JPS5810726B2 - optical circulator - Google Patents
optical circulatorInfo
- Publication number
- JPS5810726B2 JPS5810726B2 JP12340678A JP12340678A JPS5810726B2 JP S5810726 B2 JPS5810726 B2 JP S5810726B2 JP 12340678 A JP12340678 A JP 12340678A JP 12340678 A JP12340678 A JP 12340678A JP S5810726 B2 JPS5810726 B2 JP S5810726B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- free end
- optical system
- end surface
- birefringent crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
本発明は、第1のポートに対する入射光に基き第2のポ
ートで出射光が得られ、又第2のポートに対する入射光
に基き第3のポートで出射光が得られ、更に第3のポー
トに対する入射光に基き第4のポートでの出射光が得ら
れ、尚更に第4のポートに対する入射光に基き第1のポ
ートでの出射光が得られるという光サーキュレーク機能
の得られる様になされた光サーキュレータの改良に関す
る。DETAILED DESCRIPTION OF THE INVENTION According to the present invention, output light is obtained at a second port based on the incident light on the first port, and output light is obtained at the third port based on the incident light on the second port. An optical circular lake in which light emitted from the fourth port is obtained based on the light incident on the third port, and light emitted from the first port is obtained based on the light incident on the fourth port. This invention relates to improvements in optical circulators that have improved functionality.
斯種光サーキュレータとして従来第1図に示す如く、所
定の磁界を厚さ方向に受けることにより入射光の偏光方
向と出射光のそれとの角が略々45゜を以って得られる
様になされた磁気光学効果板1と、その相対向する面2
a及び2bに夫々対向して配された偏光プリズム3及び
4とを有し、而して今磁気光学効果板1の厚さ方向をZ
軸方向、そのZ軸方向と直交する面をX−Y平面、X−
Y平面上の互に直交して延長せる方向を夫々X軸方向及
びY軸方向、X軸方向及びY軸方向と直交する面を夫々
Y−Z平面及びX−Z平面とするとき、偏光プリズム3
のX−Z平面と平行な面5を第1のポートP1としてそ
の第1のポートよりX軸方向の直線偏光L1を入射光と
して入射せしめればこれに基き偏光プリズム4のX−Z
平面に対してX−Y平面上で略々45°回転せる面と平
行な面6よりこれを第2のポートとしてY軸方向に対し
て45°傾斜せる方向の直線偏光L1’が出射光として
得られ、文箱2のポートP2よりY軸方向に対して45
°傾斜せる方向の直線偏光L2を入射光として入射せし
めればこれに基き偏光プリズム3のX−Y平面と平行な
面7よりこれを第3のポートP3としてY軸方向の直線
偏光L2’が出射光として得られ、更に第3のポートP
3よりY軸方向の直線偏光L3を入射光として入射せし
めればこれに基き偏光プリズム4のX−Y平面と平行な
面8よりこれを第4のポートP4としてY軸方向に対し
て45°傾斜せる方向の直線偏光L3’が出射光として
得られ、尚更に第4のポートP4よりY軸方向に対して
45°傾斜せる方向の直線偏光L4を入射光として入射
せしめればこれに基き第1のポートよりX軸方向の直線
偏光L4’が出射光として得られる様になされた構成の
ものが提案されている。As shown in FIG. 1, this type of optical circulator is conventionally designed so that the angle between the polarization direction of the incident light and that of the output light is approximately 45 degrees by receiving a predetermined magnetic field in the thickness direction. magneto-optical effect plate 1 and its opposing surfaces 2
It has polarizing prisms 3 and 4 arranged to face each other in a and 2b, respectively, and now the thickness direction of the magneto-optic effect plate 1 is Z.
The axial direction, the plane perpendicular to the Z-axis direction is the X-Y plane,
When the mutually extending directions perpendicular to each other on the Y plane are the X-axis direction and the Y-axis direction, and the planes orthogonal to the X-axis direction and the Y-axis direction are respectively the Y-Z plane and the X-Z plane, a polarizing prism 3
If the plane 5 parallel to the X-Z plane of the polarizing prism 4 is set as the first port P1 and the linearly polarized light L1 in the X-axis direction is incident as incident light from the first port, then
Linearly polarized light L1' in a direction tilted by 45 degrees with respect to the Y-axis direction is outputted from a surface 6 which is parallel to the surface rotated by approximately 45 degrees on the X-Y plane with respect to the plane as the second port. 45 in the Y-axis direction from port P2 of text box 2
If the linearly polarized light L2 in the tilting direction is made incident as incident light, then the linearly polarized light L2' in the Y-axis direction is transmitted from the surface 7 of the polarizing prism 3 parallel to the X-Y plane to the third port P3. It is obtained as an emitted light and is further transmitted to the third port P.
3, if the linearly polarized light L3 in the Y-axis direction is incident as the incident light, then based on this, it is used as the fourth port P4 from the surface 8 of the polarizing prism 4 parallel to the X-Y plane at 45 degrees with respect to the Y-axis direction. If the linearly polarized light L3' in the direction of inclination is obtained as the output light, and if the linearly polarized light L4 in the direction of inclination of 45° with respect to the Y-axis direction is made incident as incident light from the fourth port P4, the A configuration has been proposed in which linearly polarized light L4' in the X-axis direction can be obtained as output light from one port.
然し乍ら斯る従来の光サーキュレータの場合、第1のポ
ートP1に対する入射光がX軸方向の直線偏光成分を有
しない限り第2のポートP2には出射光は得られず、文
箱2のポートに対する入射光がY軸方向と45°傾斜せ
る方向の直線偏光成分を有しない限り第3のポートには
出射光は得られず、更に第3のポートに対する入射光が
Y軸方向の直線偏光成分を有しない限り第4のポートに
は出射光は得られず、尚更に第4のポートに対する入射
光がY軸方向に対して45°傾斜せる方向の直線偏光成
分を有しない限り第1のポートには出射光は得られず、
この為第1のポートに対する入射光がX軸方向の直線偏
光成分及びこれと直交する方向の直線偏光成分を有して
いる場合第2のポートより得られる出射光が入射光に対
して犬なる損失を伴なったものとして得られ、文箱2の
ポートに対する入射光がY軸方向と45°傾斜せる方向
の直線偏光成分及びこれと直交する方向の直線偏光成分
を有している場合第3のポートより得られる出射光が入
射光に対して犬なる損失を伴なったものとして得られ、
更に第3のポートに対する入射光がY軸方向の直線偏光
成分及びこれと直交する方向の直線偏光成分を有してい
る場合第4のポートより得られる出射光が入射光に対し
て大なる損失を伴なったものとして得られ、尚更に第4
のポートに対する入射光がY軸方向に対して45°傾斜
せる直線偏光成分及びこれと直交する直線偏光成分を有
している場合第1のポートより得られる出射光が入射光
に対して犬なる損失を伴なったものとして得られるもの
である。However, in the case of such a conventional optical circulator, unless the incident light on the first port P1 has a linearly polarized component in the X-axis direction, no output light is obtained at the second port P2, and the Unless the incident light has a linearly polarized component in a direction inclined at 45 degrees with respect to the Y-axis direction, no output light will be obtained at the third port. Unless the incident light has a linearly polarized component tilted by 45 degrees with respect to the Y-axis direction, no output light will be obtained from the fourth port, and furthermore, unless the incident light to the fourth port has a linearly polarized component tilted at 45 degrees with respect to the Y-axis direction, no output light will be obtained from the first port. No output light is obtained,
Therefore, if the incident light to the first port has a linearly polarized component in the X-axis direction and a linearly polarized component in the direction orthogonal to this, the output light obtained from the second port will be different from the incident light. If the incident light to the port of text box 2 has a linearly polarized component in a direction inclined at 45 degrees with respect to the Y-axis direction and a linearly polarized component in a direction perpendicular to this, the third The output light obtained from the port is obtained with a certain loss compared to the input light,
Furthermore, if the incident light to the third port has a linearly polarized component in the Y-axis direction and a linearly polarized component in the direction orthogonal to this, the output light obtained from the fourth port will have a large loss with respect to the incident light. , and furthermore, the fourth
If the incident light to the first port has a linearly polarized component tilted at 45 degrees with respect to the Y-axis direction and a linearly polarized component perpendicular to this, the output light obtained from the first port will be different from the incident light. Gains come at a cost.
