JPH08204226A - Light receiving element - Google Patents

Light receiving element

Info

Publication number
JPH08204226A
JPH08204226A JP7008083A JP808395A JPH08204226A JP H08204226 A JPH08204226 A JP H08204226A JP 7008083 A JP7008083 A JP 7008083A JP 808395 A JP808395 A JP 808395A JP H08204226 A JPH08204226 A JP H08204226A
Authority
JP
Japan
Prior art keywords
light
receiving element
voltage applying
pair
applying members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7008083A
Other languages
Japanese (ja)
Other versions
JP2705757B2 (en
Inventor
Taro Itaya
太郎 板谷
Kazuhiko Matsumoto
和彦 松本
Masami Ishii
正巳 石井
Itaru Nakagawa
格 中川
Yoshinobu Sugiyama
佳延 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP7008083A priority Critical patent/JP2705757B2/en
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to DE69614583T priority patent/DE69614583T2/en
Priority to EP99200499A priority patent/EP0926742B1/en
Priority to DE69636016T priority patent/DE69636016T2/en
Priority to EP96300405A priority patent/EP0723302B1/en
Priority to US08/590,345 priority patent/US5661328A/en
Publication of JPH08204226A publication Critical patent/JPH08204226A/en
Priority to US08/863,632 priority patent/US5895227A/en
Priority to US08/900,826 priority patent/US5945720A/en
Application granted granted Critical
Publication of JP2705757B2 publication Critical patent/JP2705757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE: To obtain a light receiving element for detecting the incident light onto the surface of a light absorbing member interposed between a pair of voltage applying members formed on one surface of the light absorbing member in which high speed and high sensitivity are achieved by increasing the voltage applicable to the pair of voltage applying members. CONSTITUTION: A pair of voltage applying members 12, 12 are formed on one surface of a light absorbing member 11. An optical guide member 13 having width W shorter than the wavelength of incident light Ip and dielectric three- dimensional structure is formed on the surface of the light absorbing member 11 between the pair of voltage applying members 12, 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通信、情報処理分野にお
いて必要となる、光信号を電気信号に変換する受光素子
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a light receiving element for converting an optical signal into an electric signal, which is required in the fields of communication and information processing.

【0002】[0002]

【従来の技術】光信号を電気信号に変換する受光素子と
して比較的高速な変換動作の見込まれるものに、従来か
らも図8にその原理構造を示す受光素子50が提案されて
いる。出典は「IEEE Journal of QUANTUM ELECTORONICS,
Vol.28, pp.2358-2368, 1992」であるが、一般に基板と
して構成できる半導体光吸収部材11の表面上に、対向す
る一対の電圧印加部12,12を金属薄膜により形成し、こ
れら一対の電極12,12の間における光吸収部材11の露呈
表面11a を検出対象の光Ipの入射窓とする。
2. Description of the Related Art As a light receiving element for converting an optical signal into an electric signal, a light receiving element 50 having the principle structure shown in FIG. The source is "IEEE Journal of QUANTUM ELECTORONICS,
Vol. 28, pp. 2358-2368, 1992 ”, a pair of facing voltage applying portions 12 and 12 are formed of a metal thin film on the surface of a semiconductor light absorbing member 11 which can be generally formed as a substrate. The exposed surface 11a of the light absorbing member 11 between the electrodes 12, 12 is used as the incident window of the light Ip to be detected.

【0003】このような構造において一対の電圧印加部
材12,12間に適当な電圧を印加しておくと、光入射窓
(光吸収部露呈表面)11a に光Ipが入射することで光吸
収部材11中に励起キャリア(電子及び正孔)が発生し、
その中、図中、白丸で示す正孔は相対的に負電位(−)
になる電圧印加部材12の方に、また黒丸で示す電子は相
対的に正電位(+)になる電圧印加部材12の方にそれぞ
れ引き込まれ、これにより一対の電圧印加部材12,12を
介し光伝導電流(光検出電流)が流れて、入射光Ipのあ
ったことが検出される。
In such a structure, when an appropriate voltage is applied between the pair of voltage applying members 12, 12, the light Ip is incident on the light incident window (light absorbing portion exposed surface) 11a, so that the light absorbing member is exposed. Excited carriers (electrons and holes) are generated in 11
Among them, holes indicated by white circles in the figure are relatively negative potential (−).
, And the electrons indicated by black circles are respectively attracted toward the voltage applying member 12 having a relatively positive potential (+), whereby light is transmitted through the pair of voltage applying members 12, 12. A conduction current (light detection current) flows, and it is detected that there is incident light Ip.

【0004】[0004]

【発明が解決しようとする課題】こうした図8に示す従
来素子50は、一般にMSM(金属/半導体/金属)型の
受光素子と呼ばれ、原理的には一対の電圧印加部材12,
12間の離間距離W、すなわち光入射窓となる光吸収部材
11の露呈表面11a の幅Wを狭める程、高速になるし、印
加電圧を高める程、高速、高感度になる。また特に、検
出対象の光Ipの波長に比し、露呈表面11a のWを同じか
それ以下にすると、光吸収部材11に入射する光Ipは近接
光電界(いわゆるエバネッセントな光電界)を持つもの
となり、入射光Ipは光吸収部材11の表面近傍にて吸収さ
れ、一方、電圧印加部材12,12による電界強度は光吸収
部材11の内部よりも表面の方が高いので、当該光吸収部
材11の表面近傍で発生した光励起キャリアを速やかに電
圧印加部材12,12の方に引き抜くことができるようにな
って、より高速な動作が可能となり、キャリア再結合の
影響も低減することができる。
The conventional element 50 shown in FIG. 8 is generally called an MSM (metal / semiconductor / metal) type light receiving element. In principle, a pair of voltage applying members 12,
The distance W between the two 12, that is, the light absorbing member serving as the light incident window
The narrower the width W of the exposed surface 11a of 11 is, the faster the speed is. The higher the applied voltage is, the faster and the higher the sensitivity is. Further, in particular, when the W of the exposed surface 11a is set to be equal to or less than the wavelength of the light Ip to be detected, the light Ip incident on the light absorbing member 11 has a near optical electric field (so-called evanescent optical electric field). The incident light Ip is absorbed near the surface of the light absorbing member 11, while the electric field strength by the voltage applying members 12, 12 is higher on the surface than inside the light absorbing member 11, so that the light absorbing member 11 is Since the photoexcited carriers generated near the surface of can be quickly extracted toward the voltage applying members 12, 12, a higher speed operation can be performed and the influence of carrier recombination can be reduced.

【0005】実際、図8に示された従来の受光素子50で
も、既存の微細加工技術である電子ビーム露光技術の適
用によって電圧印加部材12,12間の距離Wは 300nm程度
までには縮小化し得ており、その結果、パルス応答での
出力半値全幅も 870fsを得ている。これは他の既存受光
素子に比すとかなり高速ではある。しかし、同時にま
た、これは下記の理由で最早限界にあり、より高速化す
ることは困難である。
In fact, even in the conventional light receiving element 50 shown in FIG. 8, the distance W between the voltage applying members 12, 12 is reduced to about 300 nm by applying the electron beam exposure technology which is an existing fine processing technology. As a result, the full width at half maximum of the pulse response is 870fs. This is considerably faster than other existing light receiving elements. However, at the same time, this is already at the limit for the following reasons, and it is difficult to make it faster.

