Birefringent crystal plate 8, birefringent crystal plate 9, and birefringent crystal plate 10 are arranged in this order. The optical axes of the birefringent crystal plates 7, 8, 9, and 10 have an inclination angle of 45 ° with respect to the optical axis, and the thickness ratio is √2: 1: (1 + √2 / 2): √2.
/ 2. The main cross sections of the birefringent crystal plates 9 and 10 are coincident, but are orthogonal to the main cross section of the birefringent crystal plate 8. Further, the main cross sections of the birefringent crystal plates 9 and 10 and the main cross section of the birefringent crystal plate 8 are respectively rotated by 45 ° with respect to the main cross section of the birefringent crystal plate 7.
3A, the light incident on the birefringent crystal plate 7 is separated into ordinary light P1 and extraordinary light P2 with respect to the main cross section. The ordinary light P1 proceeds straight as it is, and the extraordinary light P2 moves by √2 L horizontally and is emitted from the birefringent crystal plate 7 to the Faraday rotator 11. The polarization plane is rotated by 45 ° by the Faraday rotator 11, and P
1, P2 enters the birefringent crystal plate 8. Birefringent crystal plate 8
P1 is ordinary light, and P2 is extraordinary light.
Goes straight as it is, and P2 further moves horizontally by L and exits from the birefringent crystal plate 8. In this case, the moving distance of P1 and P2 is (1 + √2) L for P1 with respect to 0. Orthogonal polarization component P1, which is incident on the birefringent crystal plate 9,
Since P2 is extraordinary light and P2 is ordinary light with respect to the birefringent crystal plate 9, P2 goes straight and P1 becomes (1 + √2 /
2) The light is emitted from the birefringent crystal plate 9 after moving horizontally L. At this time, since the moving distances of P1 and P2 are both (1 + √2) L, the optical path lengths of the two orthogonal polarization components are equal.
The incoming and outgoing positions of the light are not on the same straight line.
【0006】逆方向については(c)図より、複屈折結
晶板10に入射した反射戻り光は複屈折結晶板10の主
断面により2つの直交偏光成分である異常光P1、常光
P2に分離される。常光P2はそのまま直進し、異常光
P1は(√2/2)L水平移動して複屈折結晶板10か
ら複屈折結晶板9へ出射する。複屈折結晶板9へ入射し
た2つの直交偏光成分P1、P2は複屈折結晶板9に対
してP1が異常光、P2が常光となるためにP2は直進
し、P1は(1+√2/2)L水平移動して入射光の進
行する中心軸に戻り、複屈折結晶板7へ出射する。複屈
折結晶板7に入射した2つの直交偏光成分P1、P2は
複屈折結晶板7に対してP1が常光、P2が異常光とな
るため、P1はそのまま直進し、P2はL水平移動して
ファラデー回転子11へ出射する。ファラデー回転子1
1を通過した2つの直交偏光成分P1、P2はそれぞれ
偏光面を45°回転される。このときファラデー回転子
は非相反であるために順方向の偏光成分とは偏光方向が
90°異なる。ファラデー回転子11を通過した2つの
直交偏光成分P1、P2は複屈折結晶板6に入射する。
このとき複屈折結晶板6に対してP1が異常光、P2が
常光となり、P1が√2L水平移動して複屈折結晶板6
から出射され、両偏光成分とも光ファイバF1の位置と
異なる位置から出射されるため、光ファイバF1には戻
らず戻り光を遮断することが出来る。In the reverse direction, as shown in FIG. 3C, the reflected return light incident on the birefringent crystal plate 10 is separated into two orthogonally polarized components, ie, extraordinary light P1 and ordinary light P2 by the main cross section of the birefringent crystal plate 10. You. The ordinary light P2 goes straight as it is, and the extraordinary light P1 moves horizontally (√2 / 2) L and exits from the birefringent crystal plate 10 to the birefringent crystal plate 9. The two orthogonal polarization components P1 and P2 incident on the birefringent crystal plate 9 are such that P1 is extraordinary light and P2 is ordinary light with respect to the birefringent crystal plate 9, so that P2 goes straight and P1 is (1 + √2 / 2). (2) The light moves horizontally to return to the central axis where the incident light travels, and exits to the birefringent crystal plate 7. As for the two orthogonal polarization components P1 and P2 incident on the birefringent crystal plate 7, since P1 is ordinary light and P2 is extraordinary light with respect to the birefringent crystal plate 7, P1 goes straight as it is and P2 moves L horizontally. The light is emitted to the Faraday rotator 11. Faraday rotator 1
The two orthogonal polarization components P1 and P2 that have passed through 1 are each rotated by 45 ° in the polarization plane. At this time, since the Faraday rotator is non-reciprocal, the polarization direction differs from the polarization component in the forward direction by 90 °. The two orthogonal polarization components P1 and P2 that have passed through the Faraday rotator 11 enter the birefringent crystal plate 6.
At this time, P1 becomes extraordinary light and P2 becomes ordinary light with respect to the birefringent crystal plate 6, and P1 moves horizontally by 2L and the birefringent crystal plate 6
And both polarized components are emitted from a position different from the position of the optical fiber F1, so that the return light can be blocked without returning to the optical fiber F1.
