JPH0246419A - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH0246419A
JPH0246419A JP19634088A JP19634088A JPH0246419A JP H0246419 A JPH0246419 A JP H0246419A JP 19634088 A JP19634088 A JP 19634088A JP 19634088 A JP19634088 A JP 19634088A JP H0246419 A JPH0246419 A JP H0246419A
Authority
JP
Japan
Prior art keywords
crystal
optical
optical axis
axis
birefringent crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19634088A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
良博 今野
Nobuo Imaizumi
伸夫 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP19634088A priority Critical patent/JPH0246419A/en
Publication of JPH0246419A publication Critical patent/JPH0246419A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To align the optical axes in incident and exit positions without having dependency on polarized light by constituting an optical system of 3 pieces of double refractive crystals and 2 pieces of Faraday rotors and specifying the thickness of the crystals and the inclination of the crystal axes. CONSTITUTION:The optical isolator is constituted of the three double refractive crystals 1-3 and the two Faraday rotors 5, 6. The thickness of the respective crystals 2, 3 is specified to 1:2<1/2>:1 when the thickness in the optical axis direction of the 1st crystal 1 is 1. The 2nd crystal 2 is disposed by rotating the 1st crystal 1 180 deg. around the (x) axis to put the optical axis of the 2nd crystal into specular symmetry, then rotating the same 45 deg. in the incident ray direction with respect to the optical axis of the 1st crystal 1. The disposition of the 3rd crystal 3 is attained by rotating the optical axis thereof 45 deg. around the (x) axis of the 2nd crystal 2 and rotating this optical axis 90 deg. with the optical axis of the 1st crystal 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体レーザを用いた光フアイバー通信等にお
ける光学系の反射戻り光を阻止するための偏光方向に影
響を受けない偏光無依存型光アイソレータに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides polarization-independent light that is not affected by the polarization direction and is used to prevent reflected light from an optical system in optical fiber communication using a semiconductor laser. Regarding isolators.

[従来の技術] 半導体レーザを中心とする光通信、光計測等が開発され
るにしたがって、光学システムたとえば結合レンズ、光
コネクタその他光学部品から回帰する反射戻り光によっ
てレーザ発振が誤動作し高速、高密度信号伝送を不安定
化する問題が生じ、反射戻り光を遮断する各種の光アイ
ソレータが提案された。
[Prior Art] With the development of optical communication, optical measurement, etc. centered on semiconductor lasers, laser oscillations may malfunction due to reflected return light from optical systems such as coupling lenses, optical connectors, and other optical components, causing high-speed, high-speed The problem of destabilizing density signal transmission has arisen, and various optical isolators have been proposed to block the reflected return light.

これらの光アイソレータは偏光子、ファラデー回転子、
検光子、ファラデー回転子を磁化するための永久磁石か
ら構成され、一般にはある偏光面にしか有効でなく、光
アイソレータの偏光方向に合致しない光が入射した場合
、透過光が大幅に損失する欠点があった。偏光方向に依
存せず全ての偏光面に対してアイソレーション効果を示
す構成として平板状複屈折結晶や旋光性結晶単板を組合
せた方式が提案されている。
These optical isolators include polarizers, Faraday rotators,
It consists of a permanent magnet to magnetize the analyzer and Faraday rotator, and it is generally effective only for a certain plane of polarization, so if light that does not match the polarization direction of the optical isolator is incident, the transmitted light will be significantly lost. was there. A system in which a tabular birefringent crystal or a single optically active crystal is combined has been proposed as a structure that exhibits an isolation effect for all polarization planes without depending on the polarization direction.