従って上述せる従来の光サーキュレータの場合、光ファ
イバの如き光導波路より多重モードの光が得られるもの
とし、而してその光を上述せる入射光とした場合、その
入射光に基く出射光が入射光に対して犬なる損失を伴な
ったものとして得られるという欠点を有していた。Therefore, in the case of the above-mentioned conventional optical circulator, it is assumed that multi-mode light is obtained from an optical waveguide such as an optical fiber, and when that light is the above-mentioned incident light, the output light based on the incident light is the incident light. It had the disadvantage that it was obtained with a certain loss to light.
依って本発明は斯る欠点のない新規な斯種光サーキュレ
ータを提案せんとするもので、以下図面を伴なって本発
明の実施例を詳述する所より明らかとなるであろう。Therefore, the present invention aims to propose a novel optical circulator of this kind that does not have these drawbacks, which will become clear from the following detailed description of embodiments of the present invention with reference to the drawings.
第2図は本発明の第1の実施例を示し、第1の光学系A
1と、それを挟んで相対向して配された第2及び第3の
光学系A2及びA3とよりなる。FIG. 2 shows a first embodiment of the present invention, in which the first optical system A
1, and second and third optical systems A2 and A3 arranged opposite to each other with the optical system A2 and A3 sandwiched therebetween.
第1の光学系A1は所定の間隔を保って相対向して配さ
れた第1及び第2の複屈折結晶板B1及びB2と、2等
複屈折結晶板B1及びB2間に配された所定の磁界を厚
さ方向に受けることにより入射光の偏光方向と出射光の
それとのなす角が絡路45°を以って得られる様になさ
れた磁気光学効果板りと、複屈折結晶板Bj及びB2の
何れか一方例えば複屈折結晶板B2と磁気光学効果板り
との間にそれ等と対向して配された入射光の偏光方向と
出射光のそれとのなす角が略々45°を以って得られる
様になされた旋光性乃至異方性結晶板Eと、複屈折結晶
板B1の複屈折結晶板B2側とは反対側の面にこれと対
向して配された収束用レンズFとを以って構成されてい
る。The first optical system A1 includes first and second birefringent crystal plates B1 and B2, which are arranged facing each other with a predetermined interval, and a predetermined birefringent crystal plate arranged between the second birefringent crystal plates B1 and B2. A magneto-optic effect board which is made to receive a magnetic field in the thickness direction so that the angle between the polarization direction of the incident light and that of the outgoing light is obtained by a 45° intertwining path, and a birefringent crystal board Bj and B2, for example, the birefringent crystal plate B2 and the magneto-optic effect plate are disposed facing each other, and the angle between the polarization direction of the incident light and that of the output light is approximately 45°. The optically active or anisotropic crystal plate E thus obtained, and the converging lens disposed on the surface of the birefringent crystal plate B1 opposite to the birefringent crystal plate B2 side and facing the birefringent crystal plate B1. It is composed of F.
文箱2の光学系A2は第3図と共に参照して明らかな如
く第3の複屈折結晶板B3とそれと対向して配された収
束用レンズG1とよりなる第1の分岐・合成回路H1と
、例えば光ファイバでなる第1の光導波路に1と、第3
図と共に参照して明らかな如く一方の遊端面aを複屈折
結晶板B3の一方の面Cに収束用レンズGを介して対向
せしめて配された第1の光導波路に1と同様の第2の光
導波路に2と、一方の遊端面aを互に所定の間隔を保っ
て複屈折結晶板B3の他方の面dに対向せしめて配され
た第1及び第2の光導波路に1及びに2と同様の第3及
び第4の光導波路に3及びに4とを以って構成されてい
る。As is clear from reference to FIG. 3, the optical system A2 of the text box 2 includes a first branching/synthesizing circuit H1 consisting of a third birefringent crystal plate B3 and a converging lens G1 disposed opposite thereto. 1 and a third optical waveguide, for example, a first optical waveguide made of an optical fiber.
As is clear from the figure, a first optical waveguide, which is disposed with one free end surface a facing one surface C of the birefringent crystal plate B3 via a converging lens G, is connected to a second optical waveguide similar to 1. 1 and 2 in the optical waveguide, and 1 and 2 in the first and second optical waveguides arranged with one free end surface a facing the other surface d of the birefringent crystal plate B3 with a predetermined distance from each other. 3 and 4 are constructed as third and fourth optical waveguides similar to those of 2.
この場合分岐・合成回路H1は、その光導波路に2にそ
の端面d側に向って互に直交する方向の2つの直線偏光
成分を含む光が伝播されて、その光が端面aより入射光
(これをQOとする)として出射されたとすれば、その
入射光QOがレンズG1を介して複屈折結晶板B3にそ
の面C側より入射し、そしてそれが複屈折結晶板B3内
で互に直交する2つの直線偏光成分に分岐され、それ等
が面d上の所定の間隔を保つ点を夫々中心とする位置よ
り夫々出射光(之等を夫々Q1及びQ2とする)として
得られ、次で斯く得られる2つの出射光Q1及びQ2が
夫々光導波路に3及びに4内にそれ等の端面aより入射
し、而してこれ等2つの出射光Q1及びQ2が夫夫光導
波路に3及びに4にその端面d側とは反対側の方向に伝
播する様になされ、又それとは逆に光導波路に3及びに
4にそれ等の端面d側に向って上述せる出射光Q1及び
Q2と同様の光が夫々伝播されて、それ等が夫々の端面
aより出射されたとすれば、それ等光が複屈折結晶板B
3内にその面d側より入射し、そしてそれ等が複屈折結
晶板B3内で合成され、その合成された光が面C上の所
定の点を中心とする位置より上述せる入射光QOと同様
の光として出射し、それがレンズG1を介して光導波路
に2内にその端面aより入射し而してその光が光導波路
に2にその端面d側とは反対側の方向に伝播する様にな
されているものである。In this case, in the branching/combining circuit H1, light containing two linearly polarized components in mutually orthogonal directions is propagated through the optical waveguide 2 toward the end face d, and the light is transmitted from the end face a to the incident light ( If the incident light QO enters the birefringent crystal plate B3 from the surface C side through the lens G1, the light beams are orthogonal to each other within the birefringent crystal plate B3. The light is split into two linearly polarized components, each of which is obtained as an output light (denoted as Q1 and Q2, respectively) from a position centered on a point on the surface d that maintains a predetermined interval, and then The two output lights Q1 and Q2 thus obtained enter the optical waveguides 3 and 4 from their end surfaces a, and these two output lights Q1 and Q2 enter the optical waveguides 3 and 4 respectively. The above-mentioned output lights Q1 and Q2 are made to propagate in the direction opposite to the end face d side of the optical waveguide 3 and 4 in the direction opposite to the end face d side of the optical waveguide. If similar lights are respectively propagated and emitted from the respective end faces a, then those lights will be transmitted to the birefringent crystal plate B.
3 from its surface d side, and these are combined in the birefringent crystal plate B3, and the combined light is reflected from the above-mentioned incident light QO from a position centered on a predetermined point on the surface C. The same light is emitted, enters the optical waveguide 2 from its end surface a through the lens G1, and propagates into the optical waveguide 2 in the direction opposite to its end surface d. This is how it is done.