【0007】図5において、(b)図より、光ファイバ
F1、F2間に入射方向から、複屈折結晶板12、透過
光の偏光面を45°回転するファラデー回転子16、複
屈折結晶板13、ファラデー回転子16と反対方向に4
5°回転するファラデー回転子17、複屈折結晶板1
4、ファラデー回転子16の偏光面回転方向の反対方向
に偏光面を45°回転するファラデー回転子18、複屈
折結晶板15の順に配置されている。前記複屈折結晶板
12、13、14、15の厚さの比はそれぞれ1:√
2:1:√2で構成される。前記複屈折結晶板12、1
4の主断面は一致しているが、前記複屈折結晶板13、
15の主断面は直交している。また、前記複屈折結晶板
13、15の主断面は前記複屈折結晶板12、14の主
断面に対してそれぞれ45°回転したものである。In FIG. 5, (b) shows that the birefringent crystal plate 12, the Faraday rotator 16 for rotating the polarization plane of the transmitted light by 45 °, and the birefringent crystal plate 13 between the optical fibers F1 and F2 from the incident direction. 4 in the opposite direction to the Faraday rotator 16
Faraday rotator 17 rotating by 5 °, birefringent crystal plate 1
4. The Faraday rotator 18 that rotates the polarization plane by 45 ° in the direction opposite to the polarization plane rotation direction of the Faraday rotator 16 and the birefringent crystal plate 15 are arranged in this order. The thickness ratio of the birefringent crystal plates 12, 13, 14, 15 is 1: 、, respectively.
2: 1: √2. The birefringent crystal plates 12, 1
4 are the same, but the birefringent crystal plate 13,
The 15 main sections are orthogonal. The main cross sections of the birefringent crystal plates 13 and 15 are rotated 45 ° with respect to the main cross sections of the birefringent crystal plates 12 and 14, respectively.
【0008】(a)図において、複屈折結晶板12への
入射光は主断面に対して常光P1、異常光P2に分離す
る。常光P1はそのまま直進し、異常光P2はL水平移
動して複屈折結晶板1からファラデー回転子16へ出射
される。ファラデー回転子16により偏光面が45°回
転され、P1、P2は複屈折結晶板13に入射する。複
屈折結晶板13に対してもP1は常光、P2は異常光と
なるため、P1はそのまま直進し、P2がさらに 2L
水平移動して複屈折結晶板13から出射する。このとき
のP1、P2移動距離はP1は0に対して、P2は(1
+√2)Lである。ファラデー回転子17により、偏光
面がファラデー回転子16と反対方向に45°回転さ
れ、P1、P2は複屈折結晶板14に入射する。直交す
る偏光成分P1、P2は複屈折結晶板14に対してもP
1が常光、P2が異常光となるため、P1は直進し、P
2がL水平移動してファラデー回転子18に出射され
る。ファラデー回転子18により、偏光面がファラデー
回転子16と反対方向に45°回転され、P1、P2は
複屈折結晶板15に入射する。複屈折結晶板15に入射
した直交する偏光成分P1、P2も複屈折結晶板15に
対してP1が常光、P2が異常光となるため、P1が直
進する。P2は水平移動して、P1と直交合成し、光フ
ァイバ へ出射される。このとき光ファイバF1と光フ
ァイバF2の位置は同一直線上にあるが、P1、P2の
移動距離はP1=0;P2=(2+√2)Lとなるため
に、直交する2偏光成分の光路長は異なる。In FIG. 1A, light incident on the birefringent crystal plate 12 is separated into an ordinary light P1 and an extraordinary light P2 with respect to the main section. The ordinary light P1 proceeds straight as it is, and the extraordinary light P2 moves horizontally by L and is emitted from the birefringent crystal plate 1 to the Faraday rotator 16. The polarization plane is rotated by 45 ° by the Faraday rotator 16, and P 1 and P 2 enter the birefringent crystal plate 13. Also for the birefringent crystal plate 13, P1 is ordinary light and P2 is extraordinary light, so that P1 goes straight on and P2 is further 2L.
The light moves horizontally and exits from the birefringent crystal plate 13. In this case, the moving distances of P1 and P2 are as follows: P1 is 0, and P2 is (1
+ √2) L. The Faraday rotator 17 rotates the plane of polarization by 45 ° in the direction opposite to that of the Faraday rotator 16, and P 1 and P 2 enter the birefringent crystal plate 14. The orthogonal polarization components P1 and P2 are
Since 1 is ordinary light and P2 is extraordinary light, P1 goes straight ahead and P
2 is horizontally moved by L and emitted to the Faraday rotator 18. The polarization plane is rotated by 45 ° in the opposite direction to the Faraday rotator 16 by the Faraday rotator 18, and P 1 and P 2 enter the birefringent crystal plate 15. The orthogonal polarization components P1 and P2 incident on the birefringent crystal plate 15 also travel straight with respect to the birefringent crystal plate 15 because P1 is ordinary light and P2 is extraordinary light. P2 moves horizontally, is orthogonally combined with P1, and is emitted to the optical fiber. At this time, the positions of the optical fiber F1 and the optical fiber F2 are on the same straight line, but the moving distance of P1 and P2 is P1 = 0; P2 = (2 + √2) L. The lengths are different.