【0006】まず、一対の電圧印加部材12,12間の光吸
収部材11の表面11a は空間に露呈しているため、一対の
電圧印加部材12,12間により大きな電圧を印加しようと
すると、当該露呈表面11a に沿っての沿面放電が生じた
り、エアギャップを介しての放電が生じてしまい、素子
としての使用ができなくなる。換言すると、一対の電圧
印加部材12,12間の離間距離Wもほぼ限界状態にあり、
これ以上近付けようとすると低い電圧でも絶縁破壊を起
こしてしまう。逆に、入射光Ipの波長以下という限定の
下でも、場合によっては入射窓ないし露呈表面11a の幅
Wはもう少し大きくして良い場合もあるが、このような
場合でも印加電圧にはやはり大きな制約がある。また、
加工技術上からも限界にあり、既存の電子ビーム露光技
術では加工精度を重んずると 100nm以下は困難である。
First, since the surface 11a of the light absorbing member 11 between the pair of voltage applying members 12 and 12 is exposed to the space, when a larger voltage is applied between the pair of voltage applying members 12 and 12, A creeping discharge is generated along the exposed surface 11a or a discharge is generated through the air gap, so that it cannot be used as an element. In other words, the separation distance W between the pair of voltage applying members 12 and 12 is almost at the limit,
If you try to get closer, dielectric breakdown will occur even at low voltage. On the contrary, under the limitation of not more than the wavelength of the incident light Ip, the width W of the incident window or the exposure surface 11a may be made a little larger in some cases, but in such a case, the applied voltage is still largely restricted. There is. Also,
There is a limit in terms of processing technology, and it is difficult to reduce the processing accuracy to 100 nm or less with existing electron beam exposure technology.

【0007】本発明は基本的にはこうした点に鑑みてな
されたもので、図8に示したような受光素子50の改良と
して、電圧印加部材12,12間の離間距離(光吸収部材11
の露呈表面11a の幅)Wや印加電圧に関する制約を緩和
し、より高速な受光素子を提供せんとするものである。
The present invention is basically made in view of these points. As an improvement of the light receiving element 50 as shown in FIG. 8, the distance between the voltage applying members 12, 12 (the light absorbing member 11) is improved.
The width W of the exposed surface 11a) and restrictions on the applied voltage are alleviated to provide a faster light receiving element.

【0008】さらに、上述の基本的な目的を達成した上
で、本発明はまた、より高機能ないし多機能な受光素子
をも提供せんとする。
Further, in addition to achieving the above-mentioned basic object, the present invention also intends to provide a more highly functional or multifunctional light receiving element.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するため、光吸収部材の一表面上に一対の導電性電圧印
加部材を形成し、これら一対の電圧印加部材により挟ま
れた光吸収部材の露呈表面を検出対象の光の入射可能な
光入射部とする受光素子において、(a) 検出対象の光に
対し光透過性で(すなわち透明ないし半透明で)、(b)
検出対象の光の波長以下の幅寸法を有し、(c) 少なくと
も一対の電圧印加部材間にあって光吸収部材よりも高抵
抗を示す (d) 立体構造体である 光ガイド部材を、光入射部における光吸収部材の露呈表
面上に設けることを提案する。
In order to achieve the above-mentioned object, the present invention forms a pair of conductive voltage applying members on one surface of a light absorbing member, and absorbs light between the pair of voltage applying members. In a light receiving element that uses the exposed surface of the member as a light incident part on which the light to be detected can enter, (a) is transparent to the light to be detected (that is, transparent or semi-transparent), (b)
It has a width dimension less than or equal to the wavelength of the light to be detected, and (c) is at least between a pair of voltage applying members and exhibits higher resistance than the light absorbing member. (D) A light guide member that is a three-dimensional structure It is proposed to provide it on the exposed surface of the light absorbing member in.

【0010】このような基本的構成の下に、本発明では
下位の態様として、光ガイド部材が絶縁体により構成さ
れていることや、さらにこの場合、当該絶縁体は上記一
対の電圧印加部材を形成する材料薄膜を酸化することで
形成されたものであることも提案する。場合により、上
記(c) における要件を満たす限り、光ガイド部材は半導
体(一般に「半絶縁性」と呼ばれるような材料も含む)
により構成することもできる。
Under such a basic structure, in the present invention, as a subordinate aspect, the light guide member is composed of an insulator, and in this case, the insulator comprises the pair of voltage applying members. It is also proposed that it is formed by oxidizing the material thin film to be formed. In some cases, as long as the requirements in (c) above are met, the light guide member is a semiconductor (including materials that are generally called "semi-insulating").
It can also be configured by.

【0011】また、本発明の他の態様として、光ガイド
部材は複数種類の物性の材料を含んで構成することもで
きるし、例えば当該光ガイド部材の屈折率、吸収係数、
偏向方向等々、光学的性質を可変する可変機構を含んで
構成することもできる。後者の場合には、光ガイド部材
は当該光学的性質を可変するために電圧の印加を受ける
制御電圧印加部材を有することもでき、この制御電圧印
加部材の中の少なくとも一つは、上記一対の電圧印加部
材の一方により構成することもできる。
As another aspect of the present invention, the light guide member may be composed of materials having a plurality of types of physical properties. For example, the light guide member may have a refractive index, an absorption coefficient, or the like.
It is also possible to include a variable mechanism that changes the optical properties such as the deflection direction. In the latter case, the light guide member may have a control voltage applying member to which a voltage is applied in order to change the optical property, and at least one of the control voltage applying members is provided with It can also be configured by one of the voltage applying members.

【0012】特に、光ガイド部材の光学的性質を可変す
る可変機構は、代表的には半導体超格子構造や、あるい
はまたファブリ・ペロー型共振器構造を含んで構成する
ことができる。
In particular, the variable mechanism for changing the optical properties of the light guide member can typically be configured to include a semiconductor superlattice structure or, alternatively, a Fabry-Perot type resonator structure.

【0013】そして、上記したいずれの態様の場合に
も、本発明により組込まれる立体構造体としての光ガイ
ド部材の厚さは、一対の電圧印加部材の厚さよりも厚く
することで当該一対の電圧印加部材間の沿面距離を長く
することが望ましい。
In any of the above embodiments, the thickness of the light guide member as the three-dimensional structure incorporated according to the present invention is made thicker than the thickness of the pair of voltage applying members so that the pair of voltage It is desirable to increase the creepage distance between the applying members.

【0014】さらに、本発明の特定の態様によれば、光
ガイド部材は一対の電圧印加部材間にあって互いに並設
された複数個から成るものとし、これら複数個の光ガイ
ド部材にあって隣接する光ガイド部材間には検出対象の
光を透過しない光非透過性の中間部材を設けた構成も提
案できる。
Further, according to a particular aspect of the present invention, the light guide member is composed of a plurality of light-guiding members arranged between the pair of voltage applying members and arranged in parallel with each other, and the plurality of light-guiding members are adjacent to each other. A configuration in which a light-impermeable intermediate member that does not transmit the light to be detected is provided between the light guide members can also be proposed.

【0015】[0015]

【実施例】図1には本発明に即して構成された一実施例
素子である受光素子10の概略的な断面構造が示されてい
る。図中において、既に図8に即し説明した従来素子50
の各構成要素に関し付した符号は、理解をたやすくする
ため、この本発明実施例素子10でも対応するものに用い
るもとのする。また、後述する他の実施例においても、
対応する構成要素には同じ符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic sectional structure of a light receiving element 10 which is an element of one embodiment constructed according to the present invention. In the figure, the conventional element 50 already described with reference to FIG.
For ease of understanding, the reference numerals attached to the respective constituent elements are used for corresponding elements also in the element 10 of the present invention. Also, in other examples described later,
Corresponding components are assigned the same reference numerals.

【0016】しかるに、例えばGaAs等、いわゆる半絶縁
性材料も含めて適当なる半導体により構成された光吸収
部材11の表面上には一対の電圧印加部材12,12が形成さ
れ、それら一対の電圧印加部材12,12の間が本受光素子
10における実質的な光入射部30となっている。電圧印加
部材12,12の材質はチタン等、一般に金属が良いが、適
当なる不純物を導入することで適当なる導電性の持たさ
れたシリコン等、半導体であっても良い。また、一般に
光吸収部材11は、それをそのまま、本受光素子10の構築
基板として利用することができるが、これは限定的なこ
とではなく、図示しない他の物理的支持基板上に図示構
造を構築するも差し支えない。
However, a pair of voltage applying members 12, 12 are formed on the surface of the light absorbing member 11 made of a suitable semiconductor including a so-called semi-insulating material such as GaAs. The light receiving element is between the members 12 and 12.
It is a substantial light incident part 30 in 10. The material of the voltage applying members 12, 12 is generally metal such as titanium, but may be semiconductor such as silicon having suitable conductivity by introducing appropriate impurities. Further, in general, the light absorbing member 11 can be used as it is as a construction substrate of the present light receiving element 10, but this is not a limitation, and the structure shown on another physical supporting substrate (not shown) can be used. You can build it.