更に第3の光学系A3は、第2の光学系A2と同様の構
成を有するので詳細説明はこれを省略するも、第2の光
学系A2と同様にその第1の分岐・合成回路H1に対応
せるその複屈折結晶板B3及び収束用レンズG1に夫々
対応せる第4の複屈折結晶板B4及び収束用レンズG2
よりなる第2の分岐・合成回路H2と、第1、第2、第
3及び第4の光導波路に1.に2.に3及びに4に夫々
対応せる第5.第6.第7及び第8の光導波路に5゜K
6.に7及びに8とを以って構成されている。Further, the third optical system A3 has the same configuration as the second optical system A2, so a detailed explanation thereof will be omitted, but like the second optical system A2, the first branching/synthesizing circuit H1 has the same structure as the second optical system A2. A fourth birefringent crystal plate B4 and converging lens G2 corresponding to the corresponding birefringent crystal plate B3 and converging lens G1, respectively.
A second branching/synthesizing circuit H2 consisting of the first, second, third and fourth optical waveguides 1. 2. 5th corresponding to 3 and 4 respectively. 6th. 5°K for the seventh and eighth optical waveguides
6. 7 and 8.
この場合、金弟1の光学系A1の複屈折結晶板B1の厚
さ方向をZ軸方向、そのZ軸方向と直交する面をX−Y
平面、X−Y平面上の互に直交して延長せる方向を夫々
X軸方向及びX軸方向、X軸方向及びX軸方向と直交す
る面を夫々Y−Z平面及びX−Z平面とするとき、第1
の光学系A1に於ける複屈折結晶板B1及びB2、磁気
光学効果板り及び旋光性乃至異方性結晶板Eはそれ等の
板面をしてX−Y平面と平行な面内として配され、又レ
ンズFがその光軸をしてZ軸方向として配されているも
のである。In this case, the thickness direction of the birefringent crystal plate B1 of the optical system A1 of Kintetsu 1 is the Z-axis direction, and the plane orthogonal to the Z-axis direction is the X-Y
The mutually orthogonal extending directions on the X-Y plane are the X-axis direction and the X-axis direction, and the X-axis direction and the plane orthogonal to the X-axis direction are the Y-Z plane and the X-Z plane, respectively. time, 1st
The birefringent crystal plates B1 and B2, the magneto-optic effect plate, and the optically active or anisotropic crystal plate E in the optical system A1 are arranged with their planes parallel to the X-Y plane. In addition, the lens F is arranged with its optical axis in the Z-axis direction.
文箱2の光学系A2の光導波路に1.に3及びに4が、
光導波路に1の一方の端面す及び光導波路に3及びに4
の他方の端面すをしてそれ等の光軸がそれ等に共通なZ
−Y平面と平行な第1の平面上に互に所定の間隔を保っ
て在る関係で第1の光学系A1の複屈折結晶板B1の複
屈折結晶板B2側とは反対側の面eにレンズFを介して
対向せしめて、光導波路に3.Kl及びに4の順に順次
配されているものである。1. to the optical waveguide of optical system A2 of text box 2. 3 and 4 are
One end face of 1 on the optical waveguide and 3 and 4 on the optical waveguide.
with the other end face of the
- The surface e of the birefringent crystal plate B1 of the first optical system A1 on the opposite side to the birefringent crystal plate B2 side, so that the birefringent crystal plate B1 of the first optical system A1 is located on the first plane parallel to the Y plane with a predetermined distance from each other. 3. facing the optical waveguide through the lens F. They are arranged sequentially in the order of Kl and 4.
この場合実際上光導波路Kl、に3及びに4はそれ等の
遊端面すをしてそれ等に共通のX−Y平面と平行な面上
に在らしめた関係で配されているものである。In this case, the optical waveguides Kl, 3, and 4 are actually arranged in such a manner that their free ends lie on a plane parallel to the common X-Y plane. be.
更に第3の光学系A3の光導波路に5.に7及びに8が
、光導波路に5の一方の端面す及び光導波路に7及びに
8の他方の端面すをしてそれ等の光軸がそれ等に共通な
Z−Y平面と平行な第1の平面と同じであるを可とする
第2の平面上に互に所定の間隔を保って在る関係で第1
の光学系A1の複屈折結晶板B2の複屈折結晶板B1側
とは反対側の面fに対向せしめて、光導波路に7.に5
及びに8の順に順次配されているものである。Furthermore, 5. is attached to the optical waveguide of the third optical system A3. 7 and 8 have one end face of 5 on the optical waveguide and the other end face of 7 and 8 on the optical waveguide, and their optical axes are parallel to the Z-Y plane common to them. The first plane is located on a second plane, which may be the same as the first plane, at a predetermined distance from each other.
The optical waveguide 7. to 5
and 8 are arranged in sequence.
この場合実際上光導波路に5.に、7及びに8はそれ等
の遊端面すをしてそれ等と共通のX−Y平面と平行な面
上に在らしめた関係で配されているものである。In this case, 5. In addition, 7 and 8 are arranged such that their free end faces lie on a plane parallel to the common X-Y plane.
更に後述にて明らかとなるがレンズFは第2の光学系A
2の光導波路に1.に3及びに4の遊端面すよりの光を
第3の光学系A3の光導波路に5.に7及びに8の遊端
面す中の所定の遊端面上に収束せしめ、文通に第3の光
学系A3の光導波路に5.に7及びに8の遊端面すより
の光を第2の光学系A2の光導波路Kl、に3及びに4
の遊端面す中の所定の遊端面上に収束せしめるべく構成
されているものである。Furthermore, as will become clear later, the lens F is part of the second optical system A.
1 to the optical waveguide of 2. 5. The light from the free end surfaces of A3 and A3 is transmitted to the optical waveguide of the third optical system A3. 7 and 8 on a predetermined free end surface of the optical waveguide of the third optical system A3. The light from the free end surfaces of 7 and 8 is transferred to the optical waveguide Kl of the second optical system A2, 3 and 4.
It is configured to converge onto a predetermined free end face among the free end faces of the free end face.
文箱1の光学系A1の複屈折結晶板B1及びB2がそれ
等の光軸をそれ等に共通なZ−Y平面と平行な第3の平
面上に在らしめた関係で配されているものである。Birefringent crystal plates B1 and B2 of optical system A1 of text box 1 are arranged in such a manner that their optical axes lie on a third plane parallel to the common Z-Y plane. It is something.