たとえば第2図に示される方式は平板状複屈折結晶を用
いた構造(特公昭60−51690号公報参照)であり
、また第3図に示される構成から偏光依存性のない方式
である(特公昭58−28561号公報参照)。後者に
おいては1.1゛の複屈折結晶は同厚で1°は1に対し
X軸のまわりに180゜回転した対称構造であり、それ
らの間にファラデー回転子5.旋光子7を配置して偏光
面を回転している。旋光子として水晶や二酸化テルル(
■e02)等が用いられティる。第3図(a)、 (b
)はそれぞれ順方向、逆方向の光の伝搬状態を示すもの
で、順方向では出射点で再び入射光線の延長上に伝搬で
きる。逆方向では最終入射点位置で入射光線軸上から戻
り光がある変位距離を有し、すなわち分離されている。
For example, the system shown in Fig. 2 has a structure using a tabular birefringent crystal (see Japanese Patent Publication No. 60-51690), and the system shown in Fig. 3 has no polarization dependence (special (See Publication No. 58-28561). In the latter case, the birefringent crystals of 1.1° have the same thickness and have a symmetrical structure rotated by 180° around the X axis, with 1° being 1°, and a Faraday rotator 5. An optical rotator 7 is arranged to rotate the plane of polarization. Crystal or tellurium dioxide (
■e02) etc. are used. Figure 3 (a), (b
) indicate the propagation state of light in the forward and reverse directions, respectively; in the forward direction, the light can propagate again on an extension of the incident light ray at the exit point. In the opposite direction, the return light from the incident beam axis at the final incident point position has a certain displacement distance, ie is separated.

[発明が解決しようと覆る課題1 しかしながら第2図に示す方式では出射光の位置は入射
光線の延長線上ではなく平行移動すること、入射偏光面
は出射側では45°回転すること、およびファラデー回
転子5の湿度変化によって入射光線軸子に回帰づる光成
分が生じ消光特性の劣化を誘起する可能性が高い等々の
欠点を内在しており、また第3図に示される方式では前
方式と異なり出射光線が入用光線延長上で結合される利
点があるが、複屈折材料以外に旋光性結晶も加工し組立
てな(〕ればならず煩雑な工程が付加されることになる
。旋光性物質のうち代表的なものに水晶があるが、45
°偏光面を回転させるには1.3帆帯で旋光能が約4°
/履であり、45°では11.25M程度必要とし全体
で光路長の長いものとなり、球レンズ、屈折率分布型G
RINレンズ等による他の光システムの結合が難しく、
結合損失が大きくなり実用的ではない。一方■e02単
結晶は旋光能が13虜帯で5倍はど人きく、45°旋光
するために約2繭程度と実用的であるが、加工1組立て
の煩雑さと価格的な問題が生じる等の生産トの困難性が
予想されていた。
[Problem to be Solved by the Invention 1] However, in the method shown in Fig. 2, the position of the emitted light is not on the extension line of the incident light ray but moves in parallel, the incident polarization plane is rotated by 45 degrees on the output side, and Faraday rotation Unlike the previous method, the method shown in FIG. There is an advantage that the emitted light beam is combined on the extension of the input light beam, but in addition to the birefringent material, optically active crystals must also be processed and assembled, which adds a complicated process. Of these, crystal is the most representative, but 45
°To rotate the plane of polarization, the optical rotation power is approximately 4° with 1.3 sails.
/, and at 45°, approximately 11.25M is required, resulting in a long optical path length, and a ball lens, gradient index type G
It is difficult to connect other optical systems with RIN lenses, etc.
The coupling loss increases, making it impractical. On the other hand, the e02 single crystal has an optical rotation power of 13 degrees, which is 5 times more powerful, and it rotates at 45 degrees, so it is about 2 cocoons, which is practical, but it causes problems such as the complexity of processing and assembly and the cost. Difficulties in production were expected.

[課題を解決するための手段] 本発明は上述の従来方式では得られなかった複屈折結晶
とファラデー回転子のみで偏光依存性がなく入射光線の
延長線上に出射する高性能な光アイソレータを提供する
ものである。
[Means for Solving the Problems] The present invention provides a high-performance optical isolator that does not have polarization dependence and emits light on an extension of the incident light beam using only a birefringent crystal and a Faraday rotator, which could not be obtained with the conventional method described above. It is something to do.