【0017】光入射部30は、従来素子50の場合、空間に
露呈した露呈表面11a(図8)となっていて、これがその
まま光の入射窓となっていたが、本発明に即して構成さ
れたこの実施例素子10では、光入射部30には例えば酸化
チタン、酸化シリコン、窒化シリコン等々、適当なる絶
縁材料による立体構造体としての光ガイド部材13が設け
られ、換言すればこの光ガイド部材13により、光吸収部
材11の露呈表面は覆われている。ただし、この光ガイド
部材13は、検出対象とする光Ipに対しては少なくとも光
透過性、すなわち透明であるか、せめて半透明である必
要がある。もちろん、上記例記した材料群は、殆どの光
波長領域に対し透明として扱うことができる例である。
In the case of the conventional element 50, the light incident part 30 is the exposed surface 11a (FIG. 8) exposed to the space, and this is the light incident window as it is. In this embodiment element 10, the light incident portion 30 is provided with a light guide member 13 as a three-dimensional structure made of a suitable insulating material such as titanium oxide, silicon oxide, silicon nitride, etc. The exposed surface of the light absorbing member 11 is covered with the member 13. However, the light guide member 13 needs to be at least light transmissive, that is, transparent or at least semitransparent to the light Ip to be detected. Of course, the material group described above is an example that can be handled as transparent for most light wavelength regions.

【0018】このような構造になっていると、一対の電
圧印加部材12,12間の光吸収部材11の表面は空間に露呈
していないため、既述したように従来問題となった当該
光吸収部材11の露呈表面11a に沿っての沿面放電の問題
は解消ないし緩和され、一対の電圧印加部材12,12には
従来例におけると同じ離間距離Wを取った場合、より大
きな電圧を印加することができる。特に、望ましくは光
ガイド部材13の厚さを電圧印加部材12の厚さよりも厚く
すると、厚くする程に当該光ガイド部材13の外側面に沿
っての一対の電圧印加部材12,12間の沿面距離も長くな
るため、従来は一対の電圧印加部材12,12間のエアギャ
ップを介しての放電も生起し易かったのに対し、十分な
耐圧を見込むことができる。そのため、従来素子50では
一対の電圧印加部材12,12間をより近付けようとして
も、こうした絶縁破壊の問題から実質的な制約が生ま
れ、印加電圧に関しても上限値が制約されていたのに対
し、本発明受光素子10においてはそのような制約が飛躍
的に改善される。
With such a structure, since the surface of the light absorbing member 11 between the pair of voltage applying members 12 and 12 is not exposed to the space, as described above, the light absorbing member 11 has a problem in the related art. The problem of creeping discharge along the exposed surface 11a of the absorbing member 11 is solved or alleviated, and a larger voltage is applied to the pair of voltage applying members 12, 12 when the same separation distance W as in the conventional example is taken. be able to. Particularly, if the thickness of the light guide member 13 is made thicker than the thickness of the voltage applying member 12, the creeping surface between the pair of voltage applying members 12, 12 along the outer side surface of the light guiding member 13 becomes thicker as the thickness increases. Since the distance becomes long, it has been easy to cause discharge through the air gap between the pair of voltage applying members 12 and 12 in the related art, but sufficient withstand voltage can be expected. Therefore, in the conventional element 50, even if the pair of voltage applying members 12 and 12 are tried to be closer to each other, substantial limitation is generated due to the problem of such dielectric breakdown, and the upper limit value of the applied voltage is also limited. In the light receiving element 10 of the present invention, such restrictions are dramatically improved.

【0019】そして、先にも述べたように、一対の電圧
印加部材12,12間に規定される光入射部30の幅Wを検出
対象の光Ipの波長以下とすると、光吸収部材11に入射す
る光Ipは近接光電界(エバネッセントな光電界)で表さ
れることになり、光吸収部材11の表面近傍のみ、光電界
強度が高くなって、入射光Ipは光吸収部材11の当該表面
近傍で吸収されることになる。そこで、本発明により一
対の電圧印加部材12,12間に従来よりも大きな電圧を印
加できるようになった受光素子10においては、光Ipの入
射により光吸収部材11の表面近傍に発生した励起キャリ
ア(電子及び正孔)は、電圧印加部材12,12に近いこと
で内部よりも高電界強度になっている表面電界により、
電子は相対的に正電位(+)側の電圧印加部材12に、ま
た正孔は相対的に負電位(−)側の電圧印加部材12に、
それぞれ高速で引き抜かれるようになる。これは言い換
えれば、従来よりも高速な光電変換動作(光検出動作)
が可能なことを意味し、また、高電圧の印加により励起
キャリアの寿命よりも高速に引き抜くことができもする
ので、当該励起キャリア対の再結合の影響も低減するこ
とができ、高感度化、高出力化に寄与する。
As described above, when the width W of the light incident portion 30 defined between the pair of voltage applying members 12 and 12 is set to be equal to or less than the wavelength of the light Ip to be detected, the light absorbing member 11 is The incident light Ip is represented by a near optical field (evanescent optical field), and the optical field strength increases only near the surface of the light absorbing member 11, and the incident light Ip is the surface of the light absorbing member 11. It will be absorbed in the vicinity. Therefore, in the light-receiving element 10 according to the present invention that can apply a larger voltage than the conventional voltage between the pair of voltage applying members 12 and 12, the excited carriers generated near the surface of the light absorbing member 11 due to the incidence of the light Ip. (Electrons and holes) are generated by the surface electric field, which has a higher electric field strength than the inside due to being close to the voltage applying members 12, 12.
Electrons are relatively positive potential (+) side voltage applying member 12, and holes are relatively negative potential (−) side voltage applying member 12,
Each will be pulled out at high speed. In other words, this is a faster photoelectric conversion operation (light detection operation) than before.
It also means that it is possible to pull out faster than the lifetime of the excited carriers by applying a high voltage, so it is possible to reduce the effect of recombination of the excited carrier pairs and increase the sensitivity. Contribute to higher output.

【0020】特に、本発明によると一対の電圧印加部材
12,12間の離間距離W、すなわち光ガイド部材13の幅W
は十分に狭めることができるので、従来素子の限界より
もより狭めれば、上記の高速、高感度動作はより一層助
長されることになる。この場合、既存の電子ビーム露光
手法等、半導体デバイス加工における微細加工技術では
限界がある場合には、本出願人により昨今開発された
「走査プローブ加工法」を利用することができる。
In particular, according to the present invention, a pair of voltage applying members
The separation distance W between 12 and 12, that is, the width W of the light guide member 13
Can be sufficiently narrowed, so if the width is narrower than the limit of the conventional element, the above high speed and high sensitivity operation is further promoted. In this case, if there is a limit in the fine processing technology in semiconductor device processing such as the existing electron beam exposure method, the “scanning probe processing method” recently developed by the present applicant can be used.