以上が本発明の第1の実施例の構成であるが、斯る構成
によれば、金弟1の光学系A1のレンズFの光軸上に於
けるレンズFの複屈折結晶板B1側とは反対側の点及び
複屈折結晶板B2の旋光性乃至異方性結晶板E側とは反
対側の点を夫々点M1及びM2とし、又レンズF及び複
屈折結晶板B1間;複屈折結晶板B1及び磁気光学効果
板り間;磁気光学効果板り及び旋光性乃至異方性結晶板
E間;旋光性乃至異方性結晶板E及び複屈折結晶板B2
間;及び複屈折結晶板B2の旋光性乃至異方性結晶板E
側とは反対側の空間領域を夫々Z1;Z2;Z3;Z4
;及びZ5とするとき、点M1に領域Z1でみて第4図
に示す如くX軸方向の直線偏光811とY軸方向の直線
偏光S21とがそれ等の中心011及び021が共にレ
ンズFの光軸上に存して得られる様な2つの直線偏光8
10及び520(図示せず)の得られる光源を配したと
すれば、第4図に示す如く領域Z1で中心が夫夫011
及び021て示す如く同一点上に存する夫々直線偏光8
10及びS20に基くそれ等の偏光方向と同じ偏光方向
の直線偏光S11及びS21が、領域Z2で複屈折結晶
板B1の存在の為に中心が夫々012及び022で示す
如く互にY軸方向に離間せる夫々直線偏光S11及びS
21に基くそれ等の偏光方向と同じ偏光方向の直線偏光
812及びS22が、領域Z3で磁気光学効果板りの存
在の為に中心が夫々013及び023で示す如く互にY
軸方向に離間せる直線偏光S12及び822に基くそれ
等の偏光方向に対して夫々略々45°図でみて時計方向
に回転せる偏光方向の直線偏光S13及び823が、領
域Z4で旋光性乃至異方性結晶板Eの存在の為に中心が
夫々014及び024で示す如く互にY軸方向に離間せ
る直線偏光813及び823に基くそれ等の偏光方向に
対して夫々略々45°図でみて時計方向に回転せる偏光
方向の直線偏光814及びS24が、領域Z5で複屈折
結晶板B2の存在の為に中心が夫々015及び025で
示す如く同一点上に存する直線偏光814及びS24に
基くそれ等の偏光方向と同じ偏光方向の直線偏光815
及び825が得られ、従って点M2を含むX−Y平面上
で直線偏光S10に基く偏光方向をY軸方向とせる直線
偏光515(図示せず)と直線偏光S20に基く偏光方
向をX軸方向とせる直線偏光525(図示せず)とがそ
れ等の中心を共にレンズFの光軸上として得られるもの
である。The above is the configuration of the first embodiment of the present invention. According to this configuration, the birefringent crystal plate B1 side of the lens F on the optical axis of the lens F of the optical system A1 of Kintetsu 1 are the points on the opposite side and the points on the opposite side of the optical rotation or anisotropic crystal plate E of the birefringent crystal plate B2 are points M1 and M2, respectively, and between the lens F and the birefringent crystal plate B1; the birefringent crystal Between the plate B1 and the magneto-optic effect plate; between the magneto-optic effect plate and the optically active or anisotropic crystal plate E; between the optically active or anisotropic crystal plate E and the birefringent crystal plate B2
and the optical rotation of the birefringent crystal plate B2 or the anisotropic crystal plate E
The spatial regions on the opposite side are Z1; Z2; Z3; Z4, respectively.
; and Z5, as shown in FIG. 4 when viewed from area Z1 at point M1, linearly polarized light 811 in the X-axis direction and linearly polarized light S21 in the Y-axis direction are both centered 011 and 021 on the light of lens F. Two linearly polarized lights such as those that exist on the axis8
10 and 520 (not shown) are arranged, the center is 011 in area Z1 as shown in FIG.
and linearly polarized light 8 existing on the same point as shown in 021.
Linearly polarized lights S11 and S21 having the same polarization direction as those based on S10 and S20 are mutually polarized in the Y-axis direction as shown by centers 012 and 022, respectively, due to the presence of the birefringent crystal plate B1 in region Z2. The linearly polarized lights S11 and S can be separated from each other.
Linearly polarized lights 812 and S22 having the same polarization direction as those based on 21 are mutually Y as shown by centers 013 and 023, respectively, due to the presence of a magneto-optic effect plate in region Z3.
The linearly polarized lights S13 and 823 whose polarization directions are rotated clockwise by approximately 45 degrees with respect to their polarization directions based on the linearly polarized lights S12 and 822 separated in the axial direction have optical rotations or differences in the region Z4. Due to the presence of the oriented crystal plate E, the centers of the linearly polarized lights 813 and 823 are spaced apart from each other in the Y-axis direction as shown by 014 and 024, respectively. The linearly polarized lights 814 and S24 whose polarization directions are rotated clockwise are based on the linearly polarized lights 814 and S24 whose centers lie on the same point as indicated by 015 and 025, respectively, due to the presence of the birefringent crystal plate B2 in the region Z5. Linearly polarized light 815 with the same polarization direction as the polarization direction of
and 825 are obtained, and therefore, on the X-Y plane including point M2, linearly polarized light 515 (not shown) whose polarization direction based on linearly polarized light S10 is the Y-axis direction and linearly polarized light 515 (not shown) whose polarization direction is based on linearly polarized light S20 is the X-axis direction. Linearly polarized light 525 (not shown) is obtained with their centers both on the optical axis of the lens F.
文通に点M2に領域Z5でみて第5図に示す如くY軸方
向の直線偏光815′とX軸方向の直線偏光825′と
がそれ等の中心015′及び025′が共にレンズFの
光軸上に存して得られる様な2つの直線偏光816′及
びs26’(図示せず)の得られる光源を配したとすれ
ば、第5図に示す如く領域Z5で中心が夫々015′及
び025′で示す如く同一点上に存する夫々直線偏光8
16′及び826′に基くそれ等の偏光方向と同じ方向
の直線偏光815′及び825′が、領域Z4で複屈折
結晶板B2の存在の為に中心が夫々014′及び024
′で示す如く互にY軸方向に離間せる夫々直線偏光81
5′及び825′に基くそれ等の偏光方向と同じ偏光方
向の直線偏光814′及び824′が、領域Z3で旋光
性乃至異方性結晶板Eの存在の為に中心が夫々013′
及び023′で示す如く互にY軸方向に離間せる夫夫直
線偏光814′及び824′に基くそれ等の偏光方向に
対して夫々略々45°図でみて反時計方向に回転せる方
向の直線偏光813′及び823′が、領域Z2で磁気
光学効果板りの存在の為に中心が夫夫012′及び02
2′で示す如く互にY軸方向に離間せる夫々直線偏光8
13′及び823′に基くそれ等の偏光方向に対して夫
々略々45°図でみて反時計方向に回転せる方向の直線
偏光812′及び822′が、領域Z1で複屈折結晶板
B1の存在の為に中心が夫々011′及び021′で示
す如く互にY軸方向に直線偏光812′及び822′の
中心012′及び022′間の距離に比し犬なる距離を
以って離間せる夫々直線偏光812′及び822′に基
くそれ等の偏光方向と同じ方向の直線偏光811′及び
821′が得られ、従って点M1の含むX−Y平面上で
直線偏光816′に基く偏光方向をY軸方向とせる直線
偏光SIO’(図示せず)と直線偏光826′に基く偏
光方向をX軸方向とせる直線偏光820’(図示せず)
とがそれ等の中心がY軸方向に大きく離間せる関係で得
られるものである。As shown in FIG. 5, when looking at point M2 in area Z5, linearly polarized light 815' in the Y-axis direction and linearly polarized light 825' in the X-axis direction are both centered 015' and 025' on the optical axis of lens F. If a light source capable of producing two linearly polarized lights 816' and s26' (not shown) as shown in FIG. ′, each linearly polarized light 8 existing on the same point
Linearly polarized lights 815' and 825' in the same direction as their polarization directions based on 16' and 826' are centered at 014' and 024, respectively, due to the presence of the birefringent crystal plate B2 in region Z4.
The linearly polarized lights 81 are spaced apart from each other in the Y-axis direction as shown by '.
Linearly polarized lights 814' and 824' with the same polarization direction as those based on 5' and 825' are centered at 013' due to the presence of the optically active or anisotropic crystal plate E in region Z3.
and 023', a straight line in a direction that can be rotated counterclockwise by approximately 45 degrees with respect to the polarization directions of the linearly polarized lights 814' and 824' separated from each other in the Y-axis direction. The polarized lights 813' and 823' are centered at 012' and 02 due to the presence of the magneto-optic effect plate in region Z2.
As shown by 2', linearly polarized light beams 8 are spaced apart from each other in the Y-axis direction.
