JPH05196890A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH05196890A
JPH05196890A JP4031586A JP3158692A JPH05196890A JP H05196890 A JPH05196890 A JP H05196890A JP 4031586 A JP4031586 A JP 4031586A JP 3158692 A JP3158692 A JP 3158692A JP H05196890 A JPH05196890 A JP H05196890A
Authority
JP
Japan
Prior art keywords
optical
polarizer
optical isolator
light
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4031586A
Other languages
Japanese (ja)
Inventor
Yutaka Urino
豊 賣野
Tomoki Saito
朝樹 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4031586A priority Critical patent/JPH05196890A/en
Priority to EP93100926A priority patent/EP0552783B1/en
Priority to DE69324283T priority patent/DE69324283T2/en
Priority to US08/007,511 priority patent/US5835270A/en
Publication of JPH05196890A publication Critical patent/JPH05196890A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/06Polarisation independent

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To provide the optical isolator which is used suitably for a long- distance, wide-range optical fiber communication system by reduce the polarized wave dispersion of the optical isolator. CONSTITUTION:Two optical isolators which transmit optional forward polarized light are longitudinally connected and the polarizers 604, 606, and 608, and 104, and 106, and 108 of the individual optical isolators are made of birefringent media; and the optical isolators are so arranged that when mutually orthogonal polarized light beams pass through the two cascaded optical isolators forward, the optical path difference between those polarized light beams is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波領域でのアイソレ
ータに関し、特に光ファイバ通信等に適した光アイソレ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an isolator in the light wave region, and more particularly to an optical isolator suitable for optical fiber communication.

【0002】[0002]

【従来の技術】近年、光ファイバ通信の新たな発展によ
り、さまざまな形態の光ファイバネットワークが構築さ
れ、それらのネットワーク内ではさまざまな光部品が使
用されるようになってきた。このため、通信の品質を維
持するためには各光部品の端面等での反射戻り光を除去
することが以前にも増して重要になってきた。通常の光
ファイバを伝搬してきた光は、一般に任意の偏光状態を
とり、かつ周囲の温度変化、ファイバの曲げやねじれ等
によって偏光状態は変化する。従って、光ファイバ通信
ネットワーク内で使う光アイソレータは、逆方向はもち
ろん、順方向の入射光に対しても偏光依存性が無いこと
が必要である。このような偏光無依存の光アイソレータ
としては、従来、特許公報昭60−49297、特許公
報昭61−58809及び1991年電子情報通信学会
春季全国大会予稿集分冊4ページ4−125等に掲載の
光アイソレータが知られている。
2. Description of the Related Art In recent years, with the new development of optical fiber communication, various forms of optical fiber networks have been constructed, and various optical parts have come to be used in these networks. Therefore, in order to maintain the quality of communication, it has become more important than ever before to eliminate the reflected return light from the end face of each optical component. Light that has propagated through an ordinary optical fiber generally has an arbitrary polarization state, and the polarization state changes due to ambient temperature changes, bending and twisting of the fiber, and the like. Therefore, the optical isolator used in the optical fiber communication network needs to have no polarization dependence not only in the backward direction but also in the forward direction incident light. As such a polarization-independent optical isolator, conventional optical isolators disclosed in Japanese Patent Publication No. 60-49297, Japanese Patent Publication No. 61-58809, and 1991 Spring Conference of the Institute of Electronics, Information and Communication Engineers, Vol. Isolators are known.

【0003】特許公報昭61−58809に記載の光ア
イソレータの構成を図5に示す。偏光面を45度回転せ
しめるファラデー回転子512を2枚の偏光子511,
513で挟んだ構成になっている。偏光子はルチルや方
解石等の複屈折性の結晶をくさび型にしたもので、異常
光線のみを屈折させる働きをする。偏光子511,51
3の光学軸は光の進行方向505に直交し、第2の偏光
子513の光学軸は第1の偏光子511の光学軸に対し
て光線の進行方向の回りにファラデー回転子512の回
転方向に45度回転している。なお、ファラデー回転子
512は光の進行方向に磁界を印加するために、通常ド
ーナツ型の永久磁石の中に設置するが、図面ではこの磁
石は省略してある(このことは本願の他の図面において
も同様である)。図5(a)は順方向光線の経路を示
し、図5(b)は逆方向の光線の経路を示し、実線50
5,507は常光線、破線506,508は異常光線を
表す。順方向の光線は、第1の偏光子511で常光線の
偏光は第2の偏光子513でも常光線となり、第1の偏
光子511で異常光線の偏光は第2の偏光子513でも
異常光線となるので、どちらの偏光も2つの偏光子での
屈折が相殺され入射光と平行な出射光505,506と
なり、レンズ503でファイバ504に集光される。一
方、逆方向の光線は、第2の偏光子513で常光線の偏
光は第1の偏光子511では異常光線となり、第2の偏
光子513で異常光線の偏光は第1の偏光子511では
常光線となるので、どちらの偏光も2つの偏光子での屈
折が相殺されず入射光と平行でない出射光507,50
8となり、レンズ502でファイバ501に集光されな
い。従って、アイソレーションが実現される。
The structure of the optical isolator disclosed in Japanese Patent Publication No. 61-58809 is shown in FIG. The Faraday rotator 512 for rotating the polarization plane by 45 degrees is composed of two polarizers 511,
It is sandwiched by 513. The polarizer is a wedge-shaped birefringent crystal such as rutile or calcite, and functions to refract only extraordinary rays. Polarizers 511 and 51
The optical axis of 3 is orthogonal to the traveling direction 505 of light, and the optical axis of the second polarizer 513 is the rotating direction of the Faraday rotator 512 around the traveling direction of the light beam with respect to the optical axis of the first polarizer 511. It has rotated 45 degrees. The Faraday rotator 512 is usually installed in a doughnut-shaped permanent magnet in order to apply a magnetic field in the traveling direction of light, but this magnet is omitted in the drawings (this is shown in other drawings of the present application. Is also the same). FIG. 5A shows the path of the forward light rays, and FIG. 5B shows the path of the backward light rays.
Reference numerals 5 and 507 represent ordinary rays, and broken lines 506 and 508 represent extraordinary rays. In the forward light, the polarization of the ordinary ray in the first polarizer 511 becomes the ordinary ray in the second polarizer 513, and the polarization of the extraordinary ray in the first polarizer 511 becomes the extraordinary ray in the second polarizer 513. Therefore, the refraction of the two polarizers of both polarized lights is canceled out, and the emitted lights become 505 and 506 which are parallel to the incident light and are condensed on the fiber 504 by the lens 503. On the other hand, with respect to the light rays in the opposite direction, the polarization of the ordinary ray in the second polarizer 513 becomes an extraordinary ray in the first polarizer 511, and the polarization of the extraordinary ray in the second polarizer 513 becomes an extraordinary ray in the first polarizer 511. Since it becomes an ordinary ray, the refraction of the two polarizers in both polarizations does not cancel out, and the emitted light 507, 50 is not parallel to the incident light.
Therefore, the lens 502 does not focus the light on the fiber 501. Therefore, isolation is realized.