【0009】逆方向については(c)図より、複屈折結
晶板15に入射した反射戻り光は複屈折結晶板15の主
断面により2つの直交偏光成分である常光P1、異常光
P2に2L水平移動して複屈折結晶板15からファラデ
ー回転子18へ出射する。ファラデー回転子18を通過
した2つの直交偏光成分P1、P2はそれぞれ偏光面を
45°回転され、複屈折結晶板14へ出射される。この
ときファラデー回転子は非相反であるために順方向の偏
光成分とは偏光方向が90°異なる。複屈折結晶板14
へ入射した2つの直交偏光成分P1、P2は複屈折結晶
板14に対してP1が異常光、P2が常光となるために
P2は直進し、P1はL水平移動してファラデー回転子
17へ出射する。ファラデー回転子17を通過し、複屈
折結晶板13に入射した2つの直交偏光P1、P2は複
屈折結晶板13に対してP1が常光、P2が異常光とな
るため、P1はそのまま直進し、P2は√2L水平移動
してファラデー回転子16へ出射される。ファラデー回
転子16を通過した2つの直交偏光成分P1、P2は複
屈折結晶板12に入射する。このとき複屈折結晶板12
に対してP1が異常光、P2が常光となり、P1がL水
平移動して複屈折結晶板12から出射され、両偏光成分
とも光ファイバF1の位置と異なる位置から出射される
ため、光ファイバF1には戻らず戻り光を遮断すること
が出来る。In the opposite direction, as shown in FIG. 3C, the reflected return light incident on the birefringent crystal plate 15 is 2 L horizontally to two orthogonally polarized components, ordinary light P1 and extraordinary light P2, due to the main cross section of the birefringent crystal plate 15. It moves and exits from the birefringent crystal plate 15 to the Faraday rotator 18. The two orthogonal polarization components P1 and P2 that have passed through the Faraday rotator 18 have their polarization planes rotated by 45 °, and are emitted to the birefringent crystal plate 14. At this time, since the Faraday rotator is non-reciprocal, the polarization direction differs from the polarization component in the forward direction by 90 °. Birefringent crystal plate 14
Of the two orthogonally polarized light components P1 and P2 incident on the birefringent crystal plate 14, P1 becomes extraordinary light and P2 becomes ordinary light, so that P2 goes straight, and P1 moves L horizontally and exits to the Faraday rotator 17. I do. The two orthogonally polarized light beams P1 and P2 that have passed through the Faraday rotator 17 and entered the birefringent crystal plate 13 are such that P1 is ordinary light and P2 is extraordinary light with respect to the birefringent crystal plate 13; P2 is moved to the Faraday rotator 16 by # 2L horizontal movement. The two orthogonal polarization components P1 and P2 that have passed through the Faraday rotator 16 enter the birefringent crystal plate 12. At this time, the birefringent crystal plate 12
P1 becomes extraordinary light, P2 becomes ordinary light, and P1 moves L horizontally and is emitted from the birefringent crystal plate 12, and both polarized components are emitted from a position different from the position of the optical fiber F1. The return light can be blocked without returning.
【0010】以上説明した従来例では入射光の偏光方向
によらず、光アイソレータ機能を果たす。In the conventional example described above, the optical isolator function is performed regardless of the polarization direction of the incident light.
【0011】[0011]
【発明が解決しようとする課題】Erドープファイバを
使用した光ファイバ増幅器(EDFA)を用いた長距離
光増幅中継システムでは、伝送速度が高く、数Gbit
/s以上になるにつれて偏波分散が伝送特性の劣化の原
因の一つになる。このEDFAを構成している光部品の
中で偏波分散を起こしているのが光アイソレータであ
る。偏波分散低減のためには、順方向において信号光を
直交する2偏光成分に分離・合成するまでの直交する2
偏光成分の光路長を等しくする必要がある。A long-distance optical amplification repeater system using an optical fiber amplifier (EDFA) using Er-doped fiber has a high transmission speed and several Gbits.
/ S or more, polarization dispersion becomes one of the causes of deterioration of transmission characteristics. It is the optical isolator that causes polarization dispersion among the optical components constituting the EDFA. In order to reduce the polarization dispersion, two orthogonal polarization components until the signal light is separated and combined into two orthogonal polarization components in the forward direction.
It is necessary to make the optical path lengths of the polarization components equal.
【0012】上記従来例図4においては、順方向におい
て信号光を直交する2偏光成分に分離・合成するまでの
直交する2偏光成分の光路長は等しいが、入出射光が同
一直線上でないために組立時の光学調整が煩雑になり、
また偏光素子材料の厚さが同一でないために偏光素子と
して数種類使用しなければならず、光アイソレータ自体
のコストアップにつながる。In FIG. 4, the optical path lengths of the orthogonal two-polarized light components until the signal light is separated and combined into the orthogonal two-polarized light components in the forward direction are equal, but the incoming and outgoing light are not on the same straight line. Optical adjustment at the time of assembly becomes complicated,
Further, since the thicknesses of the polarizing element materials are not the same, several types of polarizing elements must be used, which leads to an increase in the cost of the optical isolator itself.