まIC材料の供給力2価格、性能から総合すると平板状
複屈折結晶としては勇開面をそのまま単板面として利用
できる方解石を利用することが好ましい。もちろん他の
複屈折結晶物質9例えばルチルなどを用いることも本発
明に包含するものである。
Considering the supply power of IC materials, price, and performance, it is preferable to use calcite as the tabular birefringent crystal because its open plane can be used as a single plate. Of course, the present invention also encompasses the use of other birefringent crystal materials 9 such as rutile.

第1図は本発明の原理構成図を示す。図面中1〜3は平
板状複屈折結晶を示し、5,6は永久磁石によって同方
向に磁化されたファラデー回転子である。第一の平板状
複屈折結晶1の光線方向の厚さを1どすればそれぞれの
複屈折結晶の厚さは1・fi・1の比となる。またそれ
ぞれの結晶光軸は第一の平板状複屈折結晶の傾き(表面
に対して約45°前後)に対して、第二の平板状複屈折
結晶2の光軸は第一の平板状複層折結晶1をX軸を中心
として180°回転することにより結晶構造的な鏡面対
称に配置した後、入射光線方向を中心軸(Z軸)として
45°回転して配置し、第三の平板状複屈折結晶3の光
軸は第二の平板状複屈折結晶2に対しZ軸を中心軸とし
て45°回転し、第一の平板状複屈折結晶1の光軸と互
いに90°回転して配置することにより本発明が達成さ
れる。
FIG. 1 shows a basic configuration diagram of the present invention. In the drawings, numerals 1 to 3 indicate tabular birefringent crystals, and numerals 5 and 6 are Faraday rotators magnetized in the same direction by permanent magnets. If the thickness of the first tabular birefringent crystal 1 in the direction of the light beam is 1, then the thickness of each birefringent crystal becomes a ratio of 1.fi.1. In addition, the optical axis of each crystal is tilted (approximately 45 degrees with respect to the surface) of the first tabular birefringent crystal, whereas the optical axis of the second tabular birefringent crystal 2 is tilted to that of the first tabular birefringent crystal. The layered crystal 1 is rotated 180 degrees around the X axis to arrange it in a crystal-structural mirror symmetry, and then rotated 45 degrees around the direction of the incident light beam (Z axis) to form a third flat plate. The optical axis of the birefringent crystal 3 is rotated by 45 degrees with respect to the second plate-shaped birefringent crystal 2 about the Z axis, and rotated by 90 degrees with respect to the optical axis of the first plate-shaped birefringent crystal 1. The present invention is achieved by the arrangement.

[実施例] 第1図(a)は順方向の入射光線の伝搬状態を追跡した
ものである。出射面位置において分離した偏光は再び結
合し、偏光面は入射したときと同じ偏光状態となってい
る。この性質は全ての偏光に対して成立する。一方逆方
向では第1図(b)で示されるように二つの偏光成分は
互いに分離し、中心線からある距離だけ変位することか
ら入射側の光線経路内には結合されない。
[Example] FIG. 1(a) shows a trace of the propagation state of an incident light beam in the forward direction. The separated polarized lights are recombined at the exit surface position, and the polarized light plane is in the same polarized state as when it was incident. This property holds true for all polarized light. On the other hand, in the opposite direction, as shown in FIG. 1(b), the two polarized light components are separated from each other and are displaced by a certain distance from the center line, so that they are not combined into the ray path on the incident side.

すなわち入射側から入った光は出射側でも中心線上に結
合されない。このことから分離距離dは下式で示される
。ノは第一の平板状複屈折結晶の厚さとし、no 、n
eはそれぞれ使用波長域における常光、異常光の屈折率
であり、θは結晶光軸と平板面とのなす角度である。
In other words, the light entering from the incident side is not coupled onto the center line even on the output side. From this, the separation distance d is expressed by the following formula. is the thickness of the first tabular birefringent crystal, no, n
e is the refractive index of ordinary light and extraordinary light in the used wavelength range, respectively, and θ is the angle between the optical axis of the crystal and the plane of the flat plate.