【0004】次に、1991年電子情報通信学会春季全
国大会予稿集分冊4ページ4−125に掲載の光アイソ
レータの構成を図6に示す。本アイソレータは光が順方
向に進む順番に、第1の偏光子604,45度回転ファ
ラデー回転子605、第2の偏光子606、45度回転
ファラデー回転子607、第3の偏光子608の順に並
んでいる。各偏光子はルチル等の複屈折性の結晶からな
り、その光学軸は光の進行方向に対して45°傾いてお
り、異常光線の光ビームだけを平行にシフトさせ、常光
線の光ビームをそのまま透過させる働きを持つ。図5の
従来例と同様に、順方向の光線に対しては、第1の偏光
子604で常光線の偏光2は第2、第3の偏光子60
6,608でも常光線となり、第1の偏光子604で異
常光線の偏光3は第2、第3の偏光子606,608で
も異常光線となる。一方、逆方向の光線に対しては、第
3の偏光子608で常光線の偏光は第2の偏光子606
では異常光線となり、第3の偏光子608で異常光線の
偏光は第2の偏光子606では常光線となる様に偏光子
が配置されており、さらに3つの偏光子による順方向の
異常光線のシフトのベクトルの総和が零に成るように3
つの偏光子の厚さの比が1:√2:1に、シフト方向が
水平方向を0°とすると0°,−135°,90°とな
っている。従って、順方向では光アイソレータへの入射
光の軸と出射光の軸は一致するが、逆方向では第2の偏
光子606での偏光と結晶光学軸の関係が第3の偏光子
608に対して逆転するため出射光の軸は入射光からシ
フトしたままとなり、アイソレーションを実現できる。
Next, FIG. 6 shows the structure of the optical isolator shown in the 4th volume, 4-125, Volume 4 of the 1991 Spring National Convention of the Institute of Electronics, Information and Communication Engineers. This isolator has a first polarizer 604, a 45-degree rotating Faraday rotator 605, a second polarizer 606, a 45-degree rotating Faraday rotator 607, and a third polarizer 608 in the order in which light travels in the forward direction. Lined up. Each polarizer is made of birefringent crystal such as rutile, whose optic axis is tilted at 45 ° with respect to the traveling direction of light, and shifts only the extraordinary ray light beam in parallel to make the ordinary ray light beam. It has the function of transmitting as it is. Similar to the conventional example of FIG. 5, for the light rays in the forward direction, the first polarizer 604 converts the ordinary polarization 2 into the second and third polarizers 60.
6, 608 also becomes an ordinary ray, and the polarization 3 of the extraordinary ray in the first polarizer 604 becomes an extraordinary ray also in the second and third polarizers 606, 608. On the other hand, with respect to light rays in the opposite direction, the polarization of ordinary rays is generated by the third polarizer 608.
Is an extraordinary ray, and the extraordinary ray is polarized by the third polarizer 608 so that the polarization of the extraordinary ray is an ordinary ray by the second polarizer 606. 3 so that the sum of shift vectors becomes zero
The thickness ratio of one polarizer is 1: √2: 1, and the shift directions are 0 °, −135 °, and 90 ° when the horizontal direction is 0 °. Therefore, in the forward direction, the axis of the incident light to the optical isolator and the axis of the emitted light coincide with each other, but in the reverse direction, the relationship between the polarization in the second polarizer 606 and the crystal optical axis is the same as that of the third polarizer 608. Therefore, the axis of the emitted light remains shifted from the incident light and the isolation can be realized.

【0005】すなわちいずれの従来例においても、順方
向では全ての偏光子での(常光線か異常光線かという)
偏光と結晶光学軸の関係が一致し、逆方向では少なくと
も1つ以上の偏光子でその関係が逆転する様に工夫して
ある。この点は、特許公報昭60−49297に掲載の
光アイソレータも同様である。
That is, in any of the conventional examples, all polarizers (normal ray or extraordinary ray) in the forward direction.
It is devised so that the relationship between the polarized light and the crystal optical axis is the same and that the relationship is reversed in at least one or more polarizers in the opposite direction. In this respect, the optical isolator disclosed in Japanese Patent Laid-Open No. 60-49297 is also the same.