【0013】上記従来技術図5においては入出射光は同
一直線上にあるが、偏光素子材料の厚さが同一でないた
めに偏光素子として、数種類使用しなければならないた
めに材料費等で光アイソレータ自体のコストアップにつ
ながる。また、順方向において、信号光を直交する2偏
光成分に分離・合成するまでの直交する2偏光成分の光
路長となるために、EDFAを用いた長距離光増幅シス
テムにこの光アイソレータが使用される場合、偏波分散
が生じ、伝送特性の劣化につながるおそれがある。In FIG. 5, the incident light and the outgoing light are on the same straight line. However, since the thickness of the polarizing element material is not the same, several types of polarizing elements must be used. Leads to increased costs. Also, this optical isolator is used in a long-distance optical amplification system using an EDFA, because in the forward direction, the optical path length of the orthogonal two-polarization components before the signal light is separated and combined into the orthogonal two-polarization components. In such a case, polarization dispersion may occur, leading to deterioration of transmission characteristics.
【0014】本発明はこのような技術的課題に鑑みてな
されたものであり、偏光素子が1種類で組立容易なた
め、材料費、組立工程においてコスト低減ができ、かつ
EDFA中に使用しても偏波分散が低減できる光アイソ
レータを提供することを目的とする。The present invention has been made in view of such a technical problem, and since a single polarizing element is easy to assemble, material costs and costs can be reduced in an assembling process. Another object of the present invention is to provide an optical isolator capable of reducing polarization dispersion.
【0015】[0015]
【課題を解決するための手段】本発明は、1対もしくは
複数対の光導波路間に配置され、複屈折性を有する平板
状の複屈折結晶板を用い、光の入射側から、第1複屈折
結晶板、第2複屈折結晶板、45°回転非相反素子、4
5°回転相反素子、第3複屈折結晶板、第4複屈折結晶
板の順に配列し、前記4枚の複屈折結晶板の厚さが全て
等しく、順方向において45°回転非相反素子と45°
回転相反素子の回転方向が反対である光アイソレータで
ある。The present invention uses a birefringent flat birefringent crystal plate disposed between one or a plurality of pairs of optical waveguides, and uses a first birefringent crystal plate from the light incident side. Refraction crystal plate, second birefringence crystal plate, 45 ° rotation non-reciprocal element, 4
The 5 ° rotation reciprocal element, the third birefringent crystal plate, and the fourth birefringent crystal plate are arranged in this order, and the thicknesses of the four birefringent crystal plates are all equal, and the 45 ° rotation nonreciprocal element and the 45 ° °
This is an optical isolator in which the rotation directions of the rotation reciprocal elements are opposite.
【0016】また本発明は、前記第1と第2複屈折結晶
板の偏光分離方向のなす角度、及び前記第3と第4複屈
折結晶板の偏光分離方向のなす角度が90°、前記第1
と第3複屈折結晶板の偏光分離方向のなす角度、及び前
記第2と第4複屈折結晶板の偏光分離方向のなす角度が
180°、前記第2と第3複屈折結晶板の偏光方向のな
す角度が90°であり、さらに順方向において、前記第
1複屈折結晶板に入射する光と前記第4複屈折結晶板か
ら出射される光は同一直線上であり、光が前記第1複屈
折結晶板で直交する2偏光に分離され、前記第4複屈折
結晶板で直交合成されるまでの2偏光間の光路長が等し
い光アイソレータである。Further, in the present invention, the angle between the polarization separation directions of the first and second birefringent crystal plates and the angle between the polarization separation directions of the third and fourth birefringence crystal plates are 90 °, 1
The angle between the polarization split direction of the second and fourth birefringent crystal plates and the angle between the polarization split directions of the second and fourth birefringent crystal plates is 180 °, and the polarization direction of the second and third birefringent crystal plates. Is 90 °, and in the forward direction, the light incident on the first birefringent crystal plate and the light emitted from the fourth birefringent crystal plate are on the same straight line, and the light is incident on the first birefringent crystal plate. An optical isolator that is separated into two orthogonal polarized lights by a birefringent crystal plate and has the same optical path length between the two polarized lights until orthogonally combined by the fourth birefringent crystal plate.