dの数値は本構成の光アイソレータ結合方式に依存する
。たとえば半導体レーザと球レンズ等によって結合する
場合、球レンズと半導体レーザの中心軸上から変位が±
80端以上の軸ずれになると、結合損失は一40dBに
も達することが報告されており(電子情報通信学会論文
C−84,54−350) 、±100間以上のd値を
取れば充分なアイソレーション効果が得られる。この場
合ファラデー回転子を液相エピタキシャル(LPE法)
によってガーネット基板上に成膜させた材料を用いれば
、複屈折結晶に方解石の勇開面を利用した単板を用いる
と、d=0.1胴、θ−44,6゜no =  1.6
58. ne =  1.486として、J−0,65
順となるため、第二、第三の甲板の厚さは0.92胴、
 0.65#III+となり、LPE膜を1#(基板厚
さ−0,5111111,膜厚−400,)としても全
体で約5Mであれば達成できる。
The value of d depends on the optical isolator coupling method of this configuration. For example, when coupling a semiconductor laser with a ball lens, the displacement from the center axis of the ball lens and semiconductor laser is ±
It has been reported that when the axis misalignment exceeds 80, the coupling loss reaches as much as -40 dB (IEICE paper C-84, 54-350), and it is sufficient to obtain a d value of ±100 or more. An isolation effect can be obtained. In this case, the Faraday rotator is liquid phase epitaxial (LPE method).
If we use the material deposited on a garnet substrate by using the material deposited on the garnet substrate, and if we use a single plate using the open plane of calcite as the birefringent crystal, d = 0.1 cylinder, θ-44, 6° no = 1.6
58. J-0,65 as ne = 1.486
Therefore, the thickness of the second and third decks is 0.92 mm,
It becomes 0.65#III+, and even if the LPE film is 1# (substrate thickness -0.5111111, film thickness -400), it can be achieved if the total thickness is about 5M.

[発明の効果] 以上のように本発明に基づく光アイソレータは偏光面に
依存せず、かつ入射光線と出射光線の位置が完全に一致
する利点を有し、光学回路中へ挿入する際、特別精密な
光軸調整を行なうこともなく本来の性能が簡単に得られ
る。
[Effects of the Invention] As described above, the optical isolator based on the present invention has the advantage that it does not depend on the plane of polarization and the positions of the incident light beam and the output light beam completely match, and when inserted into an optical circuit, it has the advantage that The original performance can be easily obtained without performing precise optical axis adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による偏光無依存型光アイソレータの原
理構造図であり、(a)は順方向(b)は逆方向の光伝
搬状態を示す。 第2図、第3図は従来の偏光無依存型光アイソレータの
原理構造図を示す。 1 :2:3:平板状複屈折結晶 5:6:ファラデー回転子 7:旋光子 特許出願人 並木精密宝石株式会社
FIG. 1 is a diagram showing the principle structure of a polarization-independent optical isolator according to the present invention, in which (a) shows the state of light propagation in the forward direction and (b) shows the state of light propagation in the reverse direction. FIGS. 2 and 3 show the principle structure of a conventional polarization-independent optical isolator. 1:2:3: Tabular birefringent crystal 5:6: Faraday rotator 7: Optical rotator Patent applicant Namiki Precision Jewel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 結晶光軸が表面に対し傾いた第一の平板状複屈折結晶、
偏光面を45゜回転するための第一のファラデー回転子
、第一の平板状複屈折結晶に対し√2倍の厚さを有し、
またX軸を中心として180゜回転した後入射光線方向
を軸とし45゜回転して配置された第二の平板状複屈折
結晶、前記第一のファラデー回転子と同じ向きに磁化さ
れた第二のファラデー回転子、第一の平板状複屈折結晶
と同一厚さを有し、かつ第二の平板状複屈折結晶に対し
入射光線方向を回転軸として45゜回転し第一の平板状
複屈折結晶の光軸と互いに90゜回転して配置した第三
の平板状複屈折結晶、およびファラデー回転子を磁化す
るための永久磁石により構成されることを特徴とする光
アイソレータ。
A first tabular birefringent crystal whose optical axis is tilted with respect to the surface;
a first Faraday rotator for rotating the plane of polarization by 45°, having a thickness √2 times that of the first tabular birefringent crystal;
Further, a second plate-shaped birefringent crystal is arranged after being rotated by 180 degrees around the X axis and then rotated by 45 degrees around the direction of the incident light beam; The Faraday rotator has the same thickness as the first tabular birefringent crystal, and is rotated by 45 degrees with respect to the second tabular birefringent crystal about the direction of the incident light beam as the rotation axis. An optical isolator comprising a third flat birefringent crystal arranged 90 degrees rotated with respect to the optical axis of the crystal, and a permanent magnet for magnetizing a Faraday rotator.
JP19634088A 1988-08-06 1988-08-06 Optical isolator Pending JPH0246419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19634088A JPH0246419A (en) 1988-08-06 1988-08-06 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19634088A JPH0246419A (en) 1988-08-06 1988-08-06 Optical isolator