Linearly polarized lights 812' and 822', which can be rotated approximately 45 degrees counterclockwise relative to their polarization directions based on 13' and 823', respectively, are present in region Z1 due to the presence of birefringent crystal plate B1. Therefore, the centers of the linearly polarized lights 812' and 822' are spaced apart from each other in the Y-axis direction by a distance greater than the distance between the centers 012' and 022', respectively, as shown by 011' and 021', respectively. Linearly polarized lights 811' and 821' in the same direction as the polarization directions based on linearly polarized lights 812' and 822' are obtained, and therefore the polarization direction based on linearly polarized lights 816' is changed to Linearly polarized light 820' (not shown) whose polarization direction is the X-axis direction based on linearly polarized light SIO' (not shown) that is axially polarized and linearly polarized light 826'
are obtained in such a manner that their centers are largely spaced apart in the Y-axis direction.
従って上述せる本発明の第1の実施例によれば、第2の
光学系A2の光導波路に1.に3及びに4の第1の光学
系A1の複屈折結晶板B1と対向せる遊端面aの互のY
軸方向の間隔;及び第3の光学系A3の光導波路に5.
に7及びに8の第1の光学系A1の複屈折結晶板B2と
対向せる端面すの互のY軸方向の間隔が予め適当に選定
されていれば、第6図に示す如く第2の光学系A2の光
導波路に1を第1のポートP1としてこれに偏光方向が
互に直交関係を有する2つの直線偏光成分を有する光を
入射光L1として入射せしめれば、それが第1の光学系
A1を、その複屈折結晶板B1及びB2間で偏光方向が
互に直交関係を有する2つの直線偏光成分が夫々実線及
び点線図示の如くY軸方向に互に離間せる光路を通る態
様の2つの光として通り、そして第3の光学系A3の光
導波路に5よりこれを第2のポートP2として偏光方向
が互に直交関係を有する2つの直線偏光成分を有する光
が出射光Ll’として得られ、又第7図に示す如く第3
の光学系A3の光導波路に5即ち第2のポートP2より
同様に偏光方向が互に直交関係を有する2つの直線偏光
成分を有する光を入射光L2として入射せしめれば、そ
れが第1の光学系A1を、その複屈折結晶板B2の位置
よりレンズF側以降で偏光方向が互に直交関係を有する
2つの直線偏光成分が夫々実線及び点線図示の如くY軸
方向に互に離間せる光路を通る態様の2つの光として通
り、そしてそれ等2つの光が夫々第2の光学系A3の光
導波路に3及びに4を通って分岐・合成回路H1に入り
、依って光導波路に2よりこれを第3のポートP3とし
て偏光方向が互に直交関係を有する2つの直線偏光成分
を有する光が出射光L2’として得られ、更に第8図に
示す如く第2の光学系A2の光導波路に2即ち第3のポ
ートP3より同様に偏光方向が互に直交関係を有する2
つの直線偏光成分を有する光を入射光L3として入射せ
しめれば、それが分岐・合成回路H1を介して光導波路
に3及びに4を偏光方向が互に直交関係を有する2つの
直線偏光成分として各別に通り、そして第1の光学系A
1を偏光方向が互に直交関係を有する2つの直線偏光成
分が夫々Y軸方向に離間せる光路の通路を通る態様の2
つの光として通り、それ等2つの光が夫々第3の光学系
A3の光導波路に7及びに8を通って分岐−合成回路H
2に入り、依って光導波路に6よりこれを第4のポート
P4として偏光方向が互に直交関係を有する2つの直線
偏光成分を有する光が出射光L3’として得られ、尚更
に第9図に示す如く第3の光学系A3の光導波路に6即
ち第4のポートP4より同様に偏光方向が互に直交関係
を有する2つの直線偏光成分を有する光を入射光L4と
して入射せしめれば、それが分岐・合成回路H2を介し
て光導波路に7及びに8を偏光方向が互に直交関係を有
する2つの直線偏光成分として各別に通り、そして第1
の光学系A1を、その複屈折結晶板B1迄の間で偏光方
向が互に直交関係を有する2つの直線偏光成分が夫々Y
軸方向に互に離間せる光路を通り、そして第2の光学系
A2の光導波路に1即ち第1のポートP1より同様に偏
光方向が互に直交関係を有する2つの直線偏光成分を有
する光が出射光L4’として得られるものである。Therefore, according to the first embodiment of the present invention described above, the optical waveguide of the second optical system A2 has 1. 3 and 4 of the free end surfaces a facing the birefringent crystal plate B1 of the first optical system A1.
5. axial spacing; and the optical waveguide of the third optical system A3.
If the distance in the Y-axis direction between the end faces facing the birefringent crystal plate B2 of the first optical system A1 in 7 and 8 is appropriately selected in advance, the second optical system A1 as shown in FIG. If light having two linearly polarized light components whose polarization directions are orthogonal to each other is made to enter the optical waveguide of the optical system A2 as the first port P1, it becomes the first optical waveguide. A second embodiment in which the system A1 passes through an optical path in which two linearly polarized light components whose polarization directions are orthogonal to each other between the birefringent crystal plates B1 and B2 are separated from each other in the Y-axis direction as shown by solid lines and dotted lines, respectively. The light passes through the optical waveguide 5 of the third optical system A3 as a second port P2, and light having two linearly polarized components whose polarization directions are orthogonal to each other is obtained as the output light Ll'. Also, as shown in Figure 7, the third
Similarly, if light having two linearly polarized components whose polarization directions are orthogonal to each other is made to enter the optical waveguide of the optical system A3 from the second port P2 as the incident light L2, it will become the first light beam. An optical path in which two linearly polarized light components whose polarization directions are orthogonal to each other from the position of the birefringent crystal plate B2 to the lens F side of the optical system A1 are spaced apart from each other in the Y-axis direction as shown by solid lines and dotted lines, respectively. The two lights pass through the optical waveguide of the second optical system A3 through 3 and 4, respectively, and enter the branching/combining circuit H1. When this is connected to the third port P3, light having two linearly polarized components whose polarization directions are orthogonal to each other is obtained as the output light L2', and as shown in FIG. 2, that is, from the third port P3, the polarization directions are similarly orthogonal to each other.
When light having two linearly polarized components is incident as incident light L3, it passes through the branching/synthesizing circuit H1 to the optical waveguide as two linearly polarized components whose polarization directions are orthogonal to each other. each separately, and the first optical system A
A second embodiment in which two linearly polarized light components whose polarization directions are orthogonal to each other pass through optical paths that are separated from each other in the Y-axis direction.
The two lights pass through the optical waveguides 7 and 8 of the third optical system A3, respectively, to the branching-combining circuit H.
2, and therefore, the light having two linearly polarized components whose polarization directions are orthogonal to each other is obtained as the output light L3' by passing it through the optical waveguide 6 to the fourth port P4, and furthermore, as shown in FIG. If light having two linearly polarized components whose polarization directions are orthogonal to each other is made to enter the optical waveguide of the third optical system A3 from the fourth port P4 as the incident light L4, as shown in FIG. The light passes through the optical waveguide via the branching/combining circuit H2 as two linearly polarized components whose polarization directions are orthogonal to each other, and the first
In the optical system A1 up to the birefringent crystal plate B1, two linearly polarized light components whose polarization directions are orthogonal to each other are Y.
Similarly, light having two linearly polarized components whose polarization directions are orthogonal to each other passes through optical paths spaced apart from each other in the axial direction and enters the optical waveguide of the second optical system A2 from the first port P1. This is obtained as the emitted light L4'.