【0021】図2はこの走査プローブ加工法の原理を示
している。これは、トンネル顕微鏡(STM:Scanning
Tunnel Microscope)とか原子間力顕微鏡(AFM:At
omicForce Microscope)を試料加工装置として利用する
もので、基板A上に形成された導電性薄膜B(例えばチ
タン薄膜)に対し例えばSTMの走査プローブPの尖端
を近付け、電源Vにより当該尖端と導電性薄膜B間に高
電界を印加しながらプローブPを矢印Sで示すように相
対走査すると、その軌跡に従い導電性薄膜Bが酸化さ
れ、電気化学反応によって酸化物細線C(例えば酸化チ
タン細線)が形成される。AFMを用いても同様の結果
が得られ、むしろAFMの場合には、加工対象薄膜が導
電性薄膜に限定されない利点がある。
FIG. 2 shows the principle of this scanning probe processing method. This is a tunneling microscope (STM: Scanning
Tunnel Microscope) or atomic force microscope (AFM: At
omicForce Microscope) is used as a sample processing device. A tip of a scanning probe P of, for example, an STM is brought close to a conductive thin film B (for example, a titanium thin film) formed on a substrate A, and a power source V is used to conduct the conductivity with the tip. When a probe P is relatively scanned as indicated by an arrow S while applying a high electric field between the thin films B, the conductive thin film B is oxidized according to the locus, and oxide thin wires C (for example, titanium oxide thin wires) are formed by an electrochemical reaction. To be done. The same result can be obtained by using the AFM. Rather, the AFM has an advantage that the thin film to be processed is not limited to the conductive thin film.

【0022】こうした手法によるとGaAs上に最高分解能
で18nm幅の酸化チタン細線の形成も可能になっているの
で、本発明者においてもこれを利用し、図1に原理構造
を示す本発明受光素子10を実際に作製してみた。この製
造工程例は図3に示されている。
According to such a method, it is possible to form a titanium oxide fine wire having a maximum resolution of 18 nm on GaAs. Therefore, the present inventor also utilizes this, and the light receiving element of the present invention whose principle structure is shown in FIG. I actually made 10. An example of this manufacturing process is shown in FIG.

【0023】まず、図3(A) に示すように、光吸収部材
11として選んだ半絶縁性GaAs基板11の上に導電性薄膜1
2’としてチタン薄膜12’を蒸着した。このチタン薄膜1
2’の所定部分の表面にSTMの走査プローブPを近付
け、図3(B) に示すように大気環境下(すなわち水分を
含む環境下)でプローブPとチタン薄膜12’間に5Vの電
位を印加し、トンネル電流を流しながら図面紙面と直交
する走査方向に沿ってプローブSを相対走査した。この
とき、走査速度は形成される酸化チタン細線13の幅が10
0nm になるようにした。ちなみに印加電圧や走査速度を
調整することにより、形成される酸化チタンの幅や厚み
をかなり自由に調整することができる。
First, as shown in FIG. 3A, a light absorbing member
Conductive thin film 1 on semi-insulating GaAs substrate 11 chosen as 11.
A titanium thin film 12 'was vapor-deposited as 2'. This titanium thin film 1
The STM scanning probe P is brought close to the surface of a predetermined portion of 2 ', and a potential of 5 V is applied between the probe P and the titanium thin film 12' in an atmospheric environment (that is, an environment containing water) as shown in FIG. 3 (B). The probe S was relatively scanned along the scanning direction orthogonal to the drawing sheet surface while applying a tunnel current. At this time, the scanning speed is such that the width of the titanium oxide thin wire 13 formed is 10
It was set to 0 nm. By adjusting the applied voltage and the scanning speed, the width and thickness of the titanium oxide formed can be adjusted quite freely.

【0024】これにより形成された酸化チタン細線13
は、本発明の受光素子10の光入射部30における光ガイド
部材13となり、その両側にあって酸化されずに残ったチ
タン薄膜部分は一対の電圧印加部材12,12となる。換言
すると、この手法は、一対の電圧印加部材12,12とその
間に設けられるべき光ガイド部材13とを一遍に作る合理
的な手法ともなっている。
Titanium oxide thin wire 13 formed by this
Serves as the light guide member 13 in the light incident portion 30 of the light receiving element 10 of the present invention, and the titanium thin film portions on both sides thereof that remain unoxidized serve as the pair of voltage applying members 12, 12. In other words, this method is also a rational method for uniformly forming the pair of voltage applying members 12, 12 and the light guide member 13 to be provided therebetween.

【0025】この後、図3(C) に示す通り、必要に応じ
外部回路と電気的接続を取るのに便利なように、一対の
電圧印加部材12,12上の所望の面積部分上に例えばTi/
Au取り付け電極14,14を形成する。さらに、実用的な素
子とするために、図3(D) に示すように、電圧印加部材
12,12と光ガイド部材13を含むストライプと平行に例え
ばTi/Au接地用電極15,15を形成する。各ストライプの
幅と隣接するストライプ間の寸法は本試作素子ではそれ
ぞれ 5μm とした。これにより、一対の電圧印加部材1
2,12の一方に対してはバイアス電圧Vbを印加するバイ
アス線Lbを、他方の電圧印加部材12に対しては抵抗Rで
模式的に示した負荷Rへの信号線Lrを接続することがで
き、シールド構造を形成する一対の接地用電極15,15に
はそれぞれ接地線Leを接続することができる。
After that, as shown in FIG. 3C, for example, on a desired area portion on the pair of voltage applying members 12, 12, for convenience of making an electrical connection with an external circuit as needed, for example, Ti /
The Au attachment electrodes 14 and 14 are formed. Furthermore, in order to make it a practical element, as shown in FIG.
For example, Ti / Au grounding electrodes 15 and 15 are formed in parallel with the stripes including 12 and 12 and the light guide member 13. The width of each stripe and the dimension between adjacent stripes were set to 5 μm in this prototype device. Thereby, the pair of voltage applying members 1
A bias line Lb for applying a bias voltage Vb may be connected to one of 2 and 12, and a signal line Lr to a load R schematically shown by a resistor R may be connected to the other voltage applying member 12. Therefore, the ground wire Le can be connected to each of the pair of ground electrodes 15 and 15 forming the shield structure.

【0026】このようにして作製した試作素子10の評価
には電気光学サンプリング法を用いた。これは、被測定
回路上に置かれた電気光学結晶中の電界変化に比例した
レーザ光の偏光変化を検出することにより、電気信号を
フェムト秒(fs)領域の時間分解能で計測し得る手法であ
るが、本試作素子10の評価には図4に示すような測定シ
ステムを構築した。
An electro-optical sampling method was used for evaluation of the prototype device 10 thus manufactured. This is a method that can measure the electrical signal with a time resolution in the femtosecond (fs) region by detecting the change in the polarization of the laser light that is proportional to the change in the electric field in the electro-optic crystal placed on the circuit under test. However, for the evaluation of the prototype device 10, a measurement system as shown in FIG. 4 was constructed.

【0027】光源はアルゴンイオンレーザ21から入力光
を受ける衝突モード同期(CPM:Colliding Pulse Mo
de-locked)色素レーザ22であって、レーザ出力は約10m
W、出力パルス幅は40fs、波長は620nm である。この波
長620nm の光に対し、試作素子10における酸化チタン製
の光ガイド部材13は十分な透明性を示し、かつ電気的に
は満足な絶縁体である。CPM色素レーザ22の出力はビ
ームスプリッタ23により9:1に分割し、前者を励起ビ
ームIp、後者をサンプリングビームIsとして、励起ビー
ムIpをサンプリングビームIs側との光路差調整用の可変
遅延装置32に通した後、本発明受光素子10の光ガイド部
材13に入射させ、一方、サンプリングビームIsは偏光方
向調整のための2/λ波長板24を介し偏光子25に入射させ
た後、電気光学(EO:Electro-Optical)プローブ31に
入射させる。EOプローブ31は電気光学係数が35.8pm/V
のLiTaO3板で、受光素子側に接する結晶裏面には誘電体
多層膜の反射コーティングが施され、大きさは縦 300μ
m 、横 250μm 、厚さ50μmである。また、このEOプ
ローブ31の結晶方位とサンプリングビームIsの偏光方向
は、ストライプ線路上における横方向電界に対して感度
が最大になるように設定した。
The light source receives collision light from the Argon ion laser 21 and is colliding mode locked (CPM).
de-locked) dye laser 22 with a laser output of about 10 m
W, output pulse width is 40fs, wavelength is 620nm. The light guide member 13 made of titanium oxide in the prototype device 10 shows sufficient transparency with respect to the light having the wavelength of 620 nm, and is an electrically satisfactory insulator. The output of the CPM dye laser 22 is divided into 9: 1 by a beam splitter 23. The former is used as an excitation beam Ip and the latter is used as a sampling beam Is, and the excitation beam Ip is used as a variable delay device 32 for adjusting an optical path difference from the sampling beam Is side. After passing through the light guide member 13 of the light receiving element 10 of the present invention, while the sampling beam Is enters the polarizer 25 via the 2 / λ wave plate 24 for adjusting the polarization direction, electro-optical (EO: Electro-Optical) Probe 31 is made incident. The EO probe 31 has an electro-optic coefficient of 35.8 pm / V.
This is a LiTaO 3 plate with a dielectric multilayer coating on the back surface of the crystal that contacts the light-receiving element side.
m, width 250 μm, thickness 50 μm. Further, the crystal orientation of the EO probe 31 and the polarization direction of the sampling beam Is are set so that the sensitivity to the lateral electric field on the stripe line becomes maximum.