【0006】[0006]

【発明が解決しようとする課題】近年、光ファイバアン
プ等の開発により、従来よりも一層長距離無中継の光フ
ァイバ通信システムが実現されつつある。このようなシ
ステムにおいては、光の互いに直交する偏光間の伝搬時
間の差すなわち偏波分散が伝送距離や伝送帯域を制限す
る要因の一つとなってくる。
In recent years, the development of optical fiber amplifiers and the like has led to the realization of an optical fiber communication system that is longer and more repeatable than before. In such a system, the difference in propagation time between polarizations of light orthogonal to each other, that is, polarization dispersion, is one of the factors that limit the transmission distance and the transmission band.

【0007】従来技術の項で述べた光アイソレータは、
偏光子に複屈折性の結晶を用いており、かつ順方向の光
は全ての偏光子で必ず同じ偏光と結晶光学軸の関係にな
るので、上記の光アイソレータを順方向に通過する互い
に直交する偏光間には、偏光子の常光と異常光の屈折率
差に偏光子の厚さと個数をかけた長さの光路長差が生
じ、これが偏波分散の原因となり、伝送距離や伝送帯域
を制限する。
The optical isolator described in the section of the prior art is
Since a birefringent crystal is used for the polarizer, and the light in the forward direction always has the same polarization and crystal optic axis relationship in all the polarizers, it passes through the optical isolator in the forward direction and is orthogonal to each other. An optical path length difference between the ordinary and extraordinary rays of the polarizer is obtained by multiplying the thickness of the polarizer and the number of polarizers, which causes polarization dispersion and limits the transmission distance and transmission band. To do.

【0008】本発明の目的は、上記の光アイソレータの
偏波分散を小さくし、長距離広帯域の光ファイバ通信シ
ステムに適した光アイソレータを提供することにある。
An object of the present invention is to provide an optical isolator which reduces the polarization dispersion of the above optical isolator and is suitable for a long-distance and wide-band optical fiber communication system.

【0009】[0009]

【課題を解決するための手段】本発明による第1の構成
の光アイソレータは、任意の偏光の順方向の光を透過す
る光アイソレータを偶数個縦続に接続した構造で、個々
の光アイソレータの偏光子が複屈折性を持つ媒質から成
り、互いに直交する偏光が縦続接続された前記偶数個の
光アイソレータを順方向に通過したときに、これらの偏
光間で光路長差が零になる様に前記各アイソレータを配
置したことを特徴とする光アイソレータである。
The optical isolator of the first structure according to the present invention has a structure in which an even number of optical isolators that transmit forward light of arbitrary polarization are connected in cascade. The optical path length difference between the polarized light is zero when the light passing through the even number of optical isolators, which are made of a medium having birefringence and are orthogonal to each other, pass in the forward direction. It is an optical isolator characterized by arranging each isolator.

【0010】本発明による第2の構成の光アイソレータ
は、光路に偏光子を含み、任意の偏光の順方向の光を透
過する光アイソレータにおいて、前記偏光子が、複数個
の複屈折性媒質を縦続に接続して成り、互いに直交する
偏光が前記偏光子を通過したときにこれらの偏光間で光
路長差が雫になるように前記複屈折性媒質を配置した偏
光子であることを特徴とする光アイソレータである。
An optical isolator having a second structure according to the present invention is an optical isolator which includes a polarizer in an optical path thereof and transmits light of an arbitrary polarization in a forward direction, wherein the polarizer comprises a plurality of birefringent media. A polarizer in which the birefringent media are arranged so that the polarization paths orthogonal to each other pass through the polarizer so that the optical path length difference between the polarized lights becomes a drop when the polarized lights cross each other. Is an optical isolator.

【0011】本発明による第3の構成の光アイソレータ
は、任意の偏光の順方向の光を透過する複数の偏光子か
ら成る光アイソレータにおいて、前記偏光子が複屈折性
を持つ媒質から成り、順方向から入射する任意の偏光の
光が、少なくとも1度1つの偏光子内で常光線となり、
かつ少なくとも1度他の偏光子内で異常光線となる様に
前記偏光子を配置したことを特徴とする光アイソレータ
である。
An optical isolator having a third structure according to the present invention is an optical isolator comprising a plurality of polarizers that transmit light of an arbitrary polarization in the forward direction, wherein the polarizer is made of a medium having birefringence, Light of any polarization incident from any direction becomes an ordinary ray at least once in one polarizer,
In addition, the optical isolator is characterized in that the polarizer is arranged so as to become an extraordinary ray in another polarizer at least once.

【0012】本発明による第4の構成の光アイソレータ
は、任意の偏光の順方向の光を透過する光アイソレータ
において、互いに直交する偏光が順方向に通過したとき
に、これらの偏光間で光路長差が零になるように位相子
を光路に配置したことを特徴とする光アイソレータであ
る。
An optical isolator having a fourth structure according to the present invention is an optical isolator which transmits light of arbitrary polarization in the forward direction, and when polarized lights orthogonal to each other pass in the forward direction, the optical path length between these polarized lights is increased. It is an optical isolator characterized in that a phaser is arranged in the optical path so that the difference becomes zero.