依って上述せる本発明の第1の実施例に依れば、第2の
光学系A2の光導波路に1及びに2を夫々第1及び第3
のポート、第3の光学系A3の光導波路に5及びに6を
夫々第2及び第4のポートとし、第1.第2.第3及び
第4のポートに対する入射光に基き夫々第2.第3.第
4及び第1のポートで出射光が得られるという、第1図
にて前述せる従来の光サーキュレータとしての機能が得
られ、そしてこの場合、光ファイバの如き光導波路より
多重モードの光が得られるものとし、而してその光を第
1.第2.第3及び第4のポートに対する入射光として
も、それ等入射光に基く第2゜第3.第4及び第1のポ
ートで得られる出射光が入射光に対して第1図にて前述
せる従来の光サーキュレータの場合の如くに犬なる損失
を伴なったものとして得られることがないという犬なる
特徴を有するものである。Therefore, according to the first embodiment of the present invention described above, 1 and 2 are connected to the first and third optical waveguides of the second optical system A2, respectively.
ports 5 and 6 in the optical waveguide of the third optical system A3 as second and fourth ports, respectively. Second. Based on the incident light on the third and fourth ports, respectively, the second. Third. The function of the conventional optical circulator described above in FIG. 1 is obtained, in which output light is obtained at the fourth and first ports, and in this case, multimode light is obtained from an optical waveguide such as an optical fiber. The light shall be the first. Second. As for the incident light to the third and fourth ports, the second, third, and third ports are based on the incident light. The output light obtained at the fourth and first ports is not obtained as a result of a loss with respect to the input light as in the case of the conventional optical circulator described above in FIG. It has the following characteristics.
次に本発明の第2の実施例を述べるに、図示詳細説明は
これを省略するも、第2図にて上述せる本発明の第1の
実施例の構成に於てその旋光性乃至異方性結晶板Eが複
屈折結晶板B5に置換され、之に応じて複屈折結晶板B
1がその光軸を第2図の場合と同様にZ−Y平面と平行
な第3の平面上に在らしめられているも、複屈折結晶板
B2及びB5がそれ等の光軸を第3の平面と略々45°
の角をなし且互に略々90°の角をなす第4及び第5の
平面上に夫々在らしめた関係で配されていることを除い
ては第2図の場合と同様の構成を有する。Next, the second embodiment of the present invention will be described.Although the detailed explanation of the drawings will be omitted, the optical rotation and anisotropy of the structure of the first embodiment of the present invention described above in FIG. The birefringent crystal plate B5 is substituted for the birefringent crystal plate E, and the birefringent crystal plate B is replaced accordingly.
1 has its optical axis on the third plane parallel to the Z-Y plane as in the case of FIG. 2, but the birefringent crystal plates B2 and B5 Approximately 45 degrees with the plane of 3
The structure is the same as that shown in FIG. 2, except that they are arranged on the fourth and fifth planes, which form an angle of approximately 90 degrees with each other. have
以上が本発明の第2の実施例の構成であるが、斯る構成
によれば、詳細説明はこれを省略するも、金策4図及び
第5図にて上述せる場合と同様のことを考えれは、第4
図及び第5図との対応部分に同一符号を附して第10図
及び第11図に示す如く、第4図及び第5図にて上述せ
るに準じた結果が得られるを以って、第6図〜第9図に
て上述せるに準じた入射光に対する出射光の関係を得る
ことが出来るものである。The above is the configuration of the second embodiment of the present invention. According to this configuration, although detailed explanation is omitted, the same thing as the case described above in Figures 4 and 5 can be considered. is the fourth
As shown in FIGS. 10 and 11 with the same reference numerals assigned to corresponding parts in FIGS. 4 and 5, results similar to those described above in FIGS. 4 and 5 can be obtained. The relationship between the incident light and the emitted light can be obtained in accordance with the above-described relationship in FIGS. 6 to 9.
依って上述せる本発明の第2の実施例によっても前述せ
る本発明の第1の実施例の場合と同様の特徴を有する光
サーキュレータとしての機能が得られるものである。Therefore, the second embodiment of the present invention described above also provides a function as an optical circulator having the same characteristics as the first embodiment of the present invention described above.
尚上述に於ては本発明の僅かな実施例を示したに留まり
、例えば、第2図との対応部分に同一符号が附されて示
されている第12図に示す如く、詳細説明はこれを省略
するも、第2図の構成に於てそのレンズFを省略し、然
し乍らこれに応じて複屈折結晶板B1及びB2、磁気光
学効果板D1及び旋光性乃至異方性結晶板Eの倒れか1
つ又は複数例えば複屈折結晶板E1の板面を曲面gとし
てそれにレンズFと同じ機能を附加せしめた構成とした
り、又同様に第2図との対応部分に同一符号が附されて
いる第13図に示す如く、詳細説明はこれを省略するも
、第2図の構成に於てその磁気光学効果板りの板面をX
−Y平面と平行な面に対して傾斜せる平面上に在らしめ
、そしてその磁気光学効果板りの相対向する面上に反射
膜り及びiを附し、斯くすることにより、斯くした場合
の磁気光学効果板りを、所謂ファラデー回転角の小なる
材料であっても、第2図の場合に於ける磁気光学効果板
りと同じ作用を呈するものとする様になした、磁気光学
効果板りと旋光性乃至異方性結晶板Eとの位置を入れ替
えたりする変型変更をなすことも出来、勿論斯る変型変
更は本発明の第2の実施例に於てなすことも出来るもの
であり、その他種々の変型変更をなし得るであろう。The above description has only shown a small number of embodiments of the present invention, and detailed description will be given herein, as shown in FIG. 12, for example, where parts corresponding to those in FIG. However, the lens F is omitted in the configuration shown in FIG. or1
For example, the plate surface of the birefringent crystal plate E1 may be made into a curved surface g and the same function as that of the lens F may be added to it. As shown in the figure, the detailed explanation is omitted, but in the configuration shown in Figure 2, the surface of the magneto-optic effect plate is
- In the case where the magneto-optic effect plate is placed on a plane that is inclined to a plane parallel to the Y plane, and a reflective film and an i are attached to the opposite surfaces of the magneto-optic effect plate, and by doing so, The magneto-optic effect plate shown in FIG. It is also possible to make a modification such as exchanging the positions of the plate and the optically active or anisotropic crystal plate E, and of course such a modification can also be made in the second embodiment of the present invention. Yes, and various other modifications may be made.
第1図は従来の光サーキュレータを示す路線的系統図、
第2図は本発明に依る光サーキュレータの第1の実施例
を示す路線的系統図、第3図はその分岐・合成回路の一
例を示す路線的系統図、第4図及び第5図は第2図に示
す本発明の第1の実施例の説明に供する空間領域での直
線偏光の態様を示す図、第6図〜第9図は第2図に示す
本発明の第1の実施例の作用の説明に供する路線的系統
図、第10図及び第11図は本発明による光サーキュレ
ータの第2の実施例の説明に供する夫々第4図及び第5
図と同様の図、第12図及び第13図は夫々本発明の他
の実施例を示す路線的系統図である。
図中、AI、A2及びA3は光学系、B1〜B4は複屈
折結晶板、Dは磁気光学効果板、Eは旋光性乃至異方性
結晶板、Fは収束用レンズ、K1−に8は光導波路、H
l及びK2は分岐・合成回路を夫々示す。Figure 1 is a systematic diagram showing a conventional optical circulator.
FIG. 2 is a schematic diagram showing the first embodiment of the optical circulator according to the present invention, FIG. 3 is a schematic diagram showing an example of its branching/combining circuit, and FIGS. 4 and 5 are 2 is a diagram showing the aspect of linearly polarized light in a spatial region for explaining the first embodiment of the present invention shown in FIG. The line diagrams, FIGS. 10 and 11, which are used to explain the operation, are the same as those shown in FIGS. 4 and 5, respectively, which are used to explain the second embodiment of the optical circulator according to the present invention.
Figures similar to the figure, Figures 12 and 13, are schematic diagrams showing other embodiments of the present invention, respectively. In the figure, AI, A2 and A3 are optical systems, B1 to B4 are birefringent crystal plates, D is a magneto-optic effect plate, E is an optical rotation or anisotropic crystal plate, F is a converging lens, and K1- and 8 are optical waveguide, H
1 and K2 indicate branching/combining circuits, respectively.