【0017】[0017]
【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。なお、本発明の対象とする光アイソレータは
常に永久磁石を必要とするので、これについての図示並
びに説明は省略する。図1において、(b)図は本発明
の一実施例の構成を示し、(a)、(c)図は光ファイ
バF1側から見たとき、各構成素子通過時における光の
偏光状態を示す。(a)図は順方向、(c)図は逆方向
を示す。図(b)において、光ファイバF1、F2間に
入射方向から収束レンズ(省略)、複屈折結晶板1、複
屈折結晶板2、非相反素子として透過光の偏光面を45
°回転するファラデー回転子5、相反素子としてファラ
デー回転子5と反対方向に透過光の偏光面を45°回転
する半波長板もしくは旋光子6、複屈折結晶板3、複屈
折結晶板4、収束レンズ(省略)の順に配置されてい
る。前記複屈折結晶板1、2、3、4の厚さの比は1:
1:1:1で構成される。前記複屈折結晶板1及び前記
複屈折結晶板2、前記複屈折結晶板3及び前記複屈折結
晶板4の主断面はそれぞれ直交している。また、前記複
屈折結晶板1及び前記複屈折結晶板3、前記複屈折結晶
板2及び前記複屈折結晶板4の主断面はそれぞれ一致し
ている。前記全ての複屈折結晶板において、入射光の進
行する中心軸に垂直な面(境界面)に垂直入射する光を
直交する2偏光に分離する際にその分離角を最大にする
ように入射光の中心軸に対して所定角度傾いている。Embodiments of the present invention will be described below in detail with reference to the drawings. Since the optical isolator to which the present invention is applied always requires a permanent magnet, illustration and description thereof are omitted. In FIG. 1, FIG. 1 (b) shows the configuration of one embodiment of the present invention, and FIGS. 1 (a) and 1 (c) show the polarization state of light when passing through each component when viewed from the optical fiber F1 side. . (A) shows the forward direction, and (c) shows the reverse direction. In FIG. 6B, a convergent lens (omitted), a birefringent crystal plate 1, a birefringent crystal plate 2, and a polarization plane of transmitted light as a non-reciprocal element between the optical fibers F1 and F2 are set to 45.
Rotating Faraday rotator 5, Half-wave plate or optical rotator 6 rotating the polarization plane of transmitted light by 45 ° in the opposite direction to Faraday rotator 5 as a reciprocal element, Birefringent crystal plate 3, Birefringent crystal plate 4, Convergence They are arranged in the order of lenses (omitted). The thickness ratio of the birefringent crystal plates 1, 2, 3, 4 is 1:
It is composed of 1: 1: 1. The main sections of the birefringent crystal plate 1, the birefringent crystal plate 2, the birefringent crystal plate 3, and the birefringent crystal plate 4 are orthogonal to each other. The main cross sections of the birefringent crystal plate 1, the birefringent crystal plate 3, the birefringent crystal plate 2, and the birefringent crystal plate 4 are the same. In all the birefringent crystal plates, when the light perpendicularly incident on the plane (boundary surface) perpendicular to the center axis where the incident light travels is separated into two orthogonal polarized lights, the incident light is maximized so as to maximize the separation angle. Are inclined at a predetermined angle with respect to the central axis.
【0018】(a)図において、複屈折結晶板1への入
射光は複屈折結晶板1の主断面に対して常光P1、異常
光P2に分離する。常光P1はそのまま直進し、異常光
P2はL水平移動して複屈折結晶板1から複屈折結晶板
2へ出射される。複屈折結晶板2に入射した2つの直交
する偏光成分P1、P2は、複屈折結晶板2に対しては
P1は異常光、P2は常光となるため、P2はそのまま
直進し、P1はL水平移動して複屈折結晶板2から出射
する。このときP1、P2移動距離はP1、P2共にL
である。複屈折結晶板2から出射した2つの直交する偏
光成分P1、P2はファラデー回転子5により45°、
半波長板6によりファラデー回転子5と反対方向に45
°回転されるため、半波長板6を通過したP1、P2の
偏光状態は複屈折結晶板2を通過した偏光状態と同じで
ある。複屈折結晶板3に入射した2つの直交する偏光成
分P1、P2は複屈折結晶板3に対してはP1が常光、
P2が異常光となるため、P1は直進し、P2はL水平
移動して複屈折結晶板3から出射される。複屈折結晶板
4に入射した直交する偏光成分P1、P2は複屈折結晶
板4に対してP1が異常光、P2が常光となるため、P
2が直進し、P1がL水平移動して、P1と直交合成し
て光ファイバF2へ出射される。このときのP1、P2
の移動距離は共に2Lとなるために、直交する2偏光成
分の光路長は等しく、かつ、光の入出射位置は同一直線
上にある。In FIG. 1A, light incident on the birefringent crystal plate 1 is separated into ordinary light P1 and extraordinary light P2 with respect to the main cross section of the birefringent crystal plate 1. The ordinary light P1 goes straight as it is, and the extraordinary light P2 moves horizontally by L and is emitted from the birefringent crystal plate 1 to the birefringent crystal plate 2. The two orthogonal polarized light components P1 and P2 incident on the birefringent crystal plate 2 are extraordinary light and P2 are ordinary light with respect to the birefringent crystal plate 2, so that P2 goes straight and P1 is L horizontal. It moves and exits from the birefringent crystal plate 2. At this time, the moving distance of P1 and P2 is L for both P1 and P2.