【0028】EOプローブ31中へのしみ出し電界により
位相変調を受けて反射されたサンプリングビームIsはソ
レイユ・バビネ位相補償板26により位相補償を受けた
後、偏光ビームスプリッタ27を介し一対の受光器28a,b
により強度変調に置き換えられて受光され、受光器出力
は差動増幅器29を介した後、試作素子10に印加すると同
じ1MHzの周期でロックイン増幅器34によりロックイン検
波される。
The sampling beam Is, which has been phase-modulated by the seeping-out electric field into the EO probe 31 and reflected, is phase-compensated by the Soleil-Babinet phase compensating plate 26, and is then passed through the polarization beam splitter 27. 28a, b
Is received by being modulated by intensity modulation, and the output of the photodetector is applied to the prototype device 10 after passing through the differential amplifier 29, and is lock-in detected by the lock-in amplifier 34 at the same cycle of 1 MHz.

【0029】ロックイン増幅器34の出力に基づきプロッ
トされた測定結果は図5に示されている。測定は試作素
子10から70μm 離れた地点で行なったが、電気パルスの
半値全幅としては570fs を得るに成功した。これは 3dB
帯域として790GHzに相当し、この種の光導電型受光素子
として、間違いなく現時点における世界最高速の値であ
る。
The measurement results plotted based on the output of the lock-in amplifier 34 are shown in FIG. The measurement was performed at a point 70 μm away from the prototype device 10, and we succeeded in obtaining 570 fs as the full width at half maximum of the electric pulse. This is 3 dB
It corresponds to a band of 790 GHz and is arguably the fastest value in the world at the present time for this type of photoconductive light receiving element.

【0030】以上のように、本発明に従うと図8に即し
て説明したような従来の受光素子50に比し、例えば 100
nm程度というように、一対の電圧印加部材12,12間の離
間距離Wをより一層短くしても絶縁破壊等は起こさずに
動作させ得るので、上記のように製造方法に走査プロー
ブ加工法等を用いれば、極めて小型で高速、高感度な受
光素子を構築することができる。しかし、この効果を逆
に言うと、従来素子における 300nm程度よりも、検出対
象の光Ipの波長以下という限定の下で一対の電圧印加部
材12,12間の離間距離Wをむしろ大きくしても、絶縁破
壊の恐れが少ないので当該一対の電圧印加部材12,12間
にはより大きな電圧を印加できるため、結果として従来
素子より高速、高感度な受光素子を提供できるとも言え
る。そして、この場合には製造工程に係る負担が軽くな
り、光ガイド部材13の形成に上記した走査プローブ加工
法を援用しても良いことはもちろんである(例えばプロ
ーブPの走査を横方向に少しずらしながら繰返すことで
任意の広幅酸化線路を描くこともできる)が、そうでな
く、例えば電子ビーム露光技術や選択成長技術等、既存
の他の微細加工技術をそのままに利用することもできる
利点が生まれる。
As described above, according to the present invention, as compared with the conventional light receiving element 50 described with reference to FIG.
Even if the distance W between the pair of voltage applying members 12, 12 is further shortened, such as about nm, it can be operated without causing dielectric breakdown. By using, it is possible to construct an extremely small-sized, high-speed, highly sensitive light-receiving element. However, conversely, even if the separation distance W between the pair of voltage applying members 12 is increased under the limitation that the wavelength is less than the wavelength of the light Ip to be detected, rather than about 300 nm in the conventional element, this effect can be increased. Since there is little risk of dielectric breakdown, a larger voltage can be applied between the pair of voltage applying members 12 and 12, and as a result, it can be said that a light receiving element having higher speed and higher sensitivity than the conventional element can be provided. In this case, the burden on the manufacturing process is lightened, and it goes without saying that the above-mentioned scanning probe processing method may be applied to the formation of the light guide member 13 (for example, the scanning of the probe P may be slightly moved in the lateral direction). It is also possible to draw an arbitrary wide oxide line by repeating it while shifting it.) However, the advantage is that other existing fine processing technologies such as electron beam exposure technology and selective growth technology can be used as they are. to be born.

【0031】以下、本発明の他の改変例につき説明する
が、まず、光ガイド部材13は、上記した絶縁体に限ら
ず、少なくとも一対の電圧印加部材12,12間にあって光
吸収部材11よりも十分なる高抵抗を示し、望ましくは絶
縁体に準ずるものであれば半導体を用いることもでき、
この場合、光吸収部11が例えばGaAsであるならば、光透
過性を示すために(そこではなるべく吸収されないよう
に)、GaAsよりもバンドギャップの大きな半導体として
AlAs,GaP 等を用いることができる。ただし、完全なる
絶縁性を確保するためには、これら半導体材料による立
体構造体である光ガイド部材13と少なくとも一方の電圧
印加部材12との間に若干の隙間を置くようにし、その間
に要すれば絶縁体を挟み込むと良い。後者の場合は、光
ガイド部材13が複数種類の物性の材料から構成されてい
る実施例の一つに相当する。
Another modified example of the present invention will be described below. First, the light guide member 13 is not limited to the above-mentioned insulator, and is located at least between the pair of voltage applying members 12 and 12 and more than the light absorbing member 11. A semiconductor can also be used as long as it has a sufficiently high resistance and is desirably an insulator.
In this case, if the light absorption portion 11 is, for example, GaAs, in order to show light transmittance (to prevent absorption as much as possible therein), it is a semiconductor having a band gap larger than that of GaAs.
AlAs, GaP, etc. can be used. However, in order to ensure complete insulation, a slight gap is provided between the light guide member 13 which is a three-dimensional structure made of these semiconductor materials and at least one of the voltage applying members 12, and a space is required between them. For example, insert an insulator. The latter case corresponds to one of the examples in which the light guide member 13 is made of a material having a plurality of types of physical properties.

【0032】次に、本発明受光素子の光入射部30には、
図6の本発明実施例素子10A に認められるように、図示
の場合は二つしか示していないが二つ以上の光ガイド部
材13を設け、これら隣接する光ガイド部材13,13間に光
を通さない光非透過性中間部材35を設けることができ
る。このような受光素子10A では、検出対象の光の波長
以下の幅寸法を有する光ガイド部材13が複数個ある分、
検出感度を上げることができる。光非透過性中間部材35
は原理的には導電性でも絶縁性でも良いが、導電性の方
が望ましく、この場合には両側の一対の電圧印加部材12
と同一の材料薄膜により形成することができる。各光ガ
イド部材13の形成は任意の微細加工技術によって良い
が、例えば既述した走査プローブ加工法による場合に
は、当該各光ガイド部材13,13を形成する工程によって
同時に両側の一対の電圧印加部材12,12と中間部材35の
形成が一度に行なえ、極めて合理的である。もちろん、
光ガイド部材13の数は任意である。
Next, in the light incident portion 30 of the light receiving element of the present invention,
As can be seen from the element 10A of the embodiment of the present invention shown in FIG. 6, although only two are shown in the drawing, two or more light guide members 13 are provided, and light is guided between these adjacent light guide members 13 and 13. A light non-transmissive intermediate member 35 that does not pass can be provided. In such a light receiving element 10A, since there are a plurality of light guide members 13 having a width dimension equal to or less than the wavelength of the light to be detected,
The detection sensitivity can be increased. Light non-transmissive intermediate member 35
May be conductive or insulative in principle, but is preferably conductive. In this case, a pair of voltage applying members 12 on both sides are used.
It can be formed of the same material thin film. The formation of each light guide member 13 may be performed by an arbitrary fine processing technique. For example, in the case of the above-described scanning probe processing method, a pair of voltages on both sides are simultaneously applied by the process of forming each light guide member 13, 13. The members 12, 12 and the intermediate member 35 can be formed at one time, which is extremely rational. of course,
The number of light guide members 13 is arbitrary.