【0013】[0013]

【作用】従来の技術の項で述べたように、従来の光アイ
ソレータは順方向の場合、第1の偏光子で常光及び異常
光の偏光は、他の全ての偏光子でもそれぞれ同じく常光
及び異常光となる。従って、互いに直交する偏光間では
必ず常光と異常光の屈折率差に対応する光路長差が生じ
る。一方、本発明による光アイソレータは、ある直線偏
光の光が順方向に光アイソレータを通過する場合、必ず
常光線と異常光線の両方の偏光状態をとる。従って、互
いに直交する偏光間での常光と異常光の屈折率差に起因
する光路長差は相殺され、光路長差を小さくすることが
できる。それ故、本発明によれば偏波分散の小さな光ア
イソレータを提供することができる。
As described in the section of the prior art, when the conventional optical isolator is in the forward direction, the polarization of ordinary light and extraordinary light in the first polarizer is the same as that in all other polarizers. Become light. Therefore, an optical path length difference corresponding to the refractive index difference between the ordinary ray and the extraordinary ray always occurs between the polarized lights orthogonal to each other. On the other hand, in the optical isolator according to the present invention, when a certain linearly polarized light passes through the optical isolator in the forward direction, it always takes the polarization state of both the ordinary ray and the extraordinary ray. Therefore, the optical path length difference caused by the difference in the refractive index between the ordinary light and the extraordinary light between the polarizations orthogonal to each other is canceled out, and the optical path length difference can be reduced. Therefore, according to the present invention, it is possible to provide an optical isolator having a small polarization dispersion.

【0014】[0014]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本発明の請求項1による光アイソレ
ータの一実施例である。本実施例は、図6に示した従来
の光アイソレータを同じ方向に2個縦続接続した構成に
なっている。図1で左から右へ進む光が順方向の光線で
あり、ファラデー回転子605,607,105,10
7は順方向の入射面から見て反時計回りに偏光面を45
度回転させる。図1の左の光アイソレータを第1の光ア
イソレータ、右の光アイソレータを第2の光アイソレー
タと呼ぶことにする。第2の光アイソレータの第1の偏
光子104の光学軸109が、第1の光アイソレータの
第3の偏光子608の光学軸610に対して光線の進行
方向1を軸としてファラデー回転子の回転方向に90度
回転するように2つの光アイソレータを配置している。
(もともと各光アイソレータの第3の偏光子608,1
08の光学軸610,110は、第1の偏光子604,
104の光学軸609,109に対して光線の進行方向
1を軸としてファラデー回転子の回転方向に90度回転
しているから、第2の光アイソレータの各偏光子10
4,106,108の光学軸は、第1の光アイソレータ
の対応する各偏光子604,606,608の光学軸に
対してそれぞれ180度回転していることになる。)従
って順方向の光線は、第1の光アイソレータの偏光子で
常光線であった偏光2は第2の光アイソレータの偏光子
では異常光線になり、第1の光アイソレータの偏光子で
異常光線であった偏光3は第2の光アイソレータの偏光
子では常光線になる。2つの光アイソレータの対応する
偏光子の厚さはそれぞれ同じであるから、この2個の光
アイソレータを順方向に通過した光は、その偏光に依ら
ず常に同一の光路長をとり、偏波分散は原理的には零に
なる。本構成では、逆方向の光ビームのシフト量は光ア
イソレータが1つのときの√2倍になりアイソレーショ
ンが向上するという特長がある。さらに本光アイソレー
タは、入射光の偏波面2,3がそのまま保存されて出射
されるという特長もある。
Embodiments of the present invention will be described below with reference to the drawings. 1 is an embodiment of an optical isolator according to claim 1 of the present invention. This embodiment has a structure in which two conventional optical isolators shown in FIG. 6 are connected in series in the same direction. Light traveling from left to right in FIG. 1 is a light beam in the forward direction, and the Faraday rotators 605, 607, 105, 10
7 has a polarization plane of 45 in the counterclockwise direction when viewed from the incident plane in the forward direction.
Rotate it once. The left optical isolator in FIG. 1 is called a first optical isolator, and the right optical isolator is called a second optical isolator. The optical axis 109 of the first polarizer 104 of the second optical isolator rotates the Faraday rotator about the optical axis 610 of the third polarizer 608 of the first optical isolator about the traveling direction 1 of the light ray. Two optical isolators are arranged so as to rotate 90 degrees in the direction.
(Originally, the third polarizer 608, 1 of each optical isolator
08 optical axes 610 and 110 are associated with the first polarizer 604 and
Each of the polarizers 10 of the second optical isolator is rotated by 90 degrees in the rotation direction of the Faraday rotator about the traveling direction 1 of the light ray with respect to the optical axes 609 and 109 of 104.
The optical axes of 4, 106 and 108 are rotated by 180 degrees with respect to the optical axes of the corresponding polarizers 604, 606 and 608 of the first optical isolator. ) Therefore, the light ray in the forward direction becomes the extraordinary ray in the polarizer of the first optical isolator, and the polarization 2 which was the ordinary ray in the polarizer of the first optical isolator becomes the extraordinary ray in the polarizer of the second optical isolator. The polarized light 3 which has been described above becomes an ordinary ray in the polarizer of the second optical isolator. Since the thicknesses of the corresponding polarizers of the two optical isolators are the same, the light that has passed through these two optical isolators in the forward direction always has the same optical path length regardless of the polarization, and the polarization dispersion Becomes zero in principle. In this configuration, the amount of shift of the light beam in the opposite direction is √2 times that when one optical isolator is provided, and the isolation is improved. Further, the optical isolator has a feature that the polarization planes 2 and 3 of the incident light are preserved and emitted.

【0015】また、図5に示した従来の光アイソレータ
を同じ方向に2個縦続接続した構成において、図1と同
様に、第2の光アイソレータの第1の偏光子の光学軸
が、第1の光アイソレータの第2の偏光子の光学軸に対
して光線の進行方向を軸として90度回転するように2
つの光アイソレータを配置しても、同様に偏波分散を零
にする効果が得られる。
Further, in the structure in which two conventional optical isolators shown in FIG. 5 are connected in series in the same direction, the optical axis of the first polarizer of the second optical isolator is the first optical axis as in the case of FIG. To rotate 90 degrees about the traveling direction of the ray with respect to the optical axis of the second polarizer of the optical isolator.
Even if two optical isolators are arranged, the effect of making the polarization dispersion zero can be obtained.