Claims (1)
て配された第2及び第3の光学系とよりなり、 上記第1の光学系は所定の間隔を保って相対向して配さ
れた第1及び第2の複屈折結晶板と、該第1及び第2の
複屈折結晶板間に配された所定の磁界を受けることによ
り入射光の偏光方向と出射光のそれとのなす角が略々4
5°を以って得られる様になされた磁気光学効果板を有
し、 上記第2の光学系は第3の複屈折結晶板を有する第1の
分岐・合成回路と、第1の光導波路と、一方の遊端面を
上記第3の複屈折結晶板の一方の面に対向せしめて配さ
れた第2の光導波路と、一方の遊端面を互に所定の間隔
を保って上記第3の複屈折結晶板の他方の面に対向せし
めて配された第3及び第4の光導波路とを有し、 上記第3の光学系は第4の複屈折結晶板を有する第2の
分岐・合成回路と、第5の光導波路と、一方の遊端面を
上記第4の複屈折結晶板の一方の面に対向せしめて配さ
れた第6の光導波路と、一方の遊端面を互に所定の間隔
を保って上記第4の複屈折結晶板の他方の面に対向せし
めて配された第7及び第8の光導波路とを有し、 上記第2の光学系の第1、第3及び第4の光導波路は上
記第1の光導波路の一方の遊端面及び上記第3及び第4
の光導波路の他方の遊端面をしてそれ等の光軸がそれ等
に共通な第1の平面上に互に所定の間隔を保って在る関
係で上記第1の光学系の第1の複屈折結晶板の上記第2
の複屈折結晶板側とは反対側の面に対向せしめて配され
、上記第3の光学系の第5、第7及び第8の光導波路は
上記第5の光導波路の一方の遊端面及び上記第7及び第
8の光導波路の他方の遊端面をしてそれ等の光軸がそれ
等に共通な第2の平面上に互に所定の間隔を保って在る
関係で上記第1の光学系の第2の複屈折結晶板の上記第
1の複屈折結晶板とは反対側の面に対向せしめて配され
、上記第1の光学系は上記第1及び第2の複屈折結晶板
及び上記磁気光学効果板の外、上記第2の光学系の第1
の光導波路の一方の遊端面及び上記第3及び第4の光導
波路の他方の遊端面よりの光を上記第3の光学系の第5
の光導波路の一方の遊2端面及び上記第7及び第8の光
導波路の他方の遊端面中の所定の遊端面上に収束せしめ
又は逆に上記第3の光学系の第5の光導波路の一方の遊
端面及び上記第7及び第8の光導波路の他方の遊端面よ
りの光を上記第2の光学系の第1の光導波路の一方の遊
端面及び上記第3及び第4の光導波路の他方の遊端面中
の所定の遊端面上に収束せしめる為のレンズ手段と、上
記第1又は第2の複屈折結晶板及び上記磁気光学効果板
間にそれ等と相対向して配された入射光の偏光方向と出
射光のそれとフのなす角が略々45°を以って得られる
様になされた旋光性乃至異方性結晶板とを有し、上記第
1及び第2の複屈折結晶板がそれ等の光学軸をそれ等に
共通の第3の平面上に在らしめた関係で配され、依って
上記第2の光学系の第1及び第2の光導波路を夫々第1
及び第3のポート、上記第3の光学系の第5及び第6の
光導波路を夫々第2及び第4のポートとせる光サーキユ
レータ機能が得られる様になされた事を特徴とする光サ
ーキュレー外2 第1の光学系と、該第1の光学系を挟
んで相対向して配された第2及び第3の光学系とよりな
り、 上記第1の光学系は所定の間隔を保って相対向して配さ
れた第1及び第2の複屈折結晶板と、該第1及び第2の
複屈折結晶板間に配された所定の磁界を受けることによ
り入射光の偏光方向と出射光のそれとのなす角が略々4
5°を以って得られる様になされた磁気光学効果板とを
有し、 上記第2の光学系は第3の複屈折結晶板を有する第1の
分岐・合成回路と、第1の光導波路と、一方の遊端面を
上記第3の複屈折結晶板の一方の面に対向せしめて配さ
れた第2の光導波路と、一方の遊端面を互に所定の間隔
を保って上記第3の複屈折結晶板の他方の面に対向せし
めて配された第3及び第4の光導波路とを有し、 上記第3の光学系は第4の複屈折結晶板を有する第2の
分岐・合成回路と、第5の光導波路と、一方の遊端面を
上記第4の複屈折結晶板の一方の面に対向せしめて配さ
れた第6の光導波路と、一方の遊端面を互に所定の間隔
を保って上記第4の複屈折結晶板の他方の面に対向せし
めて配された第7及び第8の光導波路とを有し、 上記第2の光学系の第1、第3及び第4の光導波路は上
記第1の光導波路の一方の遊端面及び上記第3及び第4
の光導波路の他方の遊端面をしてそれ等の光軸がそれ等
に共通な第1の平面上に互に所定の間隔を保って在る関
係で上記第1の光学系の第1の複屈折結晶板の上記第2
の複屈折結晶板側とは反対側の面に対向せしめて記され
、上記第3の光学系の第5、第7及び第8の光導波路は
上記第5の光導波路の一方の遊端面及び上記第7及び第
8の光導波路の他方の遊端面をしてそれ等の光軸がそれ
等に共通な第2の平面上に互に所定の間隔を保って在る
関係で上記第1の光学系の第2の複屈折結晶板の上記第
1の複屈折結晶板とは反対側の面に対向せしめて配され
、上記第1の光学系は上記第1及び第2の複屈折結晶板
及び上記磁気光学効果板の外、上記第2の光学系の第1
の光導波路の一方の遊端面及び上記第3及び第4の光導
波路の他方の遊端面よりの光を上記第3の光学系の第5
の光導波路の一方の遊端面及び上記第7及び第8の光導
波路の他方の遊端面中の所定の遊端面上に収束せしめ又
は逆に上記第3の光学系の第5の光導波路の一方の遊端
面及び上記第7及び第8の光導波路の他方の遊端面より
の光を上記第2の光学系の第1の光導波路の一方の遊端
面及び上記第3及び第4の光導波路の他方の遊端面中の
所定の遊端面上に収束せしめる為のレンズ手段と、上記
第1又は第2の複屈折結晶板及び上記磁気光学効果板間
にそれ等と相対向して配された第5の複屈折結晶板とを
有し、上記第1の複屈折結晶板がその光学軸を第3の平
面上に在らしめた関係で配され、上記第2及び第5の複
屈折結晶板がそれ等の光学軸を上記第3の平面と略々4
5°の角をなし且互に略々90°の角をなす第4及び第
5の平面上に夫々在らしめた関係で配され、 依って上記第2の光学系の第1及び第2の光導波路を夫
々第1及び第3のポート、上記第3の光学系の第5及び
第6の光導波路を夫々第2及び第4のポートとせる光サ
ーキユレータ機能が得られる様になされた事を特徴とす
る光サーキュレータ。[Claims] 1. Consisting of a first optical system, and second and third optical systems arranged opposite to each other with the first optical system in between, the first optical system has a predetermined optical system. First and second birefringent crystal plates are arranged facing each other with a distance of . The angle between the polarization direction and that of the emitted light is approximately 4
The second optical system includes a first branching/combining circuit having a third birefringent crystal plate, and a first optical waveguide. a second optical waveguide disposed with one free end surface facing one surface of the third birefringent crystal plate; and a third optical waveguide with one free end surface kept at a predetermined distance from each other. and third and fourth optical waveguides arranged to face the other surface of the birefringent crystal plate, the third optical system having a second branching/combining optical system having a fourth birefringent crystal plate. A circuit, a fifth optical waveguide, a sixth optical waveguide disposed with one free end surface facing one surface of the fourth birefringent crystal plate, and one free end surface of the fourth birefringent crystal plate with one free end surface facing each other in a predetermined manner. seventh and eighth optical waveguides arranged to face the other surface of the fourth birefringent crystal plate with a distance therebetween, the first, third and eighth optical waveguides of the second optical system; The optical waveguide No. 4 includes one free end surface of the first optical waveguide and the third and fourth optical waveguides.