【0033】本発明受光素子における光ガイド部材13に
は、本願要旨構成中における限定条件から外れない限
り、先に少し述べたように、絶縁体と半導体等、物性の
異なる複数種の材料が混在したものも考えられる。ま
た、光ガイド部材13が自身の光学的性質を可変にする可
変機構を含む構成も提案できる。図7はそのような場合
の本発明実施例素子10B を示している。
The light guide member 13 in the light receiving element of the present invention contains a mixture of plural kinds of materials having different physical properties such as an insulator and a semiconductor, as described above, as long as the conditions are not deviated from the limiting condition in the constitution of the present application. You can think of something you did. It is also possible to propose a configuration in which the light guide member 13 includes a variable mechanism that makes the optical property of itself variable. FIG. 7 shows an element 10B according to the present invention in such a case.

【0034】説明すると、光入射部30に形成される光ガ
イド部材13の一部は、光吸収部11の表面に接する側から
順に、n型(またはp型)半導体層37、GaAs/AlGaAsな
いしInAs/InGaAsの超格子構造層39、p型(またはn
型)半導体層38の積層構造体になっており、その上にこ
れまで述べてきたと同様の単一絶縁体または単一半導体
より成る光透過性絶縁部材13’があり、この絶縁部材1
3’を貫くようにして、外部からの光学的性質制御のた
めの金属または半導体製の制御電圧印加部材36が半導体
層38にオーミック接触するように形成されている。他方
の半導体層37にも制御電圧印加部材が付されるが、この
実施例ではこれは別途専用に付されたものではなく、一
対の電圧印加部材12,12の一方(図示左側)がこれを兼
ねている。
To explain, a part of the light guide member 13 formed in the light incident portion 30 is, in order from the side in contact with the surface of the light absorbing portion 11, the n-type (or p-type) semiconductor layer 37, GaAs / AlGaAs or GaAs / AlGaAs. InAs / InGaAs superlattice structure layer 39, p-type (or n
Type) semiconductor layer 38, and a light-transmissive insulating member 13 ′ made of a single insulator or a single semiconductor similar to that described above is provided on the insulating structure 1.
A control voltage applying member 36 made of a metal or a semiconductor for controlling the optical properties from the outside is formed so as to penetrate the 3 ′ so as to make ohmic contact with the semiconductor layer 38. A control voltage applying member is also attached to the other semiconductor layer 37, but this is not a dedicated one in this embodiment, and one of the pair of voltage applying members 12 and 12 (the left side in the drawing) attaches this. Also serves as.

【0035】このような構造では、一方の電圧印加部材
12と制御電圧印加部材36間に外部から電圧を印加するこ
とで超格子構造層39に電界を掛け、その電界の大きさ
(印加電圧の大きさ)に応じ、量子閉じ込めシュタルク
効果によりバンド端近傍の波長に対する吸収率や屈折率
を変化させ、特に量子構造において特徴的に現れるエキ
シトンによる吸収ピークを制御することができる。これ
により、各波長に対する吸収係数の変化から入射光Ipの
スペクトルが分かり、受光素子の高機能化ないし多機能
化に寄与できる。また、光ガイド部材13中にファブリ・
ペロー型共振器構造を組込めば、外部からの電極12,36
への印加電圧により屈折率を制御すると当該共振器の共
振波長を制御することもでき、波長選択性のある受光素
子10B を提供することもできる。この場合、図7におけ
る超格子構造層39は当該ファブリ・ペロー型共振器構造
中に必要な内部光導波路と読み替えれば良く、上下の半
導体層37,38は反射鏡を兼ねる屈折率制御用電圧印加部
材と見れば良い。その他、他の光学的性質の可変制御の
ための他の可変機構を含むことも本発明では何等妨げる
ものではない。
In such a structure, one of the voltage applying members is
An electric field is applied to the superlattice structure layer 39 by externally applying a voltage between the control voltage applying member 36 and the control voltage applying member 36, and the quantum confined Stark effect causes the vicinity of the band edge depending on the magnitude of the electric field (applied voltage). It is possible to control the absorption peak due to excitons, which is characteristic in the quantum structure, by changing the absorptance or the refractive index with respect to the wavelength. Thereby, the spectrum of the incident light Ip can be known from the change of the absorption coefficient with respect to each wavelength, which can contribute to the enhancement or multifunction of the light receiving element. Also, in the light guide member 13
If the Perot type resonator structure is incorporated, the electrodes 12, 36
When the refractive index is controlled by the voltage applied to the resonator, the resonance wavelength of the resonator can be controlled, and the light receiving element 10B having wavelength selectivity can be provided. In this case, the superlattice structure layer 39 in FIG. 7 may be read as an internal optical waveguide required in the Fabry-Perot type resonator structure, and the upper and lower semiconductor layers 37 and 38 serve as a refractive index control voltage which also serves as a reflecting mirror. It can be regarded as an application member. In addition, inclusion of another variable mechanism for variable control of other optical properties does not hinder the present invention.

【0036】なお、図7に示される構造の場合、下側の
半導体層37を介して一対の電圧印加部材12,12間が電気
的に短絡するのを防ぐため、図示右側の電圧印加部材12
と超格子構造層39を含む光ガイド部材13との間には絶縁
層40を挟んでいるが、これは空隙に置き換えられても良
い。ただ、このような絶縁層40は、実質的に絶縁部材1
3’と同時の工程で形成することができ、特にこれを設
けるがために工程が複雑になることは一般にはない。
In the case of the structure shown in FIG. 7, in order to prevent an electrical short circuit between the pair of voltage applying members 12 and 12 via the lower semiconductor layer 37, the voltage applying member 12 on the right side of the drawing is
The insulating layer 40 is sandwiched between and the light guide member 13 including the superlattice structure layer 39, but this may be replaced by a void. However, such an insulating layer 40 is substantially the insulating member 1
It can be formed in the same step as 3 ', and the provision of this does not generally complicate the step.

【0037】以上、本発明の幾つかの実施例に即し説明
したが、本発明の要旨構成に即する限り、当業者にとっ
て任意の改変は自由である。
Although some embodiments of the present invention have been described above, those skilled in the art are free to make arbitrary modifications as long as they conform to the gist of the present invention.