【0016】図2は本発明の請求項2による光アイソレ
ータの一実施例である。本光アイソレータは、図6に示
した従来の光アイソレータの3枚の偏光子604,60
6,608のそれぞれに同じ結晶で同じ厚さの新たな偏
光子204,206,208を付加し、この新たな偏光
子の光学軸が、それぞれ元の偏光子の光学軸に対して光
線の進行方向1を軸として同じ方向に90度回転するよ
うに設置されている。従って、元の偏光子604,60
6,608で常光線である偏光2は新たに付加した偏光
子204,206,208では異常光線となり、元の偏
光子で異常光線である偏光3は新たに付加した偏光子で
は常光線となるから、元の偏光子と新たな偏光子の一組
を通過する光は、その偏光に依らず常に同一の光路長を
とり、偏波分散は原理的には零になる。ファラデー回転
子205,207には複屈折性はないので、各偏光子の
組で偏波分散が無ければ光アイソレータ全体でも偏波分
散は零になる。
FIG. 2 shows an embodiment of an optical isolator according to claim 2 of the present invention. This optical isolator comprises three polarizers 604, 60 of the conventional optical isolator shown in FIG.
6 and 608, new polarizers 204, 206, and 208 having the same crystal and the same thickness are added, and the optical axes of the new polarizers travel with respect to the optical axes of the original polarizers. It is installed so as to rotate 90 degrees in the same direction with the direction 1 as the axis. Therefore, the original polarizers 604, 60
Polarization 2 which is an ordinary ray at 6,608 becomes an extraordinary ray at the newly added polarizers 204, 206 and 208, and polarization 3 which is an extraordinary ray at the original polarizer becomes an ordinary ray at the newly added polarizer. Therefore, the light passing through the pair of the original polarizer and the new polarizer always has the same optical path length regardless of the polarization, and the polarization dispersion is theoretically zero. Since the Faraday rotators 205 and 207 do not have birefringence, if there is no polarization dispersion in each polarizer set, the polarization dispersion will be zero in the entire optical isolator.

【0017】図3は本発明の請求項3による光アイソレ
ータの一実施例である。本光アイソレータは、図6に示
した従来の光アイソレータの3枚の偏光子604,60
6,608の内、第2の偏光子604の光学軸を光線の
進行方向1を軸としてファラデー回転子605,607
の回転方向に90度回転し、第3の偏光子608の光学
軸を光線の進行方向を軸として180度回転させた配置
になっている。従って、第1の偏光子604で常光線で
ある順方向の偏光2は第2の偏光子306で異常光線と
なり第3の偏光子308で常光線になる。逆に、第1の
偏光子604で異常光線である順方向の偏光3は第2の
偏光子306で常光線となり第3の偏光子308で異常
光線になる。前述の様に第1、第2、第3の偏光子60
4,306,308の厚さの比は1:√2:1であるか
ら、本光アイソレータは原理的に偏波分散を零にするこ
とはできないが、図6の従来の光アイソレータに比べて
偏波分散を(2−√2)/(2+√2)倍(約17%)
に低減できる。さらに本光アイソレータは請求項1及び
2の光アイソレータに比べて薄くできるという特長を有
する。
FIG. 3 shows an embodiment of an optical isolator according to claim 3 of the present invention. This optical isolator comprises three polarizers 604, 60 of the conventional optical isolator shown in FIG.
6, 608, the optical axis of the second polarizer 604 is the Faraday rotator 605, 607 with the traveling direction 1 of the light ray as the axis.
The optical axis of the third polarizer 608 is rotated by 180 degrees about the traveling direction of the light beam. Therefore, the forward polarized light 2 which is an ordinary ray in the first polarizer 604 becomes an extraordinary ray in the second polarizer 306 and becomes an ordinary ray in the third polarizer 308. On the contrary, the forward polarization 3 which is an extraordinary ray in the first polarizer 604 becomes an ordinary ray in the second polarizer 306 and becomes an extraordinary ray in the third polarizer 308. As described above, the first, second and third polarizers 60
Since the thickness ratio of 4,306 and 308 is 1: √2: 1, this optical isolator cannot make polarization dispersion zero in principle, but compared with the conventional optical isolator of FIG. Polarization dispersion is (2-√2) / (2 + √2) times (about 17%)
Can be reduced to Further, the present optical isolator has the feature that it can be made thinner than the optical isolators of the first and second aspects.