The first optical system of the first optical system is arranged such that the other free end surface of the optical waveguide is located at a predetermined distance from the other optical axis of the optical waveguide on the first plane common to them. The above second birefringent crystal plate
The fifth, seventh, and eighth optical waveguides of the third optical system are arranged to face the surface opposite to the birefringent crystal plate side, and the fifth, seventh, and eighth optical waveguides of the third optical system are arranged to face one free end surface of the fifth optical waveguide and The other free end surfaces of the seventh and eighth optical waveguides are arranged such that their optical axes are on a second plane common to them and are spaced apart from each other by a predetermined distance. A second birefringent crystal plate of an optical system is disposed to face a surface opposite to the first birefringent crystal plate, and the first optical system is connected to the first and second birefringent crystal plates. In addition to the magneto-optic effect plate, the first part of the second optical system
The light from one free end surface of the optical waveguide and the other free end surface of the third and fourth optical waveguides is transmitted to the fifth optical system of the third optical system.
or converge onto a predetermined free end surface of one of the two free end surfaces of the optical waveguide and the other free end surface of the seventh and eighth optical waveguides, or conversely, the fifth optical waveguide of the third optical system. Light from one free end surface and the other free end surface of the seventh and eighth optical waveguides is transferred to one free end surface of the first optical waveguide of the second optical system and the third and fourth optical waveguides. a lens means for converging the lens onto a predetermined free end surface of the other free end surface, and a lens means disposed between the first or second birefringent crystal plate and the magneto-optic effect plate so as to face each other. an optically active or anisotropic crystal plate configured such that the angle between the polarization direction of the incident light and that of the output light is approximately 45°; Refractive crystal plates are disposed in such a relationship that their optical axes lie on a third plane common to them, thus directing the first and second optical waveguides of the second optical system to respective third planes. 1
and a third port, the optical circulator is characterized in that it is configured to provide an optical circulator function in which the fifth and sixth optical waveguides of the third optical system are used as the second and fourth ports, respectively. 2 Consists of a first optical system, and second and third optical systems arranged opposite to each other with the first optical system in between, and the first optical system is arranged opposite to each other with a predetermined distance between them. The polarization direction of the incident light and the polarization direction of the output light are changed by receiving a predetermined magnetic field between the first and second birefringent crystal plates arranged facing each other and the first and second birefringent crystal plates. The angle it makes with it is approximately 4
The second optical system includes a first branching/combining circuit having a third birefringent crystal plate, and a first light guide. a second optical waveguide disposed with one free end surface facing one surface of the third birefringent crystal plate; and a third optical waveguide with one free end surface kept at a predetermined distance from each other. and third and fourth optical waveguides arranged to face the other surface of the birefringent crystal plate, and the third optical system includes a second branching optical system having a fourth birefringent crystal plate; a synthetic circuit, a fifth optical waveguide, a sixth optical waveguide disposed with one free end surface facing one surface of the fourth birefringent crystal plate, and one free end surface of the sixth optical waveguide disposed with one free end surface facing each other in a predetermined manner. seventh and eighth optical waveguides arranged to face the other surface of the fourth birefringent crystal plate with an interval of A fourth optical waveguide includes one free end surface of the first optical waveguide and the third and fourth optical waveguides.
The first optical system of the first optical system is arranged such that the other free end surface of the optical waveguide is located at a predetermined distance from the other optical axis of the optical waveguide on the first plane common to them. The above second birefringent crystal plate
The fifth, seventh, and eighth optical waveguides of the third optical system are shown opposite to the surface opposite to the birefringent crystal plate side, and the fifth, seventh, and eighth optical waveguides of the third optical system are located on one free end surface of the fifth optical waveguide and The other free end surfaces of the seventh and eighth optical waveguides are arranged such that their optical axes are on a second plane common to them and are spaced apart from each other by a predetermined distance. A second birefringent crystal plate of an optical system is disposed to face a surface opposite to the first birefringent crystal plate, and the first optical system is connected to the first and second birefringent crystal plates. In addition to the magneto-optic effect plate, the first part of the second optical system
The light from one free end surface of the optical waveguide and the other free end surface of the third and fourth optical waveguides is transmitted to the fifth optical system of the third optical system.
converge on a predetermined free end surface of one free end surface of the optical waveguide and the other free end surface of the seventh and eighth optical waveguides, or conversely, one of the fifth optical waveguides of the third optical system. and the other free end surface of the seventh and eighth optical waveguides are transmitted to one free end surface of the first optical waveguide of the second optical system and the third and fourth optical waveguides. a lens means for converging the light onto a predetermined free end surface of the other free end surface; 5 birefringent crystal plates, the first birefringent crystal plate is arranged with its optical axis on a third plane, and the second and fifth birefringent crystal plates have their optical axes approximately equal to the third plane above.
The first and second planes of the second optical system are arranged on the fourth and fifth planes, which form an angle of 5° and an angle of approximately 90° with each other, respectively, so that the first and second planes of the second optical system An optical circulator function is obtained in which the optical waveguides of the third optical system are used as the first and third ports, respectively, and the fifth and sixth optical waveguides of the third optical system are used as the second and fourth ports, respectively. An optical circulator featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12340678A JPS5810726B2 (en) | 1978-10-06 | 1978-10-06 | optical circulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12340678A JPS5810726B2 (en) | 1978-10-06 | 1978-10-06 | optical circulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5550215A JPS5550215A (en) | 1980-04-11 |
JPS5810726B2 true JPS5810726B2 (en) | 1983-02-26 |
Family
ID=14859759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12340678A Expired JPS5810726B2 (en) | 1978-10-06 | 1978-10-06 | optical circulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5810726B2 (en) |
-
1978
- 1978-10-06 JP JP12340678A patent/JPS5810726B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5550215A (en) | 1980-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5574596A (en) | Optical circulator | |
US5204771A (en) | Optical circulator | |
WO1995018988A1 (en) | Reflective optical non-reciprocal devices | |
US5151955A (en) | Optical isolator | |
US6757451B2 (en) | Optical circulator | |
US6310989B1 (en) | Fiber optical circulator | |
US6438278B1 (en) | Fiber optical circulator | |
US6178044B1 (en) | Method and system for providing an optical circulator | |
JP4714811B2 (en) | Optical isolator and optical device | |
JPS5828561B2 (en) | optical isolator | |
WO2007102579A1 (en) | Reflection type optical circulator | |
US20020191284A1 (en) | Optical circulator | |
JPS5810726B2 (en) | optical circulator | |
JP2905847B2 (en) | Optical isolator device | |
JP2539563B2 (en) | Optical circulator | |
JP3008959B2 (en) | Light switch | |
JPH06324289A (en) | Polarization beam splitter and optical circulator using this splitter and optical switch | |
JPH0820623B2 (en) | Optical isolator | |
US20020110305A1 (en) | Reflective optical circulator | |
US20030030905A1 (en) | Polarized wave coupling optical isolator | |
JP3860669B2 (en) | Optical coupling component and optical circulator using the same | |
JPS5944606B2 (en) | light switch | |
JPS6214617A (en) | Light polarizing directional coupler | |
JPS61102621A (en) | Optical isolator | |
JPH0454929B2 (en) |