【0038】[0038]

【発明の効果】本発明によると、光吸収部材の一表面上
に一対の導電性電圧印加部材を形成して、これら一対の
電圧印加部材により挟まれた光吸収部材の露呈表面を検
出対象の光の入射部とした受光素子において、光入射部
には絶縁体またはこれに準ずる物性で、検出対象の光の
波長以下の幅寸法の光透過性光ガイド部材が存在するの
で、従来よりも高い電圧を印加できるか、一対の電極間
を絶縁破壊の恐れなしにもっと近付けることができる。
そのため、高電界印加による光励起キャリアの高速な引
き抜きが可能となり、励起キャリアの再結合の影響も低
減するので、高速かつ高感度な受光素子を提供すること
ができる。また、光ガイド部材は光吸収部の表面を覆う
保護層としても働き、別途に保護層を形成する手間も省
き得る。
According to the present invention, a pair of conductive voltage applying members are formed on one surface of a light absorbing member, and the exposed surface of the light absorbing member sandwiched by the pair of voltage applying members is the object of detection. In the light receiving element used as the light incident part, since the light incident part has an insulating material or a property similar thereto, and a light transmissive light guide member having a width dimension equal to or less than the wavelength of the light to be detected exists, it is higher than the conventional one. A voltage can be applied or a pair of electrodes can be brought closer together without fear of dielectric breakdown.
Therefore, photoexcited carriers can be extracted at high speed by applying a high electric field, and the influence of recombination of excited carriers can be reduced, so that a high-speed and highly sensitive light-receiving element can be provided. In addition, the light guide member also functions as a protective layer that covers the surface of the light absorbing portion, and the labor of separately forming a protective layer can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明受光素子の基本的な一実施例の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a basic embodiment of a light receiving element of the present invention.

【図2】本発明受光素子の作製に利用可能な走査プロー
ブ加工法の説明図である。
FIG. 2 is an explanatory diagram of a scanning probe processing method that can be used for manufacturing the light receiving element of the present invention.

【図3】本発明受光素子を走査プローブ加工法を援用し
て作製する場合の製造工程例の説明図である。
FIG. 3 is an explanatory diagram of an example of a manufacturing process in the case where the light receiving element of the present invention is manufactured by using a scanning probe processing method.

【図4】試作された本発明受光素子の測定システムの説
明図である。
FIG. 4 is an explanatory view of a prototype measurement system of the light receiving element of the present invention.

【図5】試作された本発明受光素子を測定した結果の説
明図である。
FIG. 5 is an explanatory diagram of a result of measuring a prototype light receiving element of the present invention.

【図6】本発明の他の実施例としての受光素子の概略構
成図である。
FIG. 6 is a schematic configuration diagram of a light receiving element as another embodiment of the present invention.

【図7】本発明のさらに他の実施例としての受光素子の
概略構成図である。
FIG. 7 is a schematic configuration diagram of a light receiving element as still another embodiment of the present invention.

【図8】従来におけるMSM型受光素子の概略構成図で
ある。
FIG. 8 is a schematic configuration diagram of a conventional MSM type light receiving element.

【符号の説明】[Explanation of symbols]

10,10A,10B 本発明受光素子, 11 光吸収部材, 12 電圧印加部材, 13 光ガイド部材, 30 光入射部, 35 光非透過中間部材, 36 制御電圧印加部材, 37,38 半導体層, 39 超格子構造層, 40 絶縁層. 10,10A, 10B Photoreceptor of the present invention, 11 Light absorbing member, 12 Voltage applying member, 13 Light guide member, 30 Light incident part, 35 Light non-transmissive intermediate member, 36 Control voltage applying member, 37, 38 Semiconductor layer, 39 Superlattice structure layer, 40 insulating layers.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 格 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 杉山 佳延 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Satoshi Nakagawa 1-1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Inventor Yoshinobu Sugiyama 1-1-ume, Umezono, Tsukuba-shi, Ibaraki 4 Industrial Technology Institute of Electronics Technology

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 光吸収部材の一表面上に一対の導電性電
圧印加部材を形成し、該一対の電圧印加部材により挟ま
れた光吸収部材の露呈表面を検出対象の光の入射部とす
る受光素子であって;上記光入射部における上記光吸収
部材の上記露呈表面上に、上記検出対象の光に対し光透
過性で、該検出対象の光の波長以下の幅寸法を有し、少
なくとも上記一対の電圧印加部材間にあって光吸収部材
よりも高抵抗を示す立体構造体である光ガイド部材を設
けたこと;を特徴とする受光素子。
1. A pair of conductive voltage applying members are formed on one surface of the light absorbing member, and an exposed surface of the light absorbing member sandwiched by the pair of voltage applying members is used as an incident portion of light to be detected. A light-receiving element; having a width dimension that is light transmissive to the light to be detected and is equal to or less than the wavelength of the light to be detected, on the exposed surface of the light absorbing member in the light incident portion, A light guide element, which is a three-dimensional structure having a higher resistance than the light absorbing member, is provided between the pair of voltage applying members.
【請求項2】 請求項1記載の受光素子であって;上記
光ガイド部材は絶縁体により構成されていること;を特
徴とする受光素子。
2. The light receiving element according to claim 1, wherein the light guide member is made of an insulator.
【請求項3】 請求項2記載の受光素子であって;上記
絶縁体は上記一対の電圧印加部材を形成する材料薄膜を
酸化することで形成されたものであること;を特徴とす
る受光素子。
3. The light receiving element according to claim 2, wherein the insulator is formed by oxidizing a material thin film forming the pair of voltage applying members. .
【請求項4】 請求項1記載の受光素子であって;上記
光ガイド部材は半導体により構成されていること;を特
徴とする受光素子。
4. The light-receiving element according to claim 1, wherein the light guide member is made of a semiconductor.
【請求項5】 請求項1記載の受光素子であって;上記
光ガイド部材は複数種類の物性の材料を含むこと;を特
徴とする受光素子。
5. The light-receiving element according to claim 1, wherein the light guide member includes a material having a plurality of types of physical properties.
【請求項6】 請求項1記載の受光素子であって;上記
光ガイド部材は、該光ガイド部材の光学的性質を可変す
る可変機構を含むこと;を特徴とする受光素子。
6. The light receiving element according to claim 1, wherein the light guide member includes a variable mechanism for changing the optical property of the light guide member.
【請求項7】 請求項6記載の受光素子であって;上記
可変機構は、上記光ガイド部材の上記光学的性質を可変
するために電圧の印加を受ける制御電圧印加部材を有す
ること;を特徴とする受光素子。
7. The light-receiving element according to claim 6, wherein the variable mechanism has a control voltage application member that receives a voltage to vary the optical property of the light guide member. And a light receiving element.
【請求項8】 請求項6または7記載の受光素子であっ
て;上記制御電圧印加部材の中の少なくとも一つは上記
一対の電圧印加部材の一方により構成されていること;
を特徴とする受光素子。
8. The light receiving element according to claim 6 or 7, wherein at least one of the control voltage applying members is constituted by one of the pair of voltage applying members;
A light receiving element characterized by.
【請求項9】 請求項6,7,または8記載の受光素子
であって;上記可変機構は半導体超格子構造を含むこ
と;を特徴とする受光素子。
9. The light-receiving element according to claim 6, 7 or 8, wherein the variable mechanism includes a semiconductor superlattice structure.
【請求項10】 請求項6,7,または8記載の受光素
子であって;上記可変機構はファブリ・ペロー型共振器
構造を含むこと;を特徴とする受光素子。
10. The light-receiving element according to claim 6, 7, or 8; wherein the variable mechanism includes a Fabry-Perot resonator structure.
【請求項11】 請求項1,2,3,4,5,6,7,
8,9,または10記載の受光素子であって;上記光ガ
イド部材の厚さは上記一対の電圧印加部材の厚さよりも
厚いこと;を特徴とする受光素子。
11. Claims 1, 2, 3, 4, 5, 6, 7,
8. The light receiving element according to 8, 9, or 10; wherein the thickness of the light guide member is thicker than the thickness of the pair of voltage applying members.
【請求項12】 請求項1,2,3,4,5,6,7,
8,9,10,または11記載の受光素子であって;上
記光ガイド部材は上記一対の電圧印加部材間にあって互
いに並設された複数個から成り;該複数個の光ガイド部
材にあって隣接する光ガイド部材間には上記検出対象の
光を透過しない光非透過性の中間部材が設けられている
こと;を特徴とする受光素子。
12. The method according to claim 1, 2, 3, 4, 5, 6, 7,
8. The light-receiving element according to 8, 9, 10, or 11, wherein the light guide member is composed of a plurality of the voltage guide members, which are arranged in parallel with each other; A light-impermeable intermediate member that does not transmit the light to be detected is provided between the light guide members.
JP7008083A 1995-01-23 1995-01-23 Light receiving element Expired - Lifetime JP2705757B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7008083A JP2705757B2 (en) 1995-01-23 1995-01-23 Light receiving element
EP99200499A EP0926742B1 (en) 1995-01-23 1996-01-22 Method of fabricating a photo-receiving device
DE69636016T DE69636016T2 (en) 1995-01-23 1996-01-22 Verharen to produce a light receiving device
EP96300405A EP0723302B1 (en) 1995-01-23 1996-01-22 Photo-receiving device
DE69614583T DE69614583T2 (en) 1995-01-23 1996-01-22 Light-sensitive device
US08/590,345 US5661328A (en) 1995-01-23 1996-01-23 Photo-receiving device, and method of fabricating a photo-device
US08/863,632 US5895227A (en) 1995-01-23 1997-05-27 Method of fabricating a photo-device
US08/900,826 US5945720A (en) 1995-01-23 1997-07-25 Photo-receiving device with light guide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008083A JP2705757B2 (en) 1995-01-23 1995-01-23 Light receiving element