【0018】図4は本発明の請求項4による光アイソレ
ータの一実施例である。本光アイソレータは、図6に示
した従来の光アイソレータに偏光子604,606,6
08と同じ結晶で厚さが各偏光子の厚さの和に等しい位
相子401を第3の偏光子608の後ろに付加した構成
になっており、位相子401の光学軸402は光の進行
方向1と直交し、かつ第3の偏光子608の光学軸61
0を光の進行方向と直交する平面に投影した軸とも直交
する様に配置する。このように配置すると、光アイソレ
ータを順方向に通過する光に対しては、各偏光子で常光
線の偏光2は位相子401で異常光線となり、各偏光子
で異常光線の偏光3は位相子401で常光線となる。従
って、光アイソレータを順方向に通過した光は、その偏
光に依らず常に同一の光路長をとり、偏波分散は原理的
には零になる。位相子の光学軸が隣合う偏光子の光学軸
と上記の関係にある限り、位相子は光のアイソレーショ
ン動作にはなんら影響を与えない。従って、位相子40
1を第1の偏光子604の前や任意の偏光子とファラデ
ー回転子の間等の場所に入れても、位相子の光学軸が隣
合う偏光子の光学軸と上記の関係にある限り、同様の効
果が得られる。また位相子をいくつかに分割して配置し
ても、それらの位相子の厚さの和が偏光子の厚さの和と
等しく、かつ各位相子の光学軸が隣合う偏光子の光学軸
と上記の関係にある限り、同様の効果が得られる。ま
た、位相子に偏光子と違う結晶を用いても、その厚さを
変更することで、同様の効果が得られる。
FIG. 4 shows an embodiment of an optical isolator according to claim 4 of the present invention. This optical isolator is the same as the conventional optical isolator shown in FIG.
08 has a structure in which a retarder 401 having the same crystal as that of 08 and a thickness equal to the sum of the thicknesses of the respective polarizers is added after the third polarizer 608, and the optical axis 402 of the retarder 401 is the traveling direction of light. The optical axis 61 of the third polarizer 608 is orthogonal to the direction 1 and
It is arranged so that 0 is also orthogonal to the axis projected on the plane orthogonal to the traveling direction of light. With this arrangement, for light passing through the optical isolator in the forward direction, the polarization 2 of the ordinary ray in each polarizer becomes an extraordinary ray in the retarder 401, and the polarization 3 of the extraordinary ray in each polarizer becomes the retarder. It becomes an ordinary ray at 401. Therefore, light that has passed through the optical isolator in the forward direction always has the same optical path length regardless of its polarization, and the polarization dispersion is theoretically zero. As long as the optical axis of the retarder has the above-mentioned relationship with the optical axes of the adjacent polarizers, the retarder has no influence on the optical isolation operation. Therefore, the phase shifter 40
Even if 1 is placed in front of the first polarizer 604 or in a place such as between any polarizer and the Faraday rotator, as long as the optical axis of the retarder has the above-described relationship with the optical axis of the adjacent polarizer, The same effect can be obtained. Even if the retarder is divided into several parts, the sum of the thicknesses of the retarders is equal to the sum of the thicknesses of the polarizers, and the optical axis of each retarder is the optical axis of the adjacent polarizer. As long as there is the above relationship, the same effect can be obtained. Even if a crystal different from the polarizer is used as the retarder, the same effect can be obtained by changing the thickness.

【0019】[0019]

【発明の効果】以上に述べたように、本発明によれば偏
波分散の無い偏光無依存型の光アイソレータを提供する
ことができる。
As described above, according to the present invention, it is possible to provide a polarization-independent optical isolator having no polarization dispersion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1による光アイソレータの一実
施例の斜視図である。
FIG. 1 is a perspective view of an embodiment of an optical isolator according to claim 1 of the present invention.

【図2】本発明の請求項2による光アイソレータの一実
施例の斜視図である。
FIG. 2 is a perspective view of an embodiment of an optical isolator according to claim 2 of the present invention.

【図3】本発明の請求項3による光アイソレータの一実
施例の斜視図である。
FIG. 3 is a perspective view of an embodiment of an optical isolator according to claim 3 of the present invention.

【図4】本発明の請求項4による光アイソレータの一実
施例の斜視図である。
FIG. 4 is a perspective view of an embodiment of the optical isolator according to claim 4 of the present invention.

【図5】従来例による光アイソレータの実施例の平面図
である。
FIG. 5 is a plan view of an example of a conventional optical isolator.

【図6】従来例による光アイソレータの実施例の斜視図
である。
FIG. 6 is a perspective view of an embodiment of an optical isolator according to a conventional example.

【符号の説明】[Explanation of symbols]