Publications (1)

Publication Number Publication Date
JPH0246419A true JPH0246419A (en) 1990-02-15

Family

ID=16356206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19634088A Pending JPH0246419A (en) 1988-08-06 1988-08-06 Optical isolator

Country Status (1)

Country Link
JP (1) JPH0246419A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196115A (en) * 1989-12-26 1991-08-27 Furukawa Electric Co Ltd:The Optical isolator
JPH03125321U (en) * 1990-03-30 1991-12-18
JPH05127122A (en) * 1991-09-12 1993-05-25 Shinkosha:Kk Optical isolator
EP0552783A2 (en) * 1992-01-22 1993-07-28 Nec Corporation Optical isolator device
US5262892A (en) * 1991-07-25 1993-11-16 Kabushiki Kaisha Shinkosha Optical isolator
US5381261A (en) * 1991-02-20 1995-01-10 Sumitomo Electric Industries, Ltd. Optical isolator
US5408491A (en) * 1993-02-17 1995-04-18 Sumitomo Electric Industries, Ltd. Optical isolator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196115A (en) * 1989-12-26 1991-08-27 Furukawa Electric Co Ltd:The Optical isolator
JPH03125321U (en) * 1990-03-30 1991-12-18
JP2507601Y2 (en) * 1990-03-30 1996-08-14 並木精密宝石株式会社 Optical isolator
US5381261A (en) * 1991-02-20 1995-01-10 Sumitomo Electric Industries, Ltd. Optical isolator
EP0691563A3 (en) * 1991-02-20 1997-01-15 Sumitomo Electric Industries Optical isolator
US5262892A (en) * 1991-07-25 1993-11-16 Kabushiki Kaisha Shinkosha Optical isolator
JPH05127122A (en) * 1991-09-12 1993-05-25 Shinkosha:Kk Optical isolator
EP0552783A2 (en) * 1992-01-22 1993-07-28 Nec Corporation Optical isolator device
US5408491A (en) * 1993-02-17 1995-04-18 Sumitomo Electric Industries, Ltd. Optical isolator

Similar Documents

Publication Publication Date Title
JP2710451B2 (en) Polarization independent optical isolator
US4272159A (en) Optical circulator
EP0015129A1 (en) Optical circulator
EP0782029A1 (en) Optical appatatus
JPS6118481Y2 (en)
US7039262B2 (en) Depolarizer
JPH0246419A (en) Optical isolator
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
US6407861B1 (en) Adjustable optical circulator
JPH01287528A (en) Optical isolator and optical circulator
JP3161885B2 (en) Optical isolator
JPH0244310A (en) Optical isolator
JP2516463B2 (en) Polarization-independent optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JPH0743696Y2 (en) Optical isolator
JP2507601Y2 (en) Optical isolator
GB2143337A (en) Optical isolator
JP2002296544A (en) 3-port miniaturized optical circulator
JPH0391715A (en) Optical isolator
JP2775499B2 (en) Optical isolator
JPH05188324A (en) Polarized wave-no dependence type optical isolator array
JPH01291212A (en) Laser module with optical isolator
JPH06160774A (en) Optical isolator
JPH07191279A (en) Optical isolator
JPS63276020A (en) Polarization plane maintaining optical isolator