Publications (2)

Publication Number Publication Date
JPH08204226A true JPH08204226A (en) 1996-08-09
JP2705757B2 JP2705757B2 (en) 1998-01-28

Family

ID=11683446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008083A Expired - Lifetime JP2705757B2 (en) 1995-01-23 1995-01-23 Light receiving element

Country Status (1)

Country Link
JP (1) JP2705757B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222962A (en) * 2001-01-23 2002-08-09 Abel Systems Inc Photodetector and lens
WO2008075542A1 (en) * 2006-12-20 2008-06-26 Nec Corporation Photodiode, optical communication device, and optical interconnection module
US7728366B2 (en) 2004-04-05 2010-06-01 Nec Corporation Photodiode and method for fabricating same
US8269303B2 (en) 2008-03-07 2012-09-18 Nec Corporation SiGe photodiode
JP2012199523A (en) * 2011-03-07 2012-10-18 Sumitomo Chemical Co Ltd Semiconductor substrate, semiconductor device, and method of manufacturing semiconductor substrate
US8467637B2 (en) 2007-05-01 2013-06-18 Nec Corporation Waveguide path coupling-type photodiode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105593A1 (en) 2006-03-13 2007-09-20 Nec Corporation Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895864A (en) * 1981-11-30 1983-06-07 Mitsubishi Electric Corp Semiconductor photocell
JPS58210681A (en) * 1982-06-01 1983-12-07 Kyocera Corp Color sensor
JPS61183609A (en) * 1985-02-09 1986-08-16 Agency Of Ind Science & Technol Manufacture of optical semiconductor device by ion implantation
JPS61270878A (en) * 1985-05-25 1986-12-01 Fujitsu Ltd Photo semiconductor device
JPS6450016A (en) * 1987-08-20 1989-02-27 Nec Corp Demultiplexing and photodetecting device
JPS6476779A (en) * 1987-09-17 1989-03-22 Nec Corp Wavelength multiplex discrimination type semiconductor photodetector
JPH0260174A (en) * 1988-08-04 1990-02-28 Natl Sci Council Republic Of China Amorphous sic/si three-color detector
JPH02226776A (en) * 1989-02-28 1990-09-10 Canon Inc Wavelength selection photodetector
JPH04171405A (en) * 1990-11-02 1992-06-18 Honda Motor Co Ltd Optical integrating element
JPH05218490A (en) * 1991-10-31 1993-08-27 Internatl Business Mach Corp <Ibm> Metal-semiconductor-metal photodetector and manufacture thereof
JPH05267709A (en) * 1992-03-18 1993-10-15 Hitachi Ltd Waveguide type photodetector
JPH05343731A (en) * 1992-06-04 1993-12-24 Sony Corp Photodetector

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895864A (en) * 1981-11-30 1983-06-07 Mitsubishi Electric Corp Semiconductor photocell
JPS58210681A (en) * 1982-06-01 1983-12-07 Kyocera Corp Color sensor
JPS61183609A (en) * 1985-02-09 1986-08-16 Agency Of Ind Science & Technol Manufacture of optical semiconductor device by ion implantation
JPS61270878A (en) * 1985-05-25 1986-12-01 Fujitsu Ltd Photo semiconductor device
JPS6450016A (en) * 1987-08-20 1989-02-27 Nec Corp Demultiplexing and photodetecting device
JPS6476779A (en) * 1987-09-17 1989-03-22 Nec Corp Wavelength multiplex discrimination type semiconductor photodetector
JPH0260174A (en) * 1988-08-04 1990-02-28 Natl Sci Council Republic Of China Amorphous sic/si three-color detector
JPH02226776A (en) * 1989-02-28 1990-09-10 Canon Inc Wavelength selection photodetector
JPH04171405A (en) * 1990-11-02 1992-06-18 Honda Motor Co Ltd Optical integrating element
JPH05218490A (en) * 1991-10-31 1993-08-27 Internatl Business Mach Corp <Ibm> Metal-semiconductor-metal photodetector and manufacture thereof
JPH05267709A (en) * 1992-03-18 1993-10-15 Hitachi Ltd Waveguide type photodetector
JPH05343731A (en) * 1992-06-04 1993-12-24 Sony Corp Photodetector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222962A (en) * 2001-01-23 2002-08-09 Abel Systems Inc Photodetector and lens
US7728366B2 (en) 2004-04-05 2010-06-01 Nec Corporation Photodiode and method for fabricating same
US7883911B2 (en) 2004-04-05 2011-02-08 Nec Corporation Method for fabricating photodiodes
WO2008075542A1 (en) * 2006-12-20 2008-06-26 Nec Corporation Photodiode, optical communication device, and optical interconnection module
JP5282887B2 (en) * 2006-12-20 2013-09-04 日本電気株式会社 Photodiode, optical communication device and optical interconnection module
US8467637B2 (en) 2007-05-01 2013-06-18 Nec Corporation Waveguide path coupling-type photodiode
US8269303B2 (en) 2008-03-07 2012-09-18 Nec Corporation SiGe photodiode
JP2012199523A (en) * 2011-03-07 2012-10-18 Sumitomo Chemical Co Ltd Semiconductor substrate, semiconductor device, and method of manufacturing semiconductor substrate

Also Published As

Publication number Publication date
JP2705757B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US5661328A (en) Photo-receiving device, and method of fabricating a photo-device
JP4694753B2 (en) Photodetector using vertical metal semiconductor microresonator and manufacturing method thereof
JP2928532B2 (en) Quantum interference optical device
JP2716364B2 (en) Adjustable voltage photodetector
KR100413212B1 (en) Millimeter wave and far-infrared detector
US5013918A (en) Multicolor infrared photodetector
EP2545593B1 (en) Silicon-based schottky barrier detector with improved responsivity
US8253104B2 (en) Method and apparatus for detecting terahertz waves
US7629663B2 (en) MSM type photodetection device with resonant cavity comprising a mirror with a network of metallic electrodes
JP5654760B2 (en) Optical element
US5287169A (en) Contractless mode of electroreflectance
JP2705757B2 (en) Light receiving element
JP2666888B2 (en) Optical device manufacturing method
Harbord et al. Confined Tamm optical states coupled to quantum dots in a photoconductive detector
US5293037A (en) Opto-electronic converter with electron mirrors and quantum wire
US5459604A (en) Coherent switch of currents in semiconductors
WO2024038897A1 (en) Element, element manufacturing method, and photonic spin register
JPH10144950A (en) Semiconductor light-receiving device
JP3039572B2 (en) Multi-wavelength semiconductor photodetector
JP2734214B2 (en) Nonlinear optical element
JPH11103088A (en) Semiconductor waveguide light receiving element
Stanze et al. Improving photoconductive receivers for 1.5 μm CW THz systems
JPH09246639A (en) Optical semiconductor device
Wang et al. High-speed long-wave infrared ultra-thin photodetectors
KR950014284B1 (en) Semiconductor light detecting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term