It is. The two orthogonal polarization components P1 and P2 emitted from the birefringent crystal plate 2 are 45 ° by the Faraday rotator 5,
The Faraday rotator 5 is turned 45
Due to the rotation, the polarization states of P1 and P2 passing through the half-wave plate 6 are the same as the polarization states passing through the birefringent crystal plate 2. The two orthogonal polarization components P1 and P2 incident on the birefringent crystal plate 3 are such that P1 is ordinary light for the birefringent crystal plate 3,
Since P2 becomes extraordinary light, P1 goes straight, and P2 moves L horizontally and is emitted from the birefringent crystal plate 3. The orthogonal polarized light components P1 and P2 incident on the birefringent crystal plate 4 have an extraordinary light and an ordinary light P2 with respect to the birefringent crystal plate 4.
2 goes straight on, P1 moves horizontally by L, and is orthogonally combined with P1 and emitted to the optical fiber F2. P1, P2 at this time
Are both 2L, the optical path lengths of the two orthogonal polarization components are equal, and the incident and exit positions of the light are on the same straight line.
【0019】逆方向については(c)図より、複屈折結
晶板4に入射した反射戻り光は複屈折結晶板4の主断面
により2つの直交偏光成分である異常光P1、常光P2
に分離される。常光P2はそのまま直進し、異常光P1
はL水平移動して複屈折結晶板4から複屈折結晶板3へ
出射する。複屈折結晶板3へ入射した2つの直交偏光成
分P1、P2は複屈折結晶板9に対してP1が常光、P
2が異常光となるためにP1は直進し、P2はL水平移
動して半波長板6へ出射する。半波長板6、ファラデー
回転子5を通過した2つの直交偏光成分P1、P2はそ
れぞれの偏光方向を90°回転する。そのため偏光方向
は順方向時の偏光方向と90°異なる。複屈折結晶板2
に入射した2つの直交偏光成分P1、P2は複屈折結晶
板2に対してP1が常光、P2が異常光となるため、P
1はそのまま直進し、P2はL水平移動して複屈折結晶
板1へ出射する。複屈折結晶板1に入射した2つの直交
偏光成分P1、P2は複屈折結晶板1に対してP1が異
常光、P2が常光となり、P1がL水平移動して複屈折
結晶板1から出射され、両偏光成分とも光ファイバF1
の位置と異なる位置から出射されるため、光ファイバF
1には戻らず戻り光を遮断することが出来る。本実施例
では入射光の偏光方向によらず、光アイソレータ機能を
果たすと同時に順方向において、分離・合成する直交す
る2偏光成分の光路長は等しく、かつ光の入出射位置は
同一直線上にある。In the reverse direction, as shown in FIG. 3C, the reflected return light incident on the birefringent crystal plate 4 has two orthogonal polarization components, the extraordinary light P1 and the ordinary light P2, due to the main cross section of the birefringent crystal plate 4.
Is separated into The ordinary light P2 goes straight as it is, and the extraordinary light P1
Moves horizontally by L and exits from the birefringent crystal plate 4 to the birefringent crystal plate 3. The two orthogonal polarization components P1 and P2 incident on the birefringent crystal plate 3 are such that P1 is ordinary light, P
Since P2 becomes extraordinary light, P1 goes straight, and P2 moves L horizontally and exits to the half-wave plate 6. The two orthogonal polarization components P1 and P2 that have passed through the half-wave plate 6 and the Faraday rotator 5 rotate their respective polarization directions by 90 °. Therefore, the polarization direction differs by 90 ° from the polarization direction in the forward direction. Birefringent crystal plate 2
Are incident on the birefringent crystal plate 2, P1 is ordinary light, and P2 is extraordinary light.
1 moves straight, P2 moves horizontally L and exits to the birefringent crystal plate 1. The two orthogonally polarized light components P1 and P2 incident on the birefringent crystal plate 1 are extraordinary light at P1 and ordinary light at P2 with respect to the birefringent crystal plate 1, and P1 moves horizontally L and is emitted from the birefringent crystal plate 1. , Both polarization components are optical fiber F1
Is emitted from a position different from the position of the optical fiber F
The return light can be blocked without returning to 1. In this embodiment, regardless of the polarization direction of the incident light, the optical path length of the two orthogonal polarization components to be separated and combined in the forward direction is equal at the same time as performing the optical isolator function, and the incident and exit positions of the light are on the same straight line. is there.
【0020】図2は本発明を利用した他の実施例を示
す。(b)図はその実施例の構成を示し、(a)、
(c)図は光ファイバから見たとき、各構成素子通過時
における光の偏光状態を示す。(a)図は順方向、
(c)図は逆方向を示す。図1で示した本発明光アイソ
レータの45°回転非相反素子と45°回転相反素子を
前後に入れ換えても、入射光の偏光方向によらず、光ア
イソレータ機能を果たすと同時に順方向において、分離
・合成する直交する2偏光成分の光路長は等しく、かつ
光の入出射位置は同一直線上にあるというように図1で
示した光アイソレータと同様の効果を得ることができ
る。FIG. 2 shows another embodiment utilizing the present invention. FIG. 2B shows the configuration of the embodiment.