1 順方向の光線 2 最初の偏光子で常光線となる偏光 3 最初の偏光子で異常光線となる偏光 104 偏光子 105 ファラデー回転子 106 偏光子 107 ファラデー回転子 108 偏光子 109 偏光子の光学軸 110 偏光子の光学軸 204 偏光子 205 ファラデー回転子 206 偏光子 207 ファラデー回転子 208 偏光子 209 偏光子の光学軸 210 偏光子の光学軸 306 偏光子 308 偏光子 310 偏光子の光学軸 401 位相子 402 位相子の光学軸 501 光ファイバ 502 レンズ 503 レンズ 504 光ファイバ 505 順方向の常光線 506 順方向の異常光線 507 逆方向の常光線 508 逆方向の異常光線 511 偏光子 512 ファラデー回転子 513 偏光子 604 偏光子 605 ファラデー回転子 606 偏光子 607 ファラデー回転子 608 偏光子 609 偏光子の光学軸 610 偏光子の光学軸 1 Forward ray 2 Polarization that becomes an ordinary ray in the first polarizer 3 Polarization that becomes an extraordinary ray in the first polarizer 104 Polarizer 105 Faraday rotator 106 Polarizer 107 Faraday rotator 108 Polarizer 109 Optical axis of polarizer 110 Optical axis of polarizer 204 Polarizer 205 Faraday rotator 206 Polarizer 207 Faraday rotator 208 Polarizer 209 Optical axis of polarizer 210 Optical axis of polarizer 306 Polarizer 308 Polarizer 310 Optical axis of polarizer 401 Phaser 402 Optical axis of phaser 501 Optical fiber 502 Lens 503 Lens 504 Optical fiber 505 Normal ray in the forward direction 506 Extraordinary ray in the forward direction 507 Ordinary ray in the reverse direction 508 Extraordinary ray in the reverse direction 511 Polarizer 512 Faraday rotator 513 Polarizer 604 Polarizer 605 Faraday rotator 60 6 Polarizer 607 Faraday rotator 608 Polarizer 609 Optical axis of polarizer 610 Optical axis of polarizer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 任意の偏光の順方向の光を透過する光ア
イソレータを偶数個縦続に接続した構造で、個々の光ア
イソレータの偏光子が複屈折性を持つ媒質から成り、互
いに直交する偏光が縦続接続された前記偶数個の光アイ
ソレータを順方向に通過したときに、これらの偏光間で
光路長差が零になる様に前記各光アイソレータを配置し
たことを特徴とする光アイソレータ。
1. A structure in which an even number of optical isolators that transmit light of an arbitrary polarized light in the forward direction are connected in cascade, and the polarizers of the individual optical isolators are made of a medium having birefringence, and polarized lights orthogonal to each other are An optical isolator, wherein each of the optical isolators is arranged such that the optical path length difference between the polarized lights becomes zero when the light passes through the even number of cascaded optical isolators in the forward direction.
【請求項2】 光路に偏光子を含み、任意の偏光の順方
向の光を透過する光アイソレータにおいて、前記偏光子
が、複数個の複屈折性媒質を縦続に接続して成り、互い
に直交する偏光が前記偏光子を通過したときにこれらの
偏光間で光路長差が零になるように前記複屈折性媒質を
配置した偏光子であることを特徴とする光アイソレー
タ。
2. An optical isolator that includes a polarizer in an optical path and transmits light of an arbitrary polarization in a forward direction, wherein the polarizer is formed by connecting a plurality of birefringent media in cascade, and is orthogonal to each other. An optical isolator, wherein the birefringent medium is arranged so that the optical path length difference between the polarized lights becomes zero when the polarized lights pass through the polarizer.
【請求項3】 任意の偏光の順方向の光を透過する複数
の偏光子から成る光アイソレータにおいて、前記偏光子
が複屈折性を持つ媒質から成り、順方向から入射する任
意の偏光の光が、少なくとも1度1つの偏光子内で常光
線となり、かつ少なくとも1度他の偏光子内で異常光線
となる様に前記偏光子を配置したことを特徴とする光ア
イソレータ。
3. An optical isolator comprising a plurality of polarizers which transmit light of arbitrary polarization in the forward direction, wherein the polarizer is made of a medium having birefringence, and light of arbitrary polarization incident in the forward direction is An optical isolator, wherein the polarizer is arranged so that it becomes an ordinary ray at least once in one polarizer and becomes an extraordinary ray at least once in another polarizer.
【請求項4】 任意の偏光の順方向の光を透過する光ア
イソレータにおいて、互いに直交する偏光が順方向に通
過したときに、これらの偏光間で光路長差が零になるよ
うに位相子を光路に配置したことを特徴とする光アイソ
レータ。
4. An optical isolator for transmitting light of arbitrary polarization in the forward direction is provided with a phase shifter so that, when polarized lights orthogonal to each other pass in the forward direction, the optical path length difference between these polarized lights becomes zero. An optical isolator characterized by being placed in the optical path.
JP4031586A 1992-01-22 1992-01-22 Optical isolator Pending JPH05196890A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4031586A JPH05196890A (en) 1992-01-22 1992-01-22 Optical isolator
EP93100926A EP0552783B1 (en) 1992-01-22 1993-01-21 Optical isolator device
DE69324283T DE69324283T2 (en) 1992-01-22 1993-01-21 Optical isolator
US08/007,511 US5835270A (en) 1992-01-22 1993-01-22 Optical isolator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031586A JPH05196890A (en) 1992-01-22 1992-01-22 Optical isolator

Publications (1)

Publication Number Publication Date
JPH05196890A true JPH05196890A (en) 1993-08-06

Family

ID=12335300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031586A Pending JPH05196890A (en) 1992-01-22 1992-01-22 Optical isolator

Country Status (4)

Country Link
US (1) US5835270A (en)
EP (1) EP0552783B1 (en)
JP (1) JPH05196890A (en)
DE (1) DE69324283T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049425A (en) * 1996-07-02 2000-04-11 Shin-Etsu Chemical Co., Ltd. Multiple-stage optical isolator

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2757093B2 (en) * 1992-04-20 1998-05-25 富士電気化学株式会社 Non-polarization dispersion type optical isolator
US6239900B1 (en) 1997-09-19 2001-05-29 Nz Applied Technologies Corp. Reflective fiber-optic isolator
US6055101A (en) * 1998-08-28 2000-04-25 Lucent Technologies, Inc. Isolator assembly and method of making
US6091866A (en) * 1998-09-01 2000-07-18 Cheng; Yihao Optical isolator
US5973832A (en) * 1998-10-19 1999-10-26 Uniphase Corporation High performance optical circulators
JP2001075063A (en) * 1999-09-02 2001-03-23 Fujitsu Ltd Faraday rotator
US6288826B1 (en) * 2000-01-05 2001-09-11 Jds Uniphase Inc. Multi-stage optical isolator
US7227686B1 (en) 2002-01-22 2007-06-05 General Photonics Corporation Tunable PMD emulators and compensators
JP4036687B2 (en) * 2002-06-11 2008-01-23 富士通株式会社 An optical ring network system in which multiple node devices are connected in a ring shape
US7391977B2 (en) 2003-03-12 2008-06-24 General Photonics Corporation Monitoring mechanisms for optical systems
US7436569B2 (en) * 2003-03-12 2008-10-14 General Photonics Corporation Polarization measurement and self-calibration based on multiple tunable optical polarization rotators
US7218436B2 (en) * 2003-08-08 2007-05-15 General Photonics Corporation Optical instrument and measurements using multiple tunable optical polarization rotators
US7466471B2 (en) * 2003-03-12 2008-12-16 General Photonics Corporation Optical instrument and measurements using multiple tunable optical polarization rotators
US7796894B1 (en) 2003-07-30 2010-09-14 General Photonics Corporation Reduction of noise and polarization mode dispersion (PMD) based on optical polarization stabilizer in fiber transmission
US7952711B1 (en) 2007-03-26 2011-05-31 General Photonics Corporation Waveplate analyzer based on multiple tunable optical polarization rotators
US8422882B1 (en) 2008-02-04 2013-04-16 General Photonics Corporation Monitoring polarization-mode dispersion and signal-to-noise ratio in optical signals based on polarization analysis
US20100239245A1 (en) * 2009-03-21 2010-09-23 General Photonics Corporation Polarization Mode Emulators and Polarization Mode Dispersion Compensators Based on Optical Polarization Rotators with Discrete Polarization States
US8780433B2 (en) 2011-09-28 2014-07-15 General Photonics Corporation Polarization scrambling based on cascaded optical polarization devices having modulated optical retardation
US10698227B2 (en) 2017-08-11 2020-06-30 Christie Digital Systems Usa, Inc. Apparatus for combining laser beams
CN115516785A (en) * 2020-05-07 2022-12-23 朗美通经营有限责任公司 Optical isolator core