(C) shows the polarization state of light when passing through each component when viewed from the optical fiber. (A) The figure shows the forward direction,
(C) The figure shows the reverse direction. Even if the 45 ° rotating non-reciprocal element and the 45 ° rotating reciprocal element of the optical isolator of the present invention shown in FIG. 1 are switched back and forth, the optical isolator function is performed regardless of the polarization direction of the incident light and the light is separated in the forward direction. The same effect as the optical isolator shown in FIG. 1 can be obtained such that the optical path lengths of the two orthogonally polarized light components to be combined are equal, and the light input / output positions are on the same straight line.
【0021】図3は図1に示した本発明光アイソレータ
を一体化したその他の実施例を示す。本発明光アイソレ
ータの偏光素子である全ての複屈折結晶板の光学軸は入
射光の進行する中心軸に対して所定の角度傾いており、
かつ厚さも等しいため、本発明光アイソレータに使用す
る複屈折結晶板は1種類でよい。偏光素子である複屈折
結晶板の入射光の進行する中心軸に対して垂直な面を正
方形にした場合には、複屈折結晶板1と複屈折結晶板2
において、それぞれの光学軸が所定の位置に配置し、か
つ主断面を直交するようにそれぞれを接合すれば良く、
入射光の進行する中心軸回りの回転調整を必要とせず、
正方形の面を所定の位置に合わせるだけで良く、また、
複屈折結晶板1と複屈折結晶板2を一体化した偏光子B
1は上下に180°回転すれば複屈折結晶板3と複屈折
結晶板4の一体化した偏光子B2を構成することが出来
るため組立工程の大幅な削減が可能となる。FIG. 3 shows another embodiment in which the optical isolator of the present invention shown in FIG. 1 is integrated. The optical axes of all birefringent crystal plates, which are polarizing elements of the optical isolator of the present invention, are inclined at a predetermined angle with respect to the central axis where incident light travels,
Since the thicknesses are equal, the birefringent crystal plate used in the optical isolator of the present invention may be of one type. When the plane perpendicular to the center axis of the incident light on the birefringent crystal plate, which is a polarizing element, is square, the birefringent crystal plate 1 and the birefringent crystal plate 2
In, each optical axis may be arranged at a predetermined position, and may be joined so that the main cross sections are orthogonal to each other,
No need to adjust the rotation around the central axis where the incident light travels,
You only need to align the square surface to the predetermined position,
Polarizer B integrating birefringent crystal plate 1 and birefringent crystal plate 2
By rotating the birefringent crystal plate 3 and the birefringent crystal plate 4 integrally by rotating the birefringent crystal plate 180 up and down by 180 °, the assembly process can be greatly reduced.
【0022】[0022]
【発明の効果】以上説明したように本発明の構成によれ
ば、順方向において分離・合成する2つの直交偏光の光
路長が等しいため、偏波分散が問題となるEDFAを用
いた長距離伝送系に使用可能である。また、光の入出射
位置が同一直線上になるため、コリメートレンズとの光
学調整は無調整もしくは容易になる。さらに、複屈折結
晶板は同一のものが使用でき、かつ一体化偏光子B1は
上下に180°回転することにより、一体化偏光子B2
として使用でき、かつ複屈折結晶板の形状を正方形にし
た場合は一体化偏光子組立の際に回転調整を必要としな
いため、組立工程が減少し、かつ組立が容易となりコス
トダウンにつながる。As described above, according to the structure of the present invention, since the optical path lengths of two orthogonally polarized lights to be separated and combined in the forward direction are equal, long-distance transmission using an EDFA in which polarization dispersion becomes a problem. Can be used for systems. Further, since the light incident and exit positions are on the same straight line, the optical adjustment with the collimator lens is not adjusted or is easy. Further, the same birefringent crystal plate can be used, and the integrated polarizer B1 is rotated 180 ° up and down, so that the integrated polarizer B2 can be used.
When the birefringent crystal plate has a square shape, no rotation adjustment is required in assembling the integrated polarizer, so that the number of assembling steps is reduced, and the assembling is facilitated, leading to cost reduction.
【図1】本発明の1実施例にかかる光アイソレータの概
略構成図及び順方向、逆方向の偏光成分を示す。FIG. 1 shows a schematic configuration diagram of an optical isolator according to one embodiment of the present invention and polarization components in a forward direction and a reverse direction.
【図2】本発明を利用した他の実施例の光アイソレータ
の概略構成図及び順方向、逆方向の偏光成分の様子を示
す。FIG. 2 shows a schematic configuration diagram of an optical isolator according to another embodiment using the present invention, and shows a state of polarization components in forward and reverse directions.
【図3】本発明を利用したその他の実施例の光アイソレ
ータの一体化概略図を示す。FIG. 3 shows an integrated schematic diagram of an optical isolator of another embodiment utilizing the present invention.
【図4】従来の光アイソレータの概略構成図及び順方
向、逆方向の偏光成分を示す。FIG. 4 shows a schematic configuration diagram of a conventional optical isolator and polarization components in forward and reverse directions.
【図5】従来の光アイソレータの概略構成図及び順方
向、逆方向の偏光成分を示す。FIG. 5 shows a schematic configuration diagram of a conventional optical isolator and polarization components in forward and reverse directions.