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267804A (en) * 1963-01-03 1966-08-23 Bell Telephone Labor Inc Optical circulator
JPS53108451A (en) * 1977-03-04 1978-09-21 Nec Corp Method for directly obtaining polarization and linear polarizing system
JPS58116515A (en) * 1981-12-29 1983-07-11 Fujitsu Ltd Optical isolator
CA1253726A (en) * 1982-06-28 1989-05-09 Masataka Shirasaki Polarization rotation compensator and optical isolator using the same
US4464022A (en) * 1982-09-28 1984-08-07 At&T Bell Laboratories Optical circulator
JPS6049297A (en) * 1983-08-29 1985-03-18 石川島播磨重工業株式会社 Volume reduction method of radioactive waste water
JPS60130934A (en) * 1983-12-20 1985-07-12 Fujitsu Ltd Optical isolator
JPS6158809A (en) * 1984-08-20 1986-03-26 ゼネラル モーターズ コーポレーシヨン Control of pyrolytic methane density for manufacturing graphite fiber
JPH01105908A (en) * 1987-10-19 1989-04-24 Fujitsu Ltd Optical isolator
JP2651701B2 (en) * 1988-05-18 1997-09-10 並木精密宝石株式会社 Laser module with optical isolator
US4974944A (en) * 1988-07-21 1990-12-04 Hewlett-Packard Company Optical nonreciprocal device
JPH0246419A (en) * 1988-08-06 1990-02-15 Namiki Precision Jewel Co Ltd Optical isolator
JPH02287528A (en) * 1989-04-28 1990-11-27 Canon Inc Projector
US5251058A (en) * 1989-10-13 1993-10-05 Xerox Corporation Multiple beam exposure control
JPH0820623B2 (en) * 1990-06-20 1996-03-04 株式会社信光社 Optical isolator
JP2835412B2 (en) * 1990-07-16 1998-12-14 日本電信電話株式会社 Variable direction optical isolator
US5237445A (en) * 1990-11-30 1993-08-17 Shimadzu Corporation Optical isolator
DE69121176T2 (en) * 1990-12-17 1997-01-09 Nippon Telegraph & Telephone Optical circulator
JPH04221923A (en) * 1990-12-25 1992-08-12 Namiki Precision Jewel Co Ltd Polarization independent type optical isolator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049425A (en) * 1996-07-02 2000-04-11 Shin-Etsu Chemical Co., Ltd. Multiple-stage optical isolator

Also Published As

Publication number Publication date
EP0552783A3 (en) 1993-11-10
DE69324283T2 (en) 1999-08-19
DE69324283D1 (en) 1999-05-12
EP0552783B1 (en) 1999-04-07
EP0552783A2 (en) 1993-07-28
US5835270A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JPH05196890A (en) Optical isolator
US5774264A (en) Polarization independent optical isolator
US5818981A (en) Polarization mode dispersion-free circulator
US5212586A (en) Optical circulator having a simplified construction
US6590706B1 (en) Optical circulators using beam angle turners
US6285499B1 (en) Compact polarization insensitive circulators with simplified structure and low polarization mode dispersion
JPH09189885A (en) Optical device
EP0793130B1 (en) Polarization independent optical nonreciprocal circuit
CA2344021C (en) Polarization beam splitter or combiner
US20010036330A1 (en) Polarization beam splitter or combiner
JPH07281128A (en) Optical isolator
US5408491A (en) Optical isolator
US6885821B2 (en) Full-duplex optical add/drop communications system utilizing central light sources
JPH07191280A (en) Optical isolator
US20090304392A1 (en) Reflective optical circulator
US20020191284A1 (en) Optical circulator
US20030053209A1 (en) Dual stage optical isolator with reduced polarization mode dispersion and beam offset
KR20060058773A (en) In-line optical isolator
US6549686B2 (en) Reflective optical circulator
JPH0634915A (en) Optical isolator, light amplifier provided with the optical isolator, and duplex optical transmission system provided with the optical amplifier
US11719965B2 (en) Optical isolators
JP2004226599A (en) Polarized light separating and composing device
JPH06214194A (en) Optical isolator
JP2005227659A (en) Polarization-independent multicore optical isolator
Lee et al. Design of optical circulators

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990316