F1、F2 光ファイバ 1〜4 複屈折結晶板 5 ファラデー回転子 6 半波長板 F1, F2 Optical fiber 1-4 Birefringent crystal plate 5 Faraday rotator 6 Half-wave plate
Claims (3)
れる複屈折結晶板を用いた光アイソレータにおいて、光
の入射側から第1複屈折結晶板、第2複屈折結晶板、4
5°回転非相反素子、45°回転相反素子、第3複屈折
結晶板、第4複屈折結晶板の順に配列し、前記4枚の複
屈折結晶板の厚さが全て等しい事を特徴とする光アイソ
レータ。An optical isolator using a birefringent crystal plate disposed between one or a plurality of pairs of optical waveguides, wherein a first birefringent crystal plate, a second birefringent crystal plate,
A 5 ° rotation non-reciprocal element, a 45 ° rotation reciprocal element, a third birefringent crystal plate, and a fourth birefringent crystal plate are arranged in this order, and the four birefringent crystal plates are all equal in thickness. Optical isolator.
向のなす角度、及び前記第3と第4複屈折結晶板の偏光
分離方向のなす角度が90°、前記第1と第3複屈折結
晶板の偏光分離方向のなす角度、及び前記第2と第4複
屈折結晶板の偏光分離方向のなす角度が180°および
前記第2と第3複屈折結晶板の偏光方向のなす角度が9
0°である事を特徴とする請求項1記載の光アイソレー
タ。2. An angle between a polarization separation direction of said first and second birefringent crystal plates and an angle between a polarization separation direction of said third and fourth birefringent crystal plates is 90 °, and said first and second birefringent crystal plates are 90 °. The angle formed by the polarization splitting directions of the three birefringent crystal plates and the angle formed by the polarization splitting directions of the second and fourth birefringent crystal plates are 180 °, and the angle formed by the polarization directions of the second and third birefringent crystal plates. Angle 9
2. The optical isolator according to claim 1, wherein the angle is 0 [deg.].
入射する光と前記第4複屈折結晶板から出射される光は
同一直線上であり、光が前記第1複屈折結晶板で直交す
る2偏光に分離され、前記第4複屈折結晶板で直交合成
されるまでの2偏光間の光路長が等しい事を特徴とする
請求項1記載の光アイソレータ。3. In the forward direction, light incident on the first birefringent crystal plate and light emitted from the fourth birefringent crystal plate are on the same straight line, and the light is reflected by the first birefringent crystal plate. The optical isolator according to claim 1, wherein the optical path lengths of the two polarized lights are equal to each other until they are separated into two orthogonal polarized lights and are orthogonally combined by the fourth birefringent crystal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5031766A JP2989983B2 (en) | 1993-02-22 | 1993-02-22 | Optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5031766A JP2989983B2 (en) | 1993-02-22 | 1993-02-22 | Optical isolator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06250121A JPH06250121A (en) | 1994-09-09 |
JP2989983B2 true JP2989983B2 (en) | 1999-12-13 |
Family
ID=12340170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5031766A Expired - Fee Related JP2989983B2 (en) | 1993-02-22 | 1993-02-22 | Optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2989983B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004070459A1 (en) | 2003-02-04 | 2004-08-19 | Fujitsu Limited | Variable light delaying circuit |
-
1993
- 1993-02-22 JP JP5031766A patent/JP2989983B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06250121A (en) | 1994-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6014475A (en) | Fiber optic circulator | |
EP1176451A2 (en) | Isolated polarization beam splitter and combiner | |
US7081996B2 (en) | Isolated polarization beam splitter and combiner | |
US5574595A (en) | Optical isolator | |
US5923472A (en) | 3-port optical circulator/switch with mirror | |
EP0661579B1 (en) | Optical isolator without polarization mode dispersion | |
US6061167A (en) | Optical isolator | |
US5729377A (en) | Optical apparatus | |
US6178044B1 (en) | Method and system for providing an optical circulator | |
US6360034B1 (en) | Reflection based nonmoving part optical switch | |
US6091543A (en) | Apparatus for providing non-reciprocal termination of parallel like polarization modes | |
US6246518B1 (en) | Reflection type optical isolator | |
US6445499B1 (en) | Optical circulators | |
JP2989983B2 (en) | Optical isolator | |
US20030053209A1 (en) | Dual stage optical isolator with reduced polarization mode dispersion and beam offset | |
JPH0668585B2 (en) | Optical isolator | |
JPH0668584B2 (en) | Optical isolator | |
US6288826B1 (en) | Multi-stage optical isolator | |
US6239900B1 (en) | Reflective fiber-optic isolator | |
JPH06324289A (en) | Polarization beam splitter and optical circulator using this splitter and optical switch | |
US20020141034A1 (en) | Compact optical circulator with three ports | |
US6762879B1 (en) | Method and system for providing an optical circulator | |
JPH0611664A (en) | Optical isolator | |
JPH0451214A (en) | Optical isolator | |
JPH07191279A (en) | Optical isolator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |