WO2024038897A1 - Element, element manufacturing method, and photonic spin register - Google Patents

Element, element manufacturing method, and photonic spin register Download PDF

Info

Publication number
WO2024038897A1
WO2024038897A1 PCT/JP2023/029737 JP2023029737W WO2024038897A1 WO 2024038897 A1 WO2024038897 A1 WO 2024038897A1 JP 2023029737 W JP2023029737 W JP 2023029737W WO 2024038897 A1 WO2024038897 A1 WO 2024038897A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
semiconductor
iii
pair
element according
Prior art date
Application number
PCT/JP2023/029737
Other languages
French (fr)
Japanese (ja)
Inventor
充 竹中
武壽 中山
信一 高木
カシディット トープラサートポン
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2024038897A1 publication Critical patent/WO2024038897A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Definitions

  • the present invention relates to an element, a method for manufacturing the element, and a photonic spin register.
  • Non-Patent Document 1 and Non-Patent Document 2 report a plasmon waveguide optical receiver using Si or Ge as a waveguide on a Si platform.
  • Patent Document 1 discloses a MOS optical modulator as an optical modulator using silicon photonics.
  • devices with various structures have been developed as devices having waveguides, but the optimal element structure has not yet been clarified.
  • a photoelectric conversion element, a light receiver, or an optical modulator that can realize a band of 200 GHz or more.
  • a photoelectric conversion element, a light receiver, or an optical modulator that can realize low parasitic capacitance.
  • the problem to be solved by the present invention is to provide an element that operates at high speed or has low parasitic capacitance.
  • One aspect of the present disclosure includes a semiconductor portion made of a III-V group semiconductor disposed on an insulating layer and extending in one direction; a pair of metal-containing portions extending along the metal-containing portion and made of a metal or an alloy.
  • the semiconductor portion is made of a III-V group semiconductor, a process in which thermal holes generated in the metal-containing portion are injected into the valence band of the semiconductor portion and/or a valence band of the semiconductor portion is performed. While suppressing the process in which electrons are excited from the electron band to the conduction band and generate electrons and holes, it is possible to generate a process in which thermoelectrons generated in the metal-containing part are injected into the conduction band of the semiconductor part. That is, the III-V group semiconductor can control the heights of the Schottky barriers for hot holes and hot electrons at the contact interface with a metal or an alloy by the effect of Fermi energy pinning. Further, since the semiconductor portion is made of a III-V group semiconductor, carrier mobility in the semiconductor portion is high. Therefore, the element according to this embodiment can realize an element with high operating speed and low parasitic capacitance.
  • the energies of the top of the valence band and the bottom of the conduction band of the III-V group semiconductor are E V and E C , respectively, and the energy of the first metal-containing part of the pair of metal-containing parts is
  • the Fermi level is E f1
  • the Fermi level of the second metal-containing part of the pair of metal-containing parts is E f2
  • the energy of light having a wavelength ⁇ is E ⁇
  • the semiconductor The present invention provides an element in which there is a wavelength ⁇ at which optical confinement due to plasmon resonance occurs in the region, and the following equations (1) and (2) are satisfied.
  • the metal-containing portion is an alloy of a III-V semiconductor and a metal. Because the metal-containing part is an alloy of a III-V semiconductor and a metal, the device of this embodiment can be manufactured without precise alignment of the semiconductor part and the metal-containing part.
  • an element that further includes voltage application means for applying a voltage between a pair of metal-containing parts.
  • the III-V group semiconductor consists of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As. Provide an element.
  • Another aspect of the present disclosure provides an element in which the metal-containing portion includes Au, Ni, or Pt.
  • III-V semiconductor includes InGaAs or InP
  • metal-containing portion includes an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP. do.
  • an element that further includes a waveguide for introducing light into the semiconductor portion.
  • the waveguide and the semiconductor portion extend together in one direction, and the waveguide provides an element that is not adjacent to the pair of metal-containing portions.
  • the semiconductor part and the waveguide can be integrally formed, so manufacturing is easy.
  • Another aspect of the present disclosure provides an element in which the waveguide is disposed on the side opposite to the semiconductor portion with respect to the insulating layer. According to this aspect, the element according to this embodiment can be easily formed on a substrate having an existing waveguide.
  • Another aspect of the present disclosure provides an element that is a photoelectric conversion element, an optical modulator, or a light receiver.
  • Another aspect of the present disclosure provides an element that is a light receiver and generates a photocurrent when a semiconductor portion receives light.
  • a photonic spin resistor that includes an element and a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect due to a photocurrent from the element.
  • a method for manufacturing an element includes the steps of: forming a III-V group semiconductor layer on an insulating layer; and forming a pair of metal films facing each other on the III-V group semiconductor layer.
  • the step of obtaining a laminate including an insulating layer, the III-V semiconductor layer, and a metal film includes forming a mask portion extending in one direction on the III-V semiconductor layer. and a step of forming a metal film on the III-V group semiconductor layer in which the mask portion is formed to form a pair of metal films facing each other with the mask portion in between,
  • a method for manufacturing an element which further includes a step of removing a metal film remaining without being alloyed after the step of forming a pair of metal-containing parts.
  • FIG. 1 shows (A) a schematic perspective view and (B) a schematic cross-sectional view of an element according to an embodiment of the present invention.
  • 2 shows a concept for realizing a single running carrier device using a device according to an embodiment of the present invention.
  • FIG. 3 shows (A) a schematic plan view and (B) a schematic cross-sectional view of an element in another aspect according to an embodiment of the present invention.
  • An example of a method for manufacturing an element according to an embodiment of the present invention is shown.
  • Another example of a method for manufacturing an element according to an embodiment of the present invention is shown.
  • An example of measurement results of optical properties of an alloy of a semiconductor and a metal is shown.
  • An example of simulation results regarding an element according to an embodiment of the present invention is shown.
  • Another example of simulation results regarding the element according to the embodiment of the present invention is shown.
  • a modification of the element according to the embodiment of the present invention is shown.
  • this embodiment according to one aspect of the present invention will be described based on the drawings.
  • those with the same reference numerals have the same or similar configurations.
  • FIG. 1 is (A) a schematic perspective view and (B) a schematic cross-sectional view taken along the line XX of an element 100 according to the present embodiment.
  • the element 100 includes a semiconductor section 120 made of a III-V semiconductor arranged on an insulating layer 110 and extending in one direction, and a semiconductor section 120 made of a III-V semiconductor arranged on the insulating layer 110 in a direction perpendicular to the one direction so as to sandwich the semiconductor section 120 therebetween. and a pair of metal-containing parts 130 that extend along the metal or alloy.
  • the insulating layer 110 is a layer having insulating properties.
  • the insulating layer 110 is a layer made of, for example, aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), etc., and is typically a layer made of aluminum oxide.
  • the semiconductor section 120 is arranged on the insulating layer 110, extends in one direction, and is made of a III-V group semiconductor. Further, the pair of metal-containing parts 130 are arranged on the surface of the insulating layer 110 on which the semiconductor part 120 is arranged (hereinafter also referred to as "first main surface") so as to sandwich the semiconductor part 120 therebetween. extends along a direction perpendicular to the direction. Therefore, the first metal-containing part 131 and the second metal-containing part 132 are arranged on both sides of the linear semiconductor part 120 in electrical and physical contact. This constitutes a plasmon waveguide. Note that the pair of metal-containing parts 130 may have other configurations as long as optical confinement occurs in the semiconductor part 120 due to plasmon resonance and electron exchange occurs between the metal-containing part 130 and the semiconductor part 120. It's okay to stay.
  • the element 100 is used as a photoelectric conversion element, a light receiver, etc. by detecting hot carriers generated by surface plasmon as photocurrent, for example.
  • Non-Patent Document 1 and Non-Patent Document 2 surface plasmons generate hot electrons and hot holes, thereby generating photocurrent.
  • electrons move much faster than holes, so the movement of holes dominates the operating speed of a light receiver (the same applies to photoelectric conversion elements and optical modulators).
  • the semiconductor portion 120 is made of a III-V group semiconductor, it is possible to control the energy barrier at the interface between the semiconductor portion 120 and the metal-containing portion 130.
  • a single traveling carrier receiver may be provided in which a current is generated. This concept will be explained using FIG. 2.
  • FIG. 2 is a diagram illustrating three processes in which a photocurrent may occur when a driving voltage V bias is applied to the first metal-containing portion 131 in the device 100.
  • the energies at the top of the valence band and the bottom of the conduction band of the III-V group semiconductor (semiconductor portion 120) are E V and E C , respectively, and the Fermi level of the first metal-containing portion 131 is E f1 .
  • the Fermi level of the second metal-containing portion 132 is shown as E f2
  • the band gap energy of the III-V group semiconductor (semiconductor portion 120) is shown as E g .
  • the three processes that can generate a photocurrent in the element 100 include a process in which hot holes generated in the first metal-containing portion 131 are injected into the valence band of the semiconductor portion 120, shown in (1) in FIG.
  • a process in which thermionic electrons generated in the second metal-containing portion 132 are injected into the conduction band of the semiconductor portion 120, shown as (2) in FIG. Examples include processes in which electrons are excited from the band to the conduction band, producing electrons and holes.
  • the process (1) and/or the process (3) in FIG. When the wavelength of light that enters the semiconductor portion 120 and causes surface plasmon polaritons is ⁇ , and the energy of the light is E ⁇ , it is preferable that the following equations (1) and (2) hold true.
  • the following formula (1) means that the process (1) in Figure 2 does not occur or does not substantially occur, and the following formula (2) means that the process (2) in Figure 2 does not occur. means.
  • Equation (3) means that the process (3) in FIG. 2 does not occur or does not substantially occur.
  • the wavelength ⁇ of the light in the above equation is not particularly limited, but may be, for example, 1550 nm, and E ⁇ in this case is 0.80 eV.
  • the wavelength ⁇ of the light may be in the infrared region.
  • the process (2) in FIG. process can occur.
  • a III-V semiconductor can increase the values on the right-hand side of the above equations (1) and (2) (respectively, thermal holes and thermal electrons) due to the effect of Fermi energy pinning. (corresponding to the energy of the Schottky barrier) can be controlled. Therefore, the element 100 can realize an element with high operating speed and low parasitic capacitance.
  • the material constituting the semiconductor section 120 is not particularly limited as long as it is a III-V group semiconductor.
  • the III-V group semiconductor means a semiconductor consisting of a III(13) group element and a V(15) group element.
  • III-V group semiconductors include semiconductors made of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As. .
  • Specific examples include InP, InGaAs, InGaAsP, AlInGaAsP, AlInGaAs, GaAs, and AlGaAs. Among these, InP and InGaAs are preferred.
  • the III-V semiconductor may be doped.
  • the values on the right side of the above equations (1) and (2) are approximately 0.9 eV and approximately 0.4 eV. This is due to the effect of Fermi level pinning on the interface defects of InP. Further, the value on the right side of the above equation (3) (corresponding to the energy of the band gap of InP) is about 1.3 eV. Therefore, when the wavelength ⁇ is 1550 nm and InP is used for the semiconductor portion 120, ideally, the above equations (1) to (3) hold true.
  • the width of the semiconductor portion 120 is not particularly limited as long as it is a size that allows surface plasmon to occur, and may be, for example, 300 nm or less, 250 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less. It's fine.
  • the width w may be, for example, 10 nm or more, 20 nm or more, 30 nm or more, or 50 nm or more.
  • the smaller the width w the higher the confinement effect by surface plasmons, and the higher the sensitivity of the element. Furthermore, the smaller the width w, the shorter the distance that carriers move in the semiconductor section 120, so the operating speed can be increased.
  • the material constituting the metal-containing portion 130 is not particularly limited as long as it is a metal or an alloy.
  • the metal contained in the metal-containing portion 130 is not particularly limited as long as it can generate surface plasmon polariton, and examples thereof include Au, Ni, and Pt.
  • the metal or alloy contained in the metal-containing portion 130 may have a negative dielectric constant at the wavelength of the light used, for example, may have a negative dielectric constant in the infrared region, such as 1550 nm. The dielectric constant may be negative.
  • the metal-containing portion 130 is preferably an alloy of a III-V group semiconductor that constitutes the semiconductor portion 120 and a metal. That is, according to this aspect, the element 100 can be manufactured without precise alignment of the semiconductor part and the metal-containing part. A method for manufacturing the element according to this embodiment will be described later.
  • the material constituting the first metal-containing portion 131 and the material constituting the second metal-containing portion 132 may be the same or different.
  • the first metal-containing portion 131 and the second metal-containing portion 132 may be an alloy of a III-V group semiconductor forming the semiconductor portion 120 and a metal.
  • the metals forming the alloy in the first metal-containing portion 131 and the second metal-containing portion 132 may be the same or different.
  • the III-V semiconductor of the semiconductor portion 120 may include InGaAs or InP, and the metal-containing portion 130 may include an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP. .
  • the III-V semiconductor of the semiconductor portion 120 may be InGaAs or InP, and the metal-containing portion 130 may be an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP. .
  • the element 100 further includes a waveguide 140 for introducing light into the semiconductor section 120.
  • the waveguide 140 is connected to one end of the semiconductor section 120 on the first main surface of the insulating layer 110 in order to introduce light into the semiconductor section 120.
  • the waveguide 140 and the semiconductor part 120 extend in one direction as one, and the waveguide 140 is not adjacent to the pair of metal-containing parts 130.
  • the width of the waveguide 140 may be larger than the width w of the semiconductor section 120, and the joint portion between the waveguide 140 and the semiconductor section 120 may have a tapered shape in which the width becomes smaller toward the semiconductor section 120 side.
  • the material constituting the waveguide 140 may be a material that can be used as a waveguide in the field of photonics. From the viewpoint of ease of manufacture, the waveguide 140 may be made of the same material as the semiconductor section 120.
  • the element 100 may further include voltage application means for applying a voltage between the pair of metal-containing parts 130.
  • a driving voltage that makes the first metal-containing part 131 have a positive potential with respect to the second metal-containing part 132 (electrons flow from the first metal-containing part 131 to the second metal-containing part 132) is applied.
  • a configuration may also be adopted in which a photocurrent is generated in an external circuit connected to the second metal-containing portion 132 by applying a driving voltage such as that shown in FIG.
  • FIG. 3 is (A) a schematic perspective view and (B) a schematic cross-sectional view taken along the line XX of the element 200 according to the present embodiment.
  • the element 200 is arranged on an insulating layer 210 and includes a semiconductor portion 220 made of a III-V semiconductor that extends in one direction, and a semiconductor portion 220 made of a III-V semiconductor that is placed on the insulating layer 210 in a direction perpendicular to the one direction so as to sandwich the semiconductor portion 220 therebetween. a pair of metal-containing parts 230 extending along and made of metal or an alloy.
  • the element 200 shown in FIG. 3 differs from the element 100 shown in FIG. 1 mainly in the arrangement position of the waveguide 240. Below, the configuration of the element 200 according to changes from the element 100 shown in FIG. 1 will be explained, and other explanations will be omitted. The omitted configurations may be the same as or similar to the corresponding configurations in the element 100 shown in FIG. 1.
  • the insulating layer 210 is a layer having insulating properties.
  • the insulating layer 210 is, for example, a thin film of aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), or the like, and is typically a thin film of aluminum oxide.
  • the thickness of the insulating layer 210 is desirably made as thin as possible in order to improve the efficiency of the element (for example, sensitivity as a light receiver, modulation efficiency as a photoelectric conversion element or optical modulator, etc.). In order to suppress an increase in leakage current due to the quantum tunnel effect, the thickness may be, for example, 3 nm or more.
  • the thickness of the insulating layer 210 may be, for example, about 5 nm to 10 nm.
  • the element 200 further includes a waveguide 240 for introducing light into the semiconductor section 220.
  • the waveguide 240 is arranged on the surface of the insulating layer 210 opposite to the first main surface (hereinafter also referred to as "second main surface") in order to introduce light into the semiconductor section 220.
  • the waveguide 240 extends in the same direction as the semiconductor section 220 and is arranged to overlap the semiconductor section 220 in plan view.
  • the width of the waveguide 240 may be larger than the width w of the semiconductor section 220.
  • the metal-containing portion 230 may have a tapered portion 230T that is not adjacent to the semiconductor portion 220. In the tapered portion 230T, the distance between the pair of metal-containing portions 230 may be configured to become narrower from the waveguide 240 side to the semiconductor portion 220 side in a plan view of the element 200.
  • the material constituting the waveguide 240 may be a material that can be used as a waveguide in the field of photonics.
  • the element 200 may be constructed of separate materials since the semiconductor portion 220 and the waveguide 240 are not in physical contact.
  • the waveguide 240 may be made of, for example, a silicon-based material.
  • the element 200 includes, around the waveguide 240, a cladding portion 250 made of a material having a lower refractive index than the waveguide 240.
  • the cladding portion 250 may be hollow, for example, or may be made of a material such as SiO 2 .
  • the element 200 may further include voltage application means for applying a voltage between the pair of metal-containing parts 230.
  • a driving voltage that makes the first metal-containing part 231 have a positive potential with respect to the second metal-containing part 232 electrosprays from the first metal-containing part 231 to the second metal-containing part 232
  • a configuration may also be adopted in which a photocurrent is generated in an external circuit connected to the second metal-containing portion 232 by applying a driving voltage such as that shown in FIG.
  • FIGS. 4 and 5 A method for manufacturing an element according to this embodiment will be explained using FIGS. 4 and 5. However, it goes without saying that methods other than those described in detail below can be used as a method for manufacturing the element according to this embodiment.
  • the method for manufacturing the device includes the steps of forming a III-V group semiconductor layer on the insulating layer, and forming a pair of metal films facing each other on the III-V group semiconductor layer.
  • FIG. 4 is a diagram showing an example of a method for manufacturing the element 100 shown in FIG. 1.
  • a III-V semiconductor layer 410 is formed on the insulating layer 110, as shown in FIG. 4(A).
  • the method for forming the III-V semiconductor layer 410 is not particularly limited, and various semiconductor layer forming methods can be used. For example, wafer bonding, Metal-Organic Vapor Phase Epitaxy, MOCVD (Metal-Organic Chemical Vapor Deposition), or the like may be used.
  • a lithography apparatus such as an electron beam lithography apparatus or an ultraviolet irradiation apparatus may be used, for example.
  • a III-V semiconductor layer 410 processed into a desired pattern can be obtained by dry etching or wet etching.
  • a stacked layer including the insulating layer 110, the III-V semiconductor layer 410, and the metal film 420 is formed by forming a pair of metal films 420 facing each other. get.
  • the method for forming the metal film 420 is not particularly limited, and various metal film forming methods can be used. For example, sputtering, vapor deposition, etc. may be used.
  • the thickness of the metal film 420 is not particularly limited, but may be, for example, 50 nm to 500 nm.
  • a lithography apparatus such as an electron beam lithography apparatus or an ultraviolet exposure apparatus may be used.
  • a metal film 420 processed into a desired pattern can be obtained by dry etching or wet etching.
  • the metal film 420 in the next step, when the III-V group semiconductor and the metal are alloyed, the metal diffuses in the plane direction and an alloy is formed in a wider area than the patterned area of the metal film.
  • the pattern of the metal film 420 may be designed in consideration of the possibility that the metal film 420 may be
  • the laminate obtained in the second step is fired to alloy the III-V group semiconductor and at least a portion of the metal film, thereby forming a pair.
  • a metal-containing portion 130 is formed.
  • the entire metal film may be alloyed with the III-V group semiconductor, or a portion thereof may be alloyed with the III-V group semiconductor, and an unalloyed portion may remain after firing.
  • the firing temperature and firing time may be appropriately selected depending on the type of III-V semiconductor and metal.
  • the method for manufacturing an element according to this embodiment may include steps other than the above-mentioned steps described using FIG. 4.
  • the method for manufacturing an element according to the present embodiment may include a step of surface treatment of the III-V semiconductor layer 410 after forming the III-V semiconductor layer 410 and before forming the metal film 420.
  • a surface treatment step may be performed to promote alloying of the III-V semiconductor and metal.
  • the method for manufacturing an element according to the present embodiment may include a step of removing the unalloyed metal film after alloying the III-V group semiconductor and the metal.
  • FIG. 5 is a diagram showing an example of a method for manufacturing the element 200 shown in FIG. 3. According to the manufacturing method shown in FIG. 5, the element according to this embodiment can be easily formed on a substrate having an existing waveguide.
  • first step as shown in FIG. It is bonded to a substrate on which an insulating layer 521 is formed.
  • the bonding method for example, wafer bonding or the like may be used.
  • the III-V semiconductor layer 510 is provided on the first main surface of the insulating layer 210, and the waveguide 240 is provided on the second main surface opposite to the first main surface.
  • a laminate having a cladding portion 250 and a cladding portion 250 is obtained.
  • a mask layer 530 is formed to cover the III-V semiconductor layer 510.
  • the mask layer 530 may be, for example, a SiO 2 layer formed by plasma-enhanced chemical vapor deposition (PECVD) or the like.
  • a stacked layer including the insulating layer 210, the III-V semiconductor layer 510, and the metal film 540 is formed by forming a pair of metal films 540 facing each other. get.
  • the method for forming the metal film 540 is not particularly limited, and various metal film forming methods can be used. For example, sputtering, vapor deposition, and other methods used for pad formation may be used.
  • the laminate obtained in the third step is fired to alloy the III-V group semiconductor and at least a portion of the metal film, thereby forming a pair.
  • a metal-containing portion 230 is formed.
  • the entire metal film may be alloyed with the III-V group semiconductor, or a portion thereof may be alloyed with the III-V group semiconductor, and an unalloyed portion may remain after firing.
  • the firing temperature and firing time may be appropriately selected depending on the type of III-V semiconductor and metal.
  • the method for manufacturing an element according to this embodiment may include steps other than the above-mentioned steps described using FIG. 5.
  • the method for manufacturing an element according to the present embodiment may include a surface treatment step of the III-V semiconductor layer 510 after forming the III-V semiconductor layer 510 and before forming the mask layer 530.
  • a surface treatment step may be performed to promote alloying of the III-V semiconductor and metal.
  • the method for manufacturing an element according to this embodiment may include a step of removing the mask layer 530 and the unalloyed metal film 540 after alloying the III-V semiconductor and the metal.
  • the element according to this embodiment can be used as a photoelectric conversion element, an optical modulator, or a light receiver.
  • the first metal-containing portion 131 It can be used as a light receiver by applying a driving voltage so that the potential of the second metal-containing portion 132 becomes positive and detecting the photocurrent from the second metal-containing portion 132.
  • the element according to the present embodiment may be explained using the element 100 shown in FIG. 1 as an example.
  • it can be used as an electro-absorption optical modulator.
  • the semiconductor section 120 is preferably made of InGaAsP or has a multiple quantum well structure (MQS).
  • the element according to this embodiment When the element according to this embodiment is used as a light receiver, it includes the element according to this embodiment and a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect by photocurrent from the element.
  • a photonic spin register may be provided.
  • the photonic spin register including a plasmon waveguide light receiver reference can be made to International Publication No. 2022/158545.
  • Such a photonic spin register consists of a shift register section having a magnetic layer extending in one direction, and a photoreceiver section (main unit) that receives a pulse amplitude modulated optical signal input in series and converts it into a photocurrent.
  • an element according to an embodiment and a spin Hall element that is electrically connected to a photoreceiver, is laminated on a part of the magnetic layer, and exhibits a spin Hall effect when a photocurrent from the photoreceptor flows.
  • spin Hall element When a photocurrent flows through the spin Hall element, spin information is written by the spin-orbit torque acting on the magnetic order of the magnetic domains of the magnetic layer.
  • a unidirectional shift current is applied to the shift register section, the domain wall moves within the magnetic layer, and spin information written in the magnetic domain moves and is buffered in the magnetic layer.
  • the operating speed of the element according to this embodiment may be, for example, 100 GHz or more, 200 GHz or more, 400 GHz or more, 500 GHz or more, or 1 THz or more.
  • the upper limit of the operating speed is not particularly limited, but may be, for example, 10 THz or 5 THz.
  • the operating speed determined by the RC time constant will be close to 1 THz.
  • the operating speed is determined by the time it takes the carrier to travel in the light receiver.
  • the carrier travel time is dominated by the travel time in the semiconductor portion.
  • the device according to this embodiment is preferable in that the semiconductor portion is made of a III-V group semiconductor, so that the carrier velocity in the semiconductor portion is high and the travel time in the semiconductor portion can be shortened.
  • alloying was performed by annealing.
  • an InP substrate it is immersed in BHF (buffered hydrofluoric acid for semiconductors) for 15 seconds to treat the natural oxide film on the surface; metal is deposited using an electron beam evaporator; RTA (rapid thermal annealing) is performed in a nitrogen atmosphere. ) was used for annealing. At this time, the RTA conditions were 250° C. and 1 minute.
  • an In 0.53 Ga 0.47 As layer with a thickness of 500 nm is formed on the InP substrate by metal organic vapor phase epitaxy; the surface of the InGaAs layer is cleaned with BHF; and RF (Radio Frequency) sputtering is performed.
  • a metal layer with a thickness of 130 nm was formed using the following steps; thereafter, heat treatment was performed at 300° C. for 1 minute in a nitrogen atmosphere.
  • the optical constants of the prepared alloy sample and a sample with only metal deposited before annealing were measured by spectroscopic ellipsometry. Afterwards, cross-sectional mode analysis was performed based on the measurement results.
  • graphs in which the real part and imaginary part of the permittivity of Au-InGaAs and Au are plotted for each wavelength are shown in FIGS. 6(a) and 6(b), respectively. It was found that the real part of the complex dielectric constant of the Au-InGaAs alloy is almost the same as that of Au, and has a negative value of about -100 at a wavelength of 1550 nm. This suggests that the propagating surface plasmon polariton required in the plasmon waveguide exists at the Au-InGaAs alloy/semiconductor interface.
  • the real part of the dielectric constant of the alloy of InP and metal is about -80 for Au-InP, about 0 for Pt-InP, and about -18 for Ni-InP. It has also been found that in Pt-InP, the real part of the dielectric constant is negative if the wavelength is in the range of about 200 nm to 1500 nm.
  • the metal-containing part (alloy of III-V group semiconductor and metal) / semiconductor part (III-V group semiconductor) / metal-containing part (III-V group semiconductor) / metal-containing part (III-V group semiconductor) / metal-containing part (III-V group semiconductor - Cross-sectional mode analysis of the structure (alloy of group V semiconductor and metal) was performed.
  • FIG. 7(a) shows the analysis results at a wavelength of 1550 nm in the Au-InGaAs alloy/InGaAs/Au-InGaAs alloy structure.
  • FIG. 7(b) shows the analysis results at a wavelength of 1550 nm in the Au/InGaAs/Au structure.
  • a plasmonic optical confinement mode in which the optical electric field is concentrated in the InGaAs portion can be obtained even when the Au-InGaAs alloy is used, as in the case where Au is used.
  • cross-sectional mode analysis was performed for the case where Ni-InP or Au-InP alloy and InP were used, and it was confirmed that an optical confinement mode existed in the plasmon waveguide structure portion.
  • FIG. 8 shows the propagation of an optical electric field in a plasmonic waveguide having an Au-InGaAs/InGaAs/Au-InGaAs structure.
  • the upper diagram in FIG. 8 is a plan view showing the arrangement of materials, and the lower diagram in FIG. 8 is a simulation result. It was found that due to strong optical confinement, input light is absorbed with a device length of about 1 ⁇ m.
  • the element according to this embodiment may have a semiconductor portion 920 protruding from a pair of metal-containing portions 930 and forming a rib structure, as in an element 900 whose schematic cross-sectional view is shown in FIG. good.
  • the thickness of the metal-containing portion can be made relatively thinner than that of the element 100 shown in FIG. 1, which may enable easier manufacturing.
  • the thickness of the metal-containing portion 930 (931, 932) may be, for example, 100 nm or more and 200 nm or less.
  • the semiconductor portion 220 may protrude from the pair of metal-containing portions 230.
  • patterning of the metal-containing portion may be performed by patterning a mask portion. That is, as a modification of the method for manufacturing an element according to the present embodiment, the step of forming a pair of metal films includes the step of forming a mask portion extending in one direction on the III-V group semiconductor layer; The method may include a step of forming a pair of metal films facing each other with the mask part in between by forming a metal film on the III-V group semiconductor layer in which the mask part is formed.
  • a III-V semiconductor layer 1010 is formed on an insulating layer 110, as shown in FIG. 10(A).
  • a mask portion 1020 is formed as shown in FIG. 10(B).
  • the depth and width of the mask portion 1020 in the paper direction of FIG. 10 may be approximately the same as the semiconductor portion to be formed.
  • the mask portion 1020 may be made of an insulating material that does not form an alloy with the metal constituting the metal film 1030.
  • the mask portion 1020 may be, for example, a SiO 2 layer formed by plasma-enhanced chemical vapor deposition (PECVD) or the like.
  • a metal film 1030 is formed on the III-V semiconductor layer 1010 in which the mask portion 1020 is formed.
  • a pair of metal films facing each other with the mask portion in between can be formed. Note that, after that, in the same manner as the manufacturing method explained using FIGS. 4 and 5, the laminate is fired, the III-V group semiconductor and the metal are alloyed, and a pair of metal-containing parts is formed. .
  • the laminate obtained in the third step is fired to alloy the III-V group semiconductor and the metal.
  • a pair of metal-containing portions 130 are formed.
  • the fifth step may include a step of removing the unalloyed metal film 1030 after alloying the III-V semiconductor and the metal (FIG. 10E). Further, the step of removing the mask portion 1020 may be included. Note that in FIG. 10, the semiconductor portion 120 may protrude from the pair of metal-containing portions 130, similar to the element 900 shown in FIG.
  • the present invention includes the following embodiments. [1] a semiconductor portion made of a III-V semiconductor disposed on the insulating layer and extending in one direction; a pair of metal-containing parts made of a metal or an alloy and extending along a direction perpendicular to the one direction so as to sandwich the semiconductor part on the insulating layer; element.
  • the metal-containing portion is an alloy of the III-V group semiconductor and a metal; The device according to any one of [1] to [3]. [5] further comprising voltage application means for applying a voltage between the pair of metal-containing parts; The device according to any one of [1] to [4]. [6]
  • the III-V group semiconductor consists of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As, The device according to any one of [1] to [5].
  • the metal-containing portion contains Au, Ni, or Pt. The device according to any one of [1] to [6].
  • the III-V semiconductor includes InGaAs or InP
  • the metal-containing portion includes an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP.
  • a photoelectric conversion element a light modulator or a light receiver, The device according to any one of [1] to [11].
  • It is a light receiver, generating a photocurrent when the semiconductor section receives light;
  • the device according to any one of [1] to [11].
  • the element described in [13] a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect due to a photocurrent from the element; Photonic spin register.
  • [15] A method for manufacturing the device according to any one of [1] to [13], forming a III-V semiconductor layer on the insulating layer; forming a pair of metal films facing each other on the III-V group semiconductor layer to obtain a laminate including the insulating layer, the III-V group semiconductor layer, and a metal film; forming the pair of metal-containing parts by firing the laminate and alloying the III-V group semiconductor and at least a portion of the metal film; manufacturing method, including.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)

Abstract

An element 100 according to the present disclosure comprises: a semiconductor portion 120 that is disposed on an insulating layer 110, extends in one direction, and is made of a Group III-V semiconductor; and a pair of metal-containing portions 130 that extend on the insulating layer 110 in a direction orthogonal to the one direction so as to sandwich the semiconductor portion 120, and that is made of a metal or an alloy.

Description

素子、素子の製造方法、及びフォトニックスピンレジスタDevice, device manufacturing method, and photonic spin register
 本発明は、素子、素子の製造方法、及びフォトニックスピンレジスタに関する。 The present invention relates to an element, a method for manufacturing the element, and a photonic spin register.
 近年、データ通信量は増加し続けており、光通信システムにおける光検出器の動作速度の向上は不可欠である。広帯域化と高感度を同時に達成するために、2つの金属間のギャップに光を強く閉じ込めたプラズモン導波路を受光器に応用したプラズモン導波路受光器が研究されている。例えば、非特許文献1及び非特許文献2は、Siプラットフォーム上において、導波路としてSi又はGeを用いたプラズモン導波路受光器を報告している。 In recent years, the amount of data communication has continued to increase, and it is essential to improve the operating speed of photodetectors in optical communication systems. In order to achieve both broadband and high sensitivity at the same time, research is being conducted on plasmon waveguide photodetectors that use plasmon waveguides that strongly confine light in the gap between two metals. For example, Non-Patent Document 1 and Non-Patent Document 2 report a plasmon waveguide optical receiver using Si or Ge as a waveguide on a Si platform.
 また、微細な光導波路を有するデバイスは光変調器としても用いられる。例えば、特許文献1は、シリコンフォトニクスを用いた光変調器として、MOS型光変調器を開示している。 Furthermore, devices with minute optical waveguides are also used as optical modulators. For example, Patent Document 1 discloses a MOS optical modulator as an optical modulator using silicon photonics.
特開2018-028608号公報JP2018-028608A
 上述のとおり、導波路を有するデバイスとして様々な構造のデバイスが開発されているが、未だ最適な素子構造は明らかとなっていない。例えば、200GHz以上の帯域を実現可能な光電変換素子、受光器、又は光変調器が求められている。また、低寄生容量を実現可能な光電変換素子、受光器、又は光変調器が求められている。 As mentioned above, devices with various structures have been developed as devices having waveguides, but the optimal element structure has not yet been clarified. For example, there is a demand for a photoelectric conversion element, a light receiver, or an optical modulator that can realize a band of 200 GHz or more. Furthermore, there is a need for a photoelectric conversion element, a light receiver, or an optical modulator that can realize low parasitic capacitance.
 本発明が解決しようとする課題は、高速で動作するか、又は寄生容量が低い素子等を提供することである。 The problem to be solved by the present invention is to provide an element that operates at high speed or has low parasitic capacitance.
 本開示の一態様は、絶縁層上に配置され、一方向に延在する、III-V族半導体からなる半導体部と、絶縁層上に、半導体部を挟むように、一方向に直交する方向に沿って延在し、金属又は合金からなる、1対の金属含有部と、を備える素子を提供する。 One aspect of the present disclosure includes a semiconductor portion made of a III-V group semiconductor disposed on an insulating layer and extending in one direction; a pair of metal-containing portions extending along the metal-containing portion and made of a metal or an alloy.
 本実施形態に係る素子は、半導体部がIII-V族半導体からなるため、金属含有部で生じた熱正孔が半導体部の価電子帯に注入されるプロセス、及び/又は、半導体部の価電子帯から伝導帯に電子が励起され電子及び正孔が生じるプロセスを抑制させながら、金属含有部で生じた熱電子が半導体部の伝導帯に注入されるプロセスを生じさせることができる。すなわち、III-V族半導体は、金属又は合金との接触界面において、フェルミエネルギーピニングの効果により、熱正孔及び熱電子のショットキー障壁の高さをそれぞれ制御することができる。また、半導体部がIII-V族半導体からなるため、半導体部におけるキャリア移動度が高い。したがって、本実施形態に係る素子は、動作速度が速く、寄生容量が低い素子を実現し得る。 In the device according to this embodiment, since the semiconductor portion is made of a III-V group semiconductor, a process in which thermal holes generated in the metal-containing portion are injected into the valence band of the semiconductor portion and/or a valence band of the semiconductor portion is performed. While suppressing the process in which electrons are excited from the electron band to the conduction band and generate electrons and holes, it is possible to generate a process in which thermoelectrons generated in the metal-containing part are injected into the conduction band of the semiconductor part. That is, the III-V group semiconductor can control the heights of the Schottky barriers for hot holes and hot electrons at the contact interface with a metal or an alloy by the effect of Fermi energy pinning. Further, since the semiconductor portion is made of a III-V group semiconductor, carrier mobility in the semiconductor portion is high. Therefore, the element according to this embodiment can realize an element with high operating speed and low parasitic capacitance.
 本開示の別の一態様において、III-V族半導体の価電子帯上部及び伝導帯底部のエネルギーを、それぞれE及びEとし、1対の金属含有部のうち第1の金属含有部のフェルミ準位を、Ef1とし、1対の金属含有部のうち第2の金属含有部のフェルミ準位を、Ef2とし、波長λを有する光のエネルギーを、Eλとしたときに、半導体部においてプラズモン共鳴による光閉じ込めが生じる波長λが存在し、以下の式(1)及び(2)が成立する素子を提供する。 In another aspect of the present disclosure, the energies of the top of the valence band and the bottom of the conduction band of the III-V group semiconductor are E V and E C , respectively, and the energy of the first metal-containing part of the pair of metal-containing parts is When the Fermi level is E f1 , the Fermi level of the second metal-containing part of the pair of metal-containing parts is E f2 , and the energy of light having a wavelength λ is E λ , the semiconductor The present invention provides an element in which there is a wavelength λ at which optical confinement due to plasmon resonance occurs in the region, and the following equations (1) and (2) are satisfied.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本開示の別の一態様において、III-V族半導体のバンドギャップエネルギーをEとしたときに、さらに以下の式(3)が成立する素子を提供する。 In another aspect of the present disclosure, there is provided an element that further satisfies the following formula (3), where E g is the band gap energy of the III-V semiconductor.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 本開示の別の一態様において、金属含有部が、III-V族半導体と金属との合金である素子を提供する。金属含有部が、III-V族半導体と金属との合金であることにより、この態様の素子は、半導体部と金属含有部との精密な位置合わせなしで製造し得る。 Another aspect of the present disclosure provides an element in which the metal-containing portion is an alloy of a III-V semiconductor and a metal. Because the metal-containing part is an alloy of a III-V semiconductor and a metal, the device of this embodiment can be manufactured without precise alignment of the semiconductor part and the metal-containing part.
 本開示の別の一態様において、1対の金属含有部間に電圧を印加するための電圧印加手段をさらに備える素子を提供する。 In another aspect of the present disclosure, an element is provided that further includes voltage application means for applying a voltage between a pair of metal-containing parts.
 本開示の別の一態様において、III-V族半導体が、Al、Ga、及びInからなる群より選択される少なくとも1種と、P及びAsからなる群より選択される少なくとも1種とからなる素子を提供する。 In another aspect of the present disclosure, the III-V group semiconductor consists of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As. Provide an element.
 本開示の別の一態様において、金属含有部が、Au、Ni、又はPtを含む素子を提供する。 Another aspect of the present disclosure provides an element in which the metal-containing portion includes Au, Ni, or Pt.
 本開示の別の一態様において、III-V族半導体が、InGaAs又はInPを含み、金属含有部が、AuとInGaAs若しくはInPとの合金、又はNiとInGaAs若しくはInPとの合金を含む素子を提供する。 Another aspect of the present disclosure provides an element in which the III-V semiconductor includes InGaAs or InP, and the metal-containing portion includes an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP. do.
 本開示の別の一態様において、半導体部に光を導入するための導波路をさらに備える素子を提供する。 In another aspect of the present disclosure, an element is provided that further includes a waveguide for introducing light into the semiconductor portion.
 本開示の別の一態様において、導波路と半導体部とが一体として一方向に延在し、導波路は、1対の金属含有部と隣接していない素子を提供する。この態様によれば、半導体部と導波路とを一体に形成し得るため、製造が容易である。 In another aspect of the present disclosure, the waveguide and the semiconductor portion extend together in one direction, and the waveguide provides an element that is not adjacent to the pair of metal-containing portions. According to this aspect, the semiconductor part and the waveguide can be integrally formed, so manufacturing is easy.
 本開示の別の一態様において、導波路が、絶縁層に対して半導体部と反対側に配置されている素子を提供する。この態様によれば、既存の導波路を有する基板上に本実施形態に係る素子を容易に形成することができる。 Another aspect of the present disclosure provides an element in which the waveguide is disposed on the side opposite to the semiconductor portion with respect to the insulating layer. According to this aspect, the element according to this embodiment can be easily formed on a substrate having an existing waveguide.
 本開示の別の一態様において、光電変換素子、光変調器又は受光器である素子を提供する。 Another aspect of the present disclosure provides an element that is a photoelectric conversion element, an optical modulator, or a light receiver.
 本開示の別の一態様において、受光器であり、半導体部が受光した際に光電流を発生させる素子を提供する。 Another aspect of the present disclosure provides an element that is a light receiver and generates a photocurrent when a semiconductor portion receives light.
 本開示の別の一態様において、素子と、素子と電気的に接続され、素子からの光電流によりスピンホール効果を発現するスピンホール素子と、を備えるフォトニックスピンレジスタを提供する。 Another aspect of the present disclosure provides a photonic spin resistor that includes an element and a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect due to a photocurrent from the element.
 本開示の別の一態様において、素子の製造方法であって、絶縁層上にIII-V族半導体層を形成する工程と、III-V族半導体層上に、互いに対向する1対の金属膜を形成することにより、絶縁層とIII-V族半導体層と金属膜とを含む積層体を得る工程と、積層体を焼成し、III-V族半導体と金属膜の少なくとも一部とを合金化させることにより、1対の金属含有部を形成する工程と、を含む製造方法を提供する。この方法によれば、半導体部と金属含有部との精密な位置合わせなしで製造し得る。 In another aspect of the present disclosure, a method for manufacturing an element includes the steps of: forming a III-V group semiconductor layer on an insulating layer; and forming a pair of metal films facing each other on the III-V group semiconductor layer. A step of obtaining a laminate including an insulating layer, a III-V group semiconductor layer, and a metal film by forming a laminate, and firing the laminate to alloy the III-V group semiconductor and at least part of the metal film. a step of forming a pair of metal-containing parts by doing so. According to this method, the semiconductor part and the metal-containing part can be manufactured without precise alignment.
 本開示の別の一態様において、絶縁層と前記III-V族半導体層と金属膜とを含む積層体を得る工程が、III-V族半導体層上に、一方向に延在するマスク部を形成する工程と、マスク部が形成されたIII-V族半導体層上に金属膜を形成することで、マスク部を挟んで互いに対向する1対の金属膜を形成する工程と、を含み、1対の金属含有部を形成する工程の後に、合金化せずに残留した金属膜を除去する工程をさらに含む、素子の製造方法を提供する。 In another aspect of the present disclosure, the step of obtaining a laminate including an insulating layer, the III-V semiconductor layer, and a metal film includes forming a mask portion extending in one direction on the III-V semiconductor layer. and a step of forming a metal film on the III-V group semiconductor layer in which the mask portion is formed to form a pair of metal films facing each other with the mask portion in between, Provided is a method for manufacturing an element, which further includes a step of removing a metal film remaining without being alloyed after the step of forming a pair of metal-containing parts.
 本発明によれば、高速で動作するか、又は寄生容量が低い素子等を提供することができる。 According to the present invention, it is possible to provide an element that operates at high speed or has low parasitic capacitance.
本発明の実施形態に係る素子の(A)概略斜視図及び(B)概略断面図を示す。1 shows (A) a schematic perspective view and (B) a schematic cross-sectional view of an element according to an embodiment of the present invention. 本発明の実施形態に係る素子を用いた単一走行キャリア素子の実現の構想を示す。2 shows a concept for realizing a single running carrier device using a device according to an embodiment of the present invention. 本発明の実施形態に係る別の態様における素子の(A)概略平面図及び(B)概略断面図を示す。FIG. 3 shows (A) a schematic plan view and (B) a schematic cross-sectional view of an element in another aspect according to an embodiment of the present invention. 本発明の実施形態に係る素子の製造方法の一例を示す。An example of a method for manufacturing an element according to an embodiment of the present invention is shown. 本発明の実施形態に係る素子の製造方法の別の一例を示す。Another example of a method for manufacturing an element according to an embodiment of the present invention is shown. 半導体と金属との合金の光学特性の測定結果の一例を示す。An example of measurement results of optical properties of an alloy of a semiconductor and a metal is shown. 本発明の実施形態に係る素子に関するシミュレーション結果の一例を示す。An example of simulation results regarding an element according to an embodiment of the present invention is shown. 本発明の実施形態に係る素子に関するシミュレーション結果の別の一例を示す。Another example of simulation results regarding the element according to the embodiment of the present invention is shown. 本発明の実施形態に係る素子の変形例を示す。A modification of the element according to the embodiment of the present invention is shown. 本発明の実施形態に係る素子の製造方法の変形例を示す。A modification of the method for manufacturing an element according to an embodiment of the present invention is shown.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」と表記する。)を、図面に基づいて説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Hereinafter, an embodiment (hereinafter referred to as "this embodiment") according to one aspect of the present invention will be described based on the drawings. In addition, in each figure, those with the same reference numerals have the same or similar configurations.
[第1実施形態]
 図1は、本実施形態に係る素子100の(A)概略斜視図及び(B)X-X線概略断面図である。素子100は絶縁層110上に配置され、一方向に延在する、III-V族半導体からなる半導体部120と、絶縁層110上に、半導体部120を挟むように、一方向に直交する方向に沿って延在し、金属又は合金からなる、1対の金属含有部130と、を備える。
[First embodiment]
FIG. 1 is (A) a schematic perspective view and (B) a schematic cross-sectional view taken along the line XX of an element 100 according to the present embodiment. The element 100 includes a semiconductor section 120 made of a III-V semiconductor arranged on an insulating layer 110 and extending in one direction, and a semiconductor section 120 made of a III-V semiconductor arranged on the insulating layer 110 in a direction perpendicular to the one direction so as to sandwich the semiconductor section 120 therebetween. and a pair of metal-containing parts 130 that extend along the metal or alloy.
 絶縁層110は、絶縁性を有する層である。絶縁層110は、例えば酸化アルミニウム(Al)、酸化ケイ素(SiO)、酸化ハフニウム(HfO)等からなる層であり、典型的には酸化アルミニウムからなる層である。 The insulating layer 110 is a layer having insulating properties. The insulating layer 110 is a layer made of, for example, aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), etc., and is typically a layer made of aluminum oxide.
 半導体部120は、絶縁層110上に配置され、一方向に延在し、III-V族半導体からなる。また、1対の金属含有部130は、絶縁層110の、半導体部120が配置されている面(以下、「第1主面」ともいう。)上に、半導体部120を挟むように、一方向に直交する方向に沿って延在する。したがって、線状の半導体部120の両側に、第1の金属含有部131及び第2の金属含有部132が、電気的かつ物理的に接触して配置される。これにより、プラズモン導波路を構成する。なお、1対の金属含有部130は、半導体部120においてプラズモン共鳴による光閉じ込めが生じ、かつ、金属含有部130と半導体部120との間で電子のやり取りが生じる限り、その他の構成を有していてよい。 The semiconductor section 120 is arranged on the insulating layer 110, extends in one direction, and is made of a III-V group semiconductor. Further, the pair of metal-containing parts 130 are arranged on the surface of the insulating layer 110 on which the semiconductor part 120 is arranged (hereinafter also referred to as "first main surface") so as to sandwich the semiconductor part 120 therebetween. extends along a direction perpendicular to the direction. Therefore, the first metal-containing part 131 and the second metal-containing part 132 are arranged on both sides of the linear semiconductor part 120 in electrical and physical contact. This constitutes a plasmon waveguide. Note that the pair of metal-containing parts 130 may have other configurations as long as optical confinement occurs in the semiconductor part 120 due to plasmon resonance and electron exchange occurs between the metal-containing part 130 and the semiconductor part 120. It's okay to stay.
 半導体部120に光が入射すると、表面プラズモンポラリトンが発生し、入射した光が半導体部120内に閉じ込められる。素子100は、例えば表面プラズモンにより発生したホットキャリアを光電流として検出することで、光電変換素子、受光器等として利用される。 When light enters the semiconductor section 120, surface plasmon polariton is generated, and the incident light is confined within the semiconductor section 120. The element 100 is used as a photoelectric conversion element, a light receiver, etc. by detecting hot carriers generated by surface plasmon as photocurrent, for example.
 非特許文献1及び非特許文献2に開示されるような、従来のプラズモン導波路受光器では、表面プラズモンにより、熱電子及び熱正孔が発生し、それにより光電流が発生する。一般的に電子は、正孔よりも極めて速く移動するため、受光器の動作速度は、正孔の移動が支配的となる(光電変換素子、光変調器でも同様である)。 In conventional plasmon waveguide light receivers such as those disclosed in Non-Patent Document 1 and Non-Patent Document 2, surface plasmons generate hot electrons and hot holes, thereby generating photocurrent. Generally, electrons move much faster than holes, so the movement of holes dominates the operating speed of a light receiver (the same applies to photoelectric conversion elements and optical modulators).
 本実施形態に係る素子100は、半導体部120がIII-V族半導体からなるため、半導体部120と金属含有部130との界面のエネルギー障壁を制御することができ、例えば、熱電子のみにより光電流が発生する、単一走行キャリア受光器を提供し得る。この構想について、図2を用いて説明する。 In the device 100 according to this embodiment, since the semiconductor portion 120 is made of a III-V group semiconductor, it is possible to control the energy barrier at the interface between the semiconductor portion 120 and the metal-containing portion 130. A single traveling carrier receiver may be provided in which a current is generated. This concept will be explained using FIG. 2.
 図2は、素子100において、第1の金属含有部131に駆動電圧Vbiasを印加している場合に光電流が生じ得る3つのプロセスを示す図である。図2において、III-V族半導体(半導体部120)の価電子帯上部及び伝導帯底部のエネルギーを、それぞれE及びEとし、第1の金属含有部131のフェルミ準位をEf1とし、第2の金属含有部132のフェルミ準位をEf2とし、III-V族半導体(半導体部120)のバンドギャップエネルギーをEとして示している。 FIG. 2 is a diagram illustrating three processes in which a photocurrent may occur when a driving voltage V bias is applied to the first metal-containing portion 131 in the device 100. In FIG. 2, the energies at the top of the valence band and the bottom of the conduction band of the III-V group semiconductor (semiconductor portion 120) are E V and E C , respectively, and the Fermi level of the first metal-containing portion 131 is E f1 . , the Fermi level of the second metal-containing portion 132 is shown as E f2 , and the band gap energy of the III-V group semiconductor (semiconductor portion 120) is shown as E g .
 素子100において光電流が生じ得る3つのプロセスとしては、図2において(1)で示す、第1の金属含有部131で生じた熱正孔が半導体部120の価電子帯に注入されるプロセス;図2において(2)で示す、第2の金属含有部132で生じた熱電子が半導体部120の伝導帯に注入されるプロセス;及び図2において(3)で示す、半導体部120の価電子帯から伝導帯に電子が励起され、電子及び正孔が生じるプロセスが挙げられる。 The three processes that can generate a photocurrent in the element 100 include a process in which hot holes generated in the first metal-containing portion 131 are injected into the valence band of the semiconductor portion 120, shown in (1) in FIG. A process in which thermionic electrons generated in the second metal-containing portion 132 are injected into the conduction band of the semiconductor portion 120, shown as (2) in FIG. Examples include processes in which electrons are excited from the band to the conduction band, producing electrons and holes.
 素子100の動作速度を高めるためには、正孔による光電流の発生を抑制することが好ましく、すなわち、図2における(1)のプロセス、及び/又は(3)のプロセスを抑制することが好ましい。半導体部120に入射し、表面プラズモンポラリトンを生じさせる光の波長をλとし、当該光のエネルギーをEλとすると、以下の式(1)及び(2)が成立することが好ましい。以下の式(1)は、図2における(1)のプロセスが生じない、又は実質的に生じないことを意味し、以下の式(2)は、図2における(2)のプロセスが生じることを意味する。
Figure JPOXMLDOC01-appb-M000005
In order to increase the operating speed of the element 100, it is preferable to suppress the generation of photocurrent due to holes, that is, it is preferable to suppress the process (1) and/or the process (3) in FIG. . When the wavelength of light that enters the semiconductor portion 120 and causes surface plasmon polaritons is λ, and the energy of the light is , it is preferable that the following equations (1) and (2) hold true. The following formula (1) means that the process (1) in Figure 2 does not occur or does not substantially occur, and the following formula (2) means that the process (2) in Figure 2 does not occur. means.
Figure JPOXMLDOC01-appb-M000005
 また、さらに以下の式(3)が成立することがより好ましい。以下の式(3)は、図2における(3)のプロセスが生じない、又は実質的に生じないことを意味する。
Figure JPOXMLDOC01-appb-M000006
Furthermore, it is more preferable that the following equation (3) holds true. Equation (3) below means that the process (3) in FIG. 2 does not occur or does not substantially occur.
Figure JPOXMLDOC01-appb-M000006
 なお、上記式における光の波長λは特に限定されないが、例えば1550nmであってよく、このときのEλは、0.80eVである。光の波長λは赤外領域であってよい。 Note that the wavelength λ of the light in the above equation is not particularly limited, but may be, for example, 1550 nm, and E λ in this case is 0.80 eV. The wavelength λ of the light may be in the infrared region.
 本実施形態に係る素子100は、半導体部120がIII-V族半導体からなるため、図2における(1)のプロセス、及び/又は(3)のプロセスを抑制させながら、図2における(2)のプロセスを生じさせることができる。すなわち、III-V族半導体は、金属又は合金との接触界面において、フェルミエネルギーピニングの効果により、それぞれ、上記式(1)及び(2)の右辺の値(それぞれ、熱正孔及び熱電子のショットキー障壁のエネルギーに対応する)を制御することができる。したがって、素子100は、動作速度が速く、寄生容量が低い素子を実現し得る。 In the device 100 according to this embodiment, since the semiconductor portion 120 is made of a III-V group semiconductor, the process (2) in FIG. process can occur. In other words, at the contact interface with a metal or alloy, a III-V semiconductor can increase the values on the right-hand side of the above equations (1) and (2) (respectively, thermal holes and thermal electrons) due to the effect of Fermi energy pinning. (corresponding to the energy of the Schottky barrier) can be controlled. Therefore, the element 100 can realize an element with high operating speed and low parasitic capacitance.
 半導体部120を構成する材料は、III-V族半導体であれば特に限定されない。III-V族半導体とは、III(13)族元素及びV(15)族元素からなる半導体を意味する。III-V族半導体の例としては、例えば、Al、Ga、及びInからなる群より選択される少なくとも1種と、P及びAsからなる群より選択される少なくとも1種とからなる半導体が挙げられる。具体的には、InP、InGaAs、InGaAsP、AlInGaAsP、AlInGaAs、GaAs、及びAlGaAs等が挙げられる。これらの中でも、InP、及びInGaAsが好ましい。なお、III-V族半導体はドープされていてもよい。 The material constituting the semiconductor section 120 is not particularly limited as long as it is a III-V group semiconductor. The III-V group semiconductor means a semiconductor consisting of a III(13) group element and a V(15) group element. Examples of III-V group semiconductors include semiconductors made of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As. . Specific examples include InP, InGaAs, InGaAsP, AlInGaAsP, AlInGaAs, GaAs, and AlGaAs. Among these, InP and InGaAs are preferred. Note that the III-V semiconductor may be doped.
 例えば、半導体部120を構成する材料としてInPを用いる場合、金属含有部に含まれる金属の種類に大きく左右されず、上記式(1)及び(2)の右辺の値(それぞれ、熱正孔及び熱電子のショットキー障壁のエネルギーに対応する)は、約0.9eV及び約0.4eVである。これは、InPの界面欠陥におけるフェルミレベルピニングの効果のためである。また、上記式(3)の右辺の値(InPのバンドギャップのエネルギーに対応する)は、約1.3eVである。したがって波長λが1550nmであり、半導体部120にInPを用いるとき、理想的には、上記式(1)~(3)が成立する。 For example, when InP is used as the material constituting the semiconductor part 120, the values on the right side of the above equations (1) and (2) (thermal holes and (corresponding to the energy of the Schottky barrier for thermionic electrons) are approximately 0.9 eV and approximately 0.4 eV. This is due to the effect of Fermi level pinning on the interface defects of InP. Further, the value on the right side of the above equation (3) (corresponding to the energy of the band gap of InP) is about 1.3 eV. Therefore, when the wavelength λ is 1550 nm and InP is used for the semiconductor portion 120, ideally, the above equations (1) to (3) hold true.
 半導体部120の幅(図1(B)においてwで示す)は、表面プラズモンが生じ得るサイズであれば特に限定されず、例えば300nm以下、250nm以下、200nm以下、150nm以下、又は100nm以下であってよい。幅wは、例えば10nm以上、20nm以上、30nm以上、又は50nm以上であってよい。幅wが小さいほど、表面プラズモンによる閉じ込め効果が高くなり、素子の感度を高めることができる。また、幅wが小さいほど、半導体部120におけるキャリアの移動距離が短くなるため、動作速度を高速化することができる。 The width of the semiconductor portion 120 (indicated by w in FIG. 1B) is not particularly limited as long as it is a size that allows surface plasmon to occur, and may be, for example, 300 nm or less, 250 nm or less, 200 nm or less, 150 nm or less, or 100 nm or less. It's fine. The width w may be, for example, 10 nm or more, 20 nm or more, 30 nm or more, or 50 nm or more. The smaller the width w, the higher the confinement effect by surface plasmons, and the higher the sensitivity of the element. Furthermore, the smaller the width w, the shorter the distance that carriers move in the semiconductor section 120, so the operating speed can be increased.
 金属含有部130を構成する材料は、金属又は合金であれば特に限定されない。金属含有部130に含まれる金属は、表面プラズモンポラリトンを生じ得る金属であれば特に限定されず、例えば、Au、Ni、及びPtが挙げられる。金属含有部130に含まれる金属又は合金は、使用する光の波長において誘電率が負になり得るものであってよく、例えば赤外領域において誘電率が負になり得るものであってよく、1550nmにおける誘電率が負であるものであってよい。 The material constituting the metal-containing portion 130 is not particularly limited as long as it is a metal or an alloy. The metal contained in the metal-containing portion 130 is not particularly limited as long as it can generate surface plasmon polariton, and examples thereof include Au, Ni, and Pt. The metal or alloy contained in the metal-containing portion 130 may have a negative dielectric constant at the wavelength of the light used, for example, may have a negative dielectric constant in the infrared region, such as 1550 nm. The dielectric constant may be negative.
 製造が容易である観点からは、金属含有部130は、半導体部120を構成するIII-V族半導体と金属との合金であることが好ましい。すなわち、この態様によれば、半導体部と金属含有部との精密な位置合わせを省略して、素子100を製造することができる。本実施形態に係る素子の製造方法については後述する。 From the viewpoint of ease of manufacture, the metal-containing portion 130 is preferably an alloy of a III-V group semiconductor that constitutes the semiconductor portion 120 and a metal. That is, according to this aspect, the element 100 can be manufactured without precise alignment of the semiconductor part and the metal-containing part. A method for manufacturing the element according to this embodiment will be described later.
 第1の金属含有部131を構成する材料と、第2の金属含有部132を構成する材料とは、同じであってもよく異なっていてもよい。例えば、第1の金属含有部131及び第2の金属含有部132は、半導体部120を構成するIII-V族半導体と金属との合金であってよい。この場合、合金を形成する金属は、第1の金属含有部131と第2の金属含有部132とで、同じであってもよく異なっていてもよい。 The material constituting the first metal-containing portion 131 and the material constituting the second metal-containing portion 132 may be the same or different. For example, the first metal-containing portion 131 and the second metal-containing portion 132 may be an alloy of a III-V group semiconductor forming the semiconductor portion 120 and a metal. In this case, the metals forming the alloy in the first metal-containing portion 131 and the second metal-containing portion 132 may be the same or different.
 一実施形態において、半導体部120のIII-V族半導体が、InGaAs又はInPを含み、金属含有部130が、AuとInGaAs若しくはInPとの合金、又はNiとInGaAs若しくはInPとの合金を含んでよい。一実施形態において、半導体部120のIII-V族半導体が、InGaAs又はInPであり、金属含有部130が、AuとInGaAs若しくはInPとの合金、又はNiとInGaAs若しくはInPとの合金であってよい。 In one embodiment, the III-V semiconductor of the semiconductor portion 120 may include InGaAs or InP, and the metal-containing portion 130 may include an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP. . In one embodiment, the III-V semiconductor of the semiconductor portion 120 may be InGaAs or InP, and the metal-containing portion 130 may be an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP. .
 素子100は、半導体部120に光を導入するための導波路140をさらに備える。導波路140は、半導体部120に光を導入するために、絶縁層110の第1主面上において、半導体部120の一端に接続されている。図1において、導波路140と半導体部120とが一体として一方向に延在し、導波路140は、1対の金属含有部130と隣接していない。 The element 100 further includes a waveguide 140 for introducing light into the semiconductor section 120. The waveguide 140 is connected to one end of the semiconductor section 120 on the first main surface of the insulating layer 110 in order to introduce light into the semiconductor section 120. In FIG. 1, the waveguide 140 and the semiconductor part 120 extend in one direction as one, and the waveguide 140 is not adjacent to the pair of metal-containing parts 130.
 導波路140の幅は、半導体部120の幅wより大きくてよく、導波路140と半導体部120との接合部分は、半導体部120側に向けて幅が小さくなるテーパ形状となっていてよい。 The width of the waveguide 140 may be larger than the width w of the semiconductor section 120, and the joint portion between the waveguide 140 and the semiconductor section 120 may have a tapered shape in which the width becomes smaller toward the semiconductor section 120 side.
 導波路140を構成する材料は、フォトニクスの分野において導波路として用いられ得る材料であってよい。製造が容易である観点からは、導波路140は、半導体部120と同一の材料で構成されていてよい。 The material constituting the waveguide 140 may be a material that can be used as a waveguide in the field of photonics. From the viewpoint of ease of manufacture, the waveguide 140 may be made of the same material as the semiconductor section 120.
 素子100は、1対の金属含有部130間に電圧を印加するための電圧印加手段をさらに備えてよい。例えば、第2の金属含有部132に対して第1の金属含有部131が正の電位となるような駆動電圧(第1の金属含有部131から第2の金属含有部132方向に電子が流れるような駆動電圧)を印加し、第2の金属含有部132に接続された外部回路に光電流を発生させる構成としてもよい。 The element 100 may further include voltage application means for applying a voltage between the pair of metal-containing parts 130. For example, a driving voltage that makes the first metal-containing part 131 have a positive potential with respect to the second metal-containing part 132 (electrons flow from the first metal-containing part 131 to the second metal-containing part 132) is applied. A configuration may also be adopted in which a photocurrent is generated in an external circuit connected to the second metal-containing portion 132 by applying a driving voltage such as that shown in FIG.
[第2実施形態]
 図3は、本実施形態に係る素子200の(A)概略斜視図及び(B)X-X線概略断面図である。素子200は絶縁層210上に配置され、一方向に延在する、III-V族半導体からなる半導体部220と、絶縁層210上に、半導体部220を挟むように、一方向に直交する方向に沿って延在し、金属又は合金からなる、1対の金属含有部230と、を備える。図3に示す素子200は、図1に示す素子100と比較して、主に導波路240の配置位置が異なる。以下では、図1に示す素子100からの変更点に係る素子200の構成を説明し、その他の説明は省略する。省略した構成について、図1に示す素子100における対応する構成と同一又は同様の構成とすることができる。
[Second embodiment]
FIG. 3 is (A) a schematic perspective view and (B) a schematic cross-sectional view taken along the line XX of the element 200 according to the present embodiment. The element 200 is arranged on an insulating layer 210 and includes a semiconductor portion 220 made of a III-V semiconductor that extends in one direction, and a semiconductor portion 220 made of a III-V semiconductor that is placed on the insulating layer 210 in a direction perpendicular to the one direction so as to sandwich the semiconductor portion 220 therebetween. a pair of metal-containing parts 230 extending along and made of metal or an alloy. The element 200 shown in FIG. 3 differs from the element 100 shown in FIG. 1 mainly in the arrangement position of the waveguide 240. Below, the configuration of the element 200 according to changes from the element 100 shown in FIG. 1 will be explained, and other explanations will be omitted. The omitted configurations may be the same as or similar to the corresponding configurations in the element 100 shown in FIG. 1.
 絶縁層210は、絶縁性を有する層である。絶縁層210は、例えば酸化アルミニウム(Al)、酸化ケイ素(SiO)、酸化ハフニウム(HfO)等の薄膜であり、典型的には酸化アルミニウムの薄膜である。絶縁層210の厚みは、素子の効率(例えば、受光器としての感度、及び光電変換素子又は光変調器としての変調効率等)を向上させるために、可能な限り薄くすることが望ましい。量子トンネル効果によるリーク電流増加を抑制するために、例えば3nm以上としてもよい。絶縁層210の厚さは、例えば5nm~10nm程度としてもよい。 The insulating layer 210 is a layer having insulating properties. The insulating layer 210 is, for example, a thin film of aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), or the like, and is typically a thin film of aluminum oxide. The thickness of the insulating layer 210 is desirably made as thin as possible in order to improve the efficiency of the element (for example, sensitivity as a light receiver, modulation efficiency as a photoelectric conversion element or optical modulator, etc.). In order to suppress an increase in leakage current due to the quantum tunnel effect, the thickness may be, for example, 3 nm or more. The thickness of the insulating layer 210 may be, for example, about 5 nm to 10 nm.
 素子200は、半導体部220に光を導入するための導波路240をさらに備える。導波路240は、半導体部220に光を導入するために、絶縁層210の第1主面とは反対側の面(以下、「第2主面」ともいう。)上に配置されている。図3において、導波路240は、半導体部220が延在する方向と同じ方向に延在し、平面視において半導体部220と重なり合うように配置されている。 The element 200 further includes a waveguide 240 for introducing light into the semiconductor section 220. The waveguide 240 is arranged on the surface of the insulating layer 210 opposite to the first main surface (hereinafter also referred to as "second main surface") in order to introduce light into the semiconductor section 220. In FIG. 3, the waveguide 240 extends in the same direction as the semiconductor section 220 and is arranged to overlap the semiconductor section 220 in plan view.
 導波路240の幅は、半導体部220の幅wより大きくてよい。金属含有部230は、半導体部220と隣接しないテーパ部230Tを有していてよい。テーパ部230Tにおいて、1対の金属含有部230間の間隔が、素子200の平面視において導波路240側から半導体部220側にかけて狭くなるように構成されていてよい。 The width of the waveguide 240 may be larger than the width w of the semiconductor section 220. The metal-containing portion 230 may have a tapered portion 230T that is not adjacent to the semiconductor portion 220. In the tapered portion 230T, the distance between the pair of metal-containing portions 230 may be configured to become narrower from the waveguide 240 side to the semiconductor portion 220 side in a plan view of the element 200.
 導波路240を構成する材料は、フォトニクスの分野において導波路として用いられ得る材料であってよい。図3に示す実施形態において、素子200は、半導体部220と導波路240が物理的に接触していないため、別々の材料で構成してもよい。導波路240は、例えばシリコン系の材料で構成されていてよい。 The material constituting the waveguide 240 may be a material that can be used as a waveguide in the field of photonics. In the embodiment shown in FIG. 3, the element 200 may be constructed of separate materials since the semiconductor portion 220 and the waveguide 240 are not in physical contact. The waveguide 240 may be made of, for example, a silicon-based material.
 素子200は、導波路240の周囲に、導波路240よりも屈折率が低い材料で構成されているクラッド部250を備える。クラッド部250は、例えば中空であってよく、SiO等の材料により構成された部分であってもよい。 The element 200 includes, around the waveguide 240, a cladding portion 250 made of a material having a lower refractive index than the waveguide 240. The cladding portion 250 may be hollow, for example, or may be made of a material such as SiO 2 .
 素子200は、1対の金属含有部230間に電圧を印加するための電圧印加手段をさらに備えてよい。例えば、第2の金属含有部232に対して第1の金属含有部231が正の電位となるような駆動電圧(第1の金属含有部231から第2の金属含有部232方向に電子が流れるような駆動電圧)を印加し、第2の金属含有部232に接続された外部回路に光電流を発生させる構成としてもよい。 The element 200 may further include voltage application means for applying a voltage between the pair of metal-containing parts 230. For example, a driving voltage that makes the first metal-containing part 231 have a positive potential with respect to the second metal-containing part 232 (electrons flow from the first metal-containing part 231 to the second metal-containing part 232 A configuration may also be adopted in which a photocurrent is generated in an external circuit connected to the second metal-containing portion 232 by applying a driving voltage such as that shown in FIG.
[素子の製造方法]
 図4及び5を用いて、本実施形態に係る素子の製造方法を説明する。ただし、本実施形態に係る素子の製造方法として、以下に詳述する方法以外の方法を用いることができることは言うまでもない。
[Element manufacturing method]
A method for manufacturing an element according to this embodiment will be explained using FIGS. 4 and 5. However, it goes without saying that methods other than those described in detail below can be used as a method for manufacturing the element according to this embodiment.
 本実施形態に係る素子の製造方法は、絶縁層上にIII-V族半導体層を形成する工程と、III-V族半導体層上に、互いに対向する1対の金属膜を形成することにより、絶縁層とIII-V族半導体層と金属膜とを含む積層体を得る工程と、積層体を焼成し、III-V族半導体と金属膜の少なくとも一部とを合金化させることにより、1対の金属含有部を形成する工程と、を含む。 The method for manufacturing the device according to this embodiment includes the steps of forming a III-V group semiconductor layer on the insulating layer, and forming a pair of metal films facing each other on the III-V group semiconductor layer. A step of obtaining a laminate including an insulating layer, a III-V semiconductor layer, and a metal film, and firing the laminate to alloy the III-V semiconductor and at least a portion of the metal film. forming a metal-containing portion.
 図4は、図1に示す素子100の製造方法の一例を示す図である。まず、第1工程として、図4(A)に示すように、絶縁層110上にIII-V族半導体層410を形成する。III-V族半導体層410の形成方法としては、特に限定されず、種々の半導体層の成膜方法を用いることができる。例えば、ウェハボンディング、有機金属気相成長法(Metal-Organic Vapor Phase Epitaxy)法、MOCVD(Metal-Organic Chemical Vapor Deposition)法等を用いてよい。 FIG. 4 is a diagram showing an example of a method for manufacturing the element 100 shown in FIG. 1. First, as a first step, a III-V semiconductor layer 410 is formed on the insulating layer 110, as shown in FIG. 4(A). The method for forming the III-V semiconductor layer 410 is not particularly limited, and various semiconductor layer forming methods can be used. For example, wafer bonding, Metal-Organic Vapor Phase Epitaxy, MOCVD (Metal-Organic Chemical Vapor Deposition), or the like may be used.
 III-V族半導体層410のパターニングには、例えば、電子線描画装置や紫外線照射装置等のリソグラフィ装置を用いてよい。パターニングの後、ドライエッチングやウェットエッチングにより所望のパターンに加工されたIII-V族半導体層410を得ることができる。 For patterning the III-V group semiconductor layer 410, a lithography apparatus such as an electron beam lithography apparatus or an ultraviolet irradiation apparatus may be used, for example. After patterning, a III-V semiconductor layer 410 processed into a desired pattern can be obtained by dry etching or wet etching.
 第2工程として、図4(B)に示すように、互いに対向する1対の金属膜420を形成することにより、絶縁層110とIII-V族半導体層410と金属膜420とを含む積層体を得る。金属膜420の形成方法としては、特に限定されず、種々の金属膜の成膜方法を用いることができる。例えば、スパッタリング、蒸着等を用いてよい。金属膜420の厚さは、特に限定されないが、例えば50nm~500nmであってよい。 As a second step, as shown in FIG. 4B, a stacked layer including the insulating layer 110, the III-V semiconductor layer 410, and the metal film 420 is formed by forming a pair of metal films 420 facing each other. get. The method for forming the metal film 420 is not particularly limited, and various metal film forming methods can be used. For example, sputtering, vapor deposition, etc. may be used. The thickness of the metal film 420 is not particularly limited, but may be, for example, 50 nm to 500 nm.
 金属膜420のパターニングには、例えば、電子線描画装置や紫外線露光装置等のリソグラフィ装置を用いてよい。パターニングの後、ドライエッチングやウェットエッチングにより所望のパターンに加工された金属膜420を得ることができる。金属膜420のパターニングにおいて、次の工程で、III-V族半導体と金属とを合金化させる際に、金属が面方向に拡散して、金属膜のパターニングされた領域より広い領域に合金が形成され得ることを考慮して、金属膜420のパターンを設計してよい。 For patterning the metal film 420, for example, a lithography apparatus such as an electron beam lithography apparatus or an ultraviolet exposure apparatus may be used. After patterning, a metal film 420 processed into a desired pattern can be obtained by dry etching or wet etching. In patterning the metal film 420, in the next step, when the III-V group semiconductor and the metal are alloyed, the metal diffuses in the plane direction and an alloy is formed in a wider area than the patterned area of the metal film. The pattern of the metal film 420 may be designed in consideration of the possibility that the metal film 420 may be
 第3工程として、図4(C)に示すように、第2工程で得られた積層体を焼成し、III-V族半導体と金属膜の少なくとも一部とを合金化させることにより、1対の金属含有部130を形成する。金属膜は、その全部がIII-V族半導体と合金化してもよいし、その一部がIII-V族半導体と合金化して、焼成後に合金化していない部分が残留してもよい。焼成温度及び焼成時間は、III-V族半導体及び金属の種類に応じて適宜選択してよい。 In the third step, as shown in FIG. 4(C), the laminate obtained in the second step is fired to alloy the III-V group semiconductor and at least a portion of the metal film, thereby forming a pair. A metal-containing portion 130 is formed. The entire metal film may be alloyed with the III-V group semiconductor, or a portion thereof may be alloyed with the III-V group semiconductor, and an unalloyed portion may remain after firing. The firing temperature and firing time may be appropriately selected depending on the type of III-V semiconductor and metal.
 本実施形態に係る素子の製造方法は、図4を用いて説明した上記各工程以外の工程を含んでいてもよい。例えば、本実施形態に係る素子の製造方法は、III-V族半導体層410を形成した後、金属膜420の形成前に、III-V族半導体層410の表面処理工程を含んでいてもよい。表面処理工程は、III-V族半導体と金属との合金化を促進するために行ってよい。また、本実施形態に係る素子の製造方法は、III-V族半導体と金属との合金化後に、合金化されなかった金属膜を除去する工程を含んでいてもよい。 The method for manufacturing an element according to this embodiment may include steps other than the above-mentioned steps described using FIG. 4. For example, the method for manufacturing an element according to the present embodiment may include a step of surface treatment of the III-V semiconductor layer 410 after forming the III-V semiconductor layer 410 and before forming the metal film 420. . A surface treatment step may be performed to promote alloying of the III-V semiconductor and metal. Further, the method for manufacturing an element according to the present embodiment may include a step of removing the unalloyed metal film after alloying the III-V group semiconductor and the metal.
 図5は、図3に示す素子200の製造方法の一例を示す図である。図5に示す製造方法によれば、既存の導波路を有する基板上に本実施形態に係る素子を容易に形成することができる。 FIG. 5 is a diagram showing an example of a method for manufacturing the element 200 shown in FIG. 3. According to the manufacturing method shown in FIG. 5, the element according to this embodiment can be easily formed on a substrate having an existing waveguide.
 まず、第1工程として、図5(A)に示すように、絶縁層522上にIII-V族半導体層510が形成された積層体を、導波路240及びクラッド部250を有し、表面に絶縁層521が形成された基板に接合する。接合方法としては、例えば、ウェハボンディング等を用いてよい。これにより、図5(B)に示すように、絶縁層210の第1主面にIII-V族半導体層510を有し、第1主面とは反対側の第2主面に導波路240及びクラッド部250を有する積層体が得られる。 First, as a first step, as shown in FIG. It is bonded to a substrate on which an insulating layer 521 is formed. As the bonding method, for example, wafer bonding or the like may be used. As a result, as shown in FIG. 5B, the III-V semiconductor layer 510 is provided on the first main surface of the insulating layer 210, and the waveguide 240 is provided on the second main surface opposite to the first main surface. A laminate having a cladding portion 250 and a cladding portion 250 is obtained.
 第2工程として、図5(C)に示すように、III-V族半導体層510を覆うように、マスク層530を形成する。マスク層530は、例えばプラズマ励起化学気相成膜(PECVD)等により形成されるSiO層であってよい。 As a second step, as shown in FIG. 5C, a mask layer 530 is formed to cover the III-V semiconductor layer 510. The mask layer 530 may be, for example, a SiO 2 layer formed by plasma-enhanced chemical vapor deposition (PECVD) or the like.
 第3工程として、図5(D)に示すように、互いに対向する1対の金属膜540を形成することにより、絶縁層210とIII-V族半導体層510と金属膜540とを含む積層体を得る。金属膜540の形成方法としては、特に限定されず、種々の金属膜の成膜方法を用いることができる。例えば、スパッタリング、蒸着、その他のパッド形成に用いられる方法等を用いてよい。 As a third step, as shown in FIG. 5D, a stacked layer including the insulating layer 210, the III-V semiconductor layer 510, and the metal film 540 is formed by forming a pair of metal films 540 facing each other. get. The method for forming the metal film 540 is not particularly limited, and various metal film forming methods can be used. For example, sputtering, vapor deposition, and other methods used for pad formation may be used.
 第4工程として、図5(E)に示すように、第3工程で得られた積層体を焼成し、III-V族半導体と金属膜の少なくとも一部とを合金化させることにより、1対の金属含有部230を形成する。金属膜は、その全部がIII-V族半導体と合金化してもよいし、その一部がIII-V族半導体と合金化して、焼成後に合金化していない部分が残留してもよい。焼成温度及び焼成時間は、III-V族半導体及び金属の種類に応じて適宜選択してよい。 As the fourth step, as shown in FIG. 5(E), the laminate obtained in the third step is fired to alloy the III-V group semiconductor and at least a portion of the metal film, thereby forming a pair. A metal-containing portion 230 is formed. The entire metal film may be alloyed with the III-V group semiconductor, or a portion thereof may be alloyed with the III-V group semiconductor, and an unalloyed portion may remain after firing. The firing temperature and firing time may be appropriately selected depending on the type of III-V semiconductor and metal.
 本実施形態に係る素子の製造方法は、図5を用いて説明した上記各工程以外の工程を含んでいてもよい。例えば、本実施形態に係る素子の製造方法は、III-V族半導体層510を形成した後、マスク層530の形成前に、III-V族半導体層510の表面処理工程を含んでいてもよい。表面処理工程は、III-V族半導体と金属との合金化を促進するために行ってよい。また、本実施形態に係る素子の製造方法は、III-V族半導体と金属との合金化後に、マスク層530及び合金化されなかった金属膜540を除去する工程を含んでいてもよい。 The method for manufacturing an element according to this embodiment may include steps other than the above-mentioned steps described using FIG. 5. For example, the method for manufacturing an element according to the present embodiment may include a surface treatment step of the III-V semiconductor layer 510 after forming the III-V semiconductor layer 510 and before forming the mask layer 530. . A surface treatment step may be performed to promote alloying of the III-V semiconductor and metal. Further, the method for manufacturing an element according to this embodiment may include a step of removing the mask layer 530 and the unalloyed metal film 540 after alloying the III-V semiconductor and the metal.
[用途]
 本実施形態に係る素子は、光電変換素子、光変調器又は受光器として用い得る。
 例えば、本実施形態に係る素子は、図1に示す素子100を例にして説明すると、第1の金属含有部131と第2の金属含有部132との間に、第1の金属含有部131の電位が正になるように、駆動電圧を印加し、第2の金属含有部132からの光電流を検出することにより、受光器として用い得る。
[Application]
The element according to this embodiment can be used as a photoelectric conversion element, an optical modulator, or a light receiver.
For example, in the device according to this embodiment, taking the device 100 shown in FIG. 1 as an example, the first metal-containing portion 131 It can be used as a light receiver by applying a driving voltage so that the potential of the second metal-containing portion 132 becomes positive and detecting the photocurrent from the second metal-containing portion 132.
 あるいは、本実施形態に係る素子は、図1に示す素子100を例にして説明すると、第1の金属含有部131と第2の金属含有部132との間に駆動電圧を印加しながら光を入射させると、電界吸収型光変調器として用い得る。光変調器として用いる場合、半導体部120は、InGaAsPを用いるか、多重量子井戸構造(MQS)とすることが好ましい。 Alternatively, the element according to the present embodiment may be explained using the element 100 shown in FIG. 1 as an example. When made incident, it can be used as an electro-absorption optical modulator. When used as an optical modulator, the semiconductor section 120 is preferably made of InGaAsP or has a multiple quantum well structure (MQS).
 本実施形態に係る素子を受光器として用いる場合、本実施形態に係る素子と、かかる素子と電気的に接続され、かかる素子からの光電流によりスピンホール効果を発現するスピンホール素子と、を備えるフォトニックスピンレジスタを提供し得る。プラズモン導波路受光器を備えるフォトニックスピンレジスタの詳細の構造については、国際公開第2022/158545号を参照することができる。 When the element according to this embodiment is used as a light receiver, it includes the element according to this embodiment and a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect by photocurrent from the element. A photonic spin register may be provided. For the detailed structure of the photonic spin register including a plasmon waveguide light receiver, reference can be made to International Publication No. 2022/158545.
 かかるフォトニックスピンレジスタは、一方向に延在する形状の磁性体層を有するシフトレジスタ部と、直列に入力されたパルス振幅変調された光信号を受光して光電流に変換する受光器(本実施形態に係る素子)と、受光器に電気的に接続され、磁性体層上の一部の領域に積層され、受光器からの光電流が流れることによりスピンホール効果を発現するスピンホール素子とを備えてよい。スピンホール素子に光電流が流れると、スピン軌道トルクが磁性体層の磁区の磁気秩序に働くことによりスピン情報を書き込む。シフトレジスタ部に一方向のシフト電流を流すと、磁性体層内で磁壁が移動し、磁区に書き込まれたスピン情報が移動して磁性体層にバッファされる。 Such a photonic spin register consists of a shift register section having a magnetic layer extending in one direction, and a photoreceiver section (main unit) that receives a pulse amplitude modulated optical signal input in series and converts it into a photocurrent. an element according to an embodiment), and a spin Hall element that is electrically connected to a photoreceiver, is laminated on a part of the magnetic layer, and exhibits a spin Hall effect when a photocurrent from the photoreceptor flows. may be provided. When a photocurrent flows through the spin Hall element, spin information is written by the spin-orbit torque acting on the magnetic order of the magnetic domains of the magnetic layer. When a unidirectional shift current is applied to the shift register section, the domain wall moves within the magnetic layer, and spin information written in the magnetic domain moves and is buffered in the magnetic layer.
 本実施形態に係る素子の動作速度は、例えば100GHz以上、200GHz以上、400GHz以上、500GHz以上、又は1THz以上であってよい。動作速度の上限は、特に限定されないが、例えば10THz、5THzであってよい。 The operating speed of the element according to this embodiment may be, for example, 100 GHz or more, 200 GHz or more, 400 GHz or more, 500 GHz or more, or 1 THz or more. The upper limit of the operating speed is not particularly limited, but may be, for example, 10 THz or 5 THz.
 フォトニックスピンレジスタにおいて、1fF程度の寄生容量の光検出器と100Ωの負荷抵抗との組み合わせを用いると、RC時定数で決まる動作速度は1THz近くになる。一方、動作速度が1THz近くになると、キャリアが受光器中で走行する時間で動作速度が決まるようになる。キャリアの移動時間は、半導体部における移動時間が支配的である。本実施形態に係る素子は、半導体部がIII-V族半導体からなるため、半導体部におけるキャリア速度が速く、半導体部における移動時間を短縮できる点でも好ましい。 In a photonic spin resistor, if a photodetector with a parasitic capacitance of about 1 fF and a load resistance of 100 Ω are used in combination, the operating speed determined by the RC time constant will be close to 1 THz. On the other hand, when the operating speed approaches 1 THz, the operating speed is determined by the time it takes the carrier to travel in the light receiver. The carrier travel time is dominated by the travel time in the semiconductor portion. The device according to this embodiment is preferable in that the semiconductor portion is made of a III-V group semiconductor, so that the carrier velocity in the semiconductor portion is high and the travel time in the semiconductor portion can be shortened.
[光学特性評価]
 以下、III-V族半導体と金属との合金の光学定数を測定するとともに、シミュレーションによりかかる合金が本実施形態に係る素子に適用可能であることを検証した。
[Optical property evaluation]
Hereinafter, the optical constants of an alloy of a III-V group semiconductor and a metal were measured, and the applicability of such an alloy to the device according to the present embodiment was verified through simulation.
 InPバルク基板、又はInGaAsバルク基板において、いくつかの種類の金属を堆積させた後、アニールにより合金化を行った。InP基板を用いる場合、BHF(半導体用バッファードフッ酸)に15秒浸漬して表面の自然酸化膜を処理し;電子線蒸着器によって金属を堆積し;窒素雰囲気中で、RTA(ラピッドサーマルアニーリング)によりアニールを行った。このとき、RTAの条件は250℃、1分とした。 After several types of metals were deposited on an InP bulk substrate or an InGaAs bulk substrate, alloying was performed by annealing. When using an InP substrate, it is immersed in BHF (buffered hydrofluoric acid for semiconductors) for 15 seconds to treat the natural oxide film on the surface; metal is deposited using an electron beam evaporator; RTA (rapid thermal annealing) is performed in a nitrogen atmosphere. ) was used for annealing. At this time, the RTA conditions were 250° C. and 1 minute.
 InGaAsを用いる場合、有機金属気相成長法によってInP基板上に厚さ500nmのIn0.53Ga0.47As層を形成し;InGaAs層の表面をBHFで洗浄し;RF(Radio Frequency)スパッタリングにより厚さ130nmの金属層を成膜し;その後、窒素雰囲気中、300℃で1分間熱処理を行った。 When using InGaAs, an In 0.53 Ga 0.47 As layer with a thickness of 500 nm is formed on the InP substrate by metal organic vapor phase epitaxy; the surface of the InGaAs layer is cleaned with BHF; and RF (Radio Frequency) sputtering is performed. A metal layer with a thickness of 130 nm was formed using the following steps; thereafter, heat treatment was performed at 300° C. for 1 minute in a nitrogen atmosphere.
 作製した合金サンプルとアニール前の金属を堆積しただけのサンプルの光学定数を分光エリプソメトリーにより測定した。その後、測定結果をもとに断面モード解析を行った。測定結果の例として、Au-InGaAs及びAuの誘電率の実部及び虚部を各波長に対してプロットしたグラフを図6(a)及び(b)にそれぞれ示す。Au-InGaAs合金の複素比誘電率の実部はAuとほぼ同じであり、波長1550nmでは約-100と負の値を持つことがわかった。このことから、プラズモン導波路で必要となる伝搬型表面プラズモンポラリトンがAu-InGaAs合金/半導体界面に存在することが示唆された。 The optical constants of the prepared alloy sample and a sample with only metal deposited before annealing were measured by spectroscopic ellipsometry. Afterwards, cross-sectional mode analysis was performed based on the measurement results. As examples of measurement results, graphs in which the real part and imaginary part of the permittivity of Au-InGaAs and Au are plotted for each wavelength are shown in FIGS. 6(a) and 6(b), respectively. It was found that the real part of the complex dielectric constant of the Au-InGaAs alloy is almost the same as that of Au, and has a negative value of about -100 at a wavelength of 1550 nm. This suggests that the propagating surface plasmon polariton required in the plasmon waveguide exists at the Au-InGaAs alloy/semiconductor interface.
 同様に、InPと金属との合金の誘電率の実部は、Au-InPでは約-80、Pt-InPでは約0、Ni-InPでは約-18であることがわかった。なお、Pt-InPでは波長が200nm~1500nm程度の範囲であれば、誘電率の実部が負であることもわかった。 Similarly, it was found that the real part of the dielectric constant of the alloy of InP and metal is about -80 for Au-InP, about 0 for Pt-InP, and about -18 for Ni-InP. It has also been found that in Pt-InP, the real part of the dielectric constant is negative if the wavelength is in the range of about 200 nm to 1500 nm.
 測定で得られた複素比誘電率をもとに、Lumerical MODEを用いて金属含有部(III-V族半導体と金属との合金)/半導体部(III-V族半導体)/金属含有部(III-V族半導体と金属との合金)構造の断面モード解析を行った。測定結果の例としてAu-InGaAs合金/InGaAs/Au-InGaAs合金構造における、波長1550nmにおける解析結果を図7(a)に示す。図7(b)は、Au/InGaAs/Au構造における、波長1550nmにおける解析結果である。図7に示すように、Auを用いた場合と同様、Au-InGaAs合金を用いた場合でもInGaAs部に光電界が集中するプラズモニックな光閉じ込めモードが得られることがわかった。同様に、Ni-InP又はAu-InP合金とInPとを用いた場合についても断面モード解析を行い、プラズモン導波路構造部分で光閉じ込めモードが存在することを確かめた。 Based on the complex relative permittivity obtained in the measurement, the metal-containing part (alloy of III-V group semiconductor and metal) / semiconductor part (III-V group semiconductor) / metal-containing part (III-V group semiconductor) / metal-containing part (III-V group semiconductor) / metal-containing part (III-V group semiconductor - Cross-sectional mode analysis of the structure (alloy of group V semiconductor and metal) was performed. As an example of the measurement results, FIG. 7(a) shows the analysis results at a wavelength of 1550 nm in the Au-InGaAs alloy/InGaAs/Au-InGaAs alloy structure. FIG. 7(b) shows the analysis results at a wavelength of 1550 nm in the Au/InGaAs/Au structure. As shown in FIG. 7, it was found that a plasmonic optical confinement mode in which the optical electric field is concentrated in the InGaAs portion can be obtained even when the Au-InGaAs alloy is used, as in the case where Au is used. Similarly, cross-sectional mode analysis was performed for the case where Ni-InP or Au-InP alloy and InP were used, and it was confirmed that an optical confinement mode existed in the plasmon waveguide structure portion.
 図8は、Au-InGaAs/InGaAs/Au-InGaAs構造を有するプラズモニック導波路における光電界の伝搬を示している。図8の上図が、材料の配置構成を示す平面図であり、図8の下図がシミュレーション結果である。強い光閉じ込めにより、入力光が約1μmのデバイス長で吸収されることがわかった。 FIG. 8 shows the propagation of an optical electric field in a plasmonic waveguide having an Au-InGaAs/InGaAs/Au-InGaAs structure. The upper diagram in FIG. 8 is a plan view showing the arrangement of materials, and the lower diagram in FIG. 8 is a simulation result. It was found that due to strong optical confinement, input light is absorbed with a device length of about 1 μm.
 以上の結果より、III-V族半導体と金属との合金は本実施形態に係る素子に適用可能であることがわかった。 From the above results, it was found that the alloy of III-V group semiconductor and metal is applicable to the element according to this embodiment.
[変形例]
 上記の本実施形態は、本発明を説明するための例示であり、本発明をその本実施形態のみに限定する趣旨ではなく、本発明は、その要旨を逸脱しない限り、様々な変形が可能である。
[Modified example]
The present embodiment described above is an illustration for explaining the present invention, and the present invention is not intended to be limited to the present embodiment, and the present invention can be modified in various ways without departing from the gist thereof. be.
 例えば、本実施形態に係る素子は、図9に概略断面図を示す素子900のように、半導体部920が1対の金属含有部930に対して突出しており、リブ構造を形成していてもよい。この態様によれば、金属含有部の厚さを図1に示す素子100と比較して相対的に薄くすることができ、これにより、より簡易に製造することが可能となり得る。図9に示す素子900において、金属含有部930(931,932)の厚さは例えば100nm以上200nm以下であってよい。同様に、図3に示す素子200において、半導体部220が1対の金属含有部230に対して突出していてもよい。 For example, the element according to this embodiment may have a semiconductor portion 920 protruding from a pair of metal-containing portions 930 and forming a rib structure, as in an element 900 whose schematic cross-sectional view is shown in FIG. good. According to this aspect, the thickness of the metal-containing portion can be made relatively thinner than that of the element 100 shown in FIG. 1, which may enable easier manufacturing. In the element 900 shown in FIG. 9, the thickness of the metal-containing portion 930 (931, 932) may be, for example, 100 nm or more and 200 nm or less. Similarly, in the element 200 shown in FIG. 3, the semiconductor portion 220 may protrude from the pair of metal-containing portions 230.
 また、本実施形態に係る素子の製造方法において、金属含有部のパターニングは、マスク部をパターニングすることによって行ってもよい。すなわち、本実施形態に係る素子の製造方法の変形例として、1対の金属膜を形成する工程が、III-V族半導体層上に、一方向に延在するマスク部を形成する工程と、マスク部が形成されたIII-V族半導体層上に金属膜を形成することで、マスク部を挟んで互いに対向する1対の金属膜を形成する工程とを含んでいてよい。 Furthermore, in the method for manufacturing an element according to the present embodiment, patterning of the metal-containing portion may be performed by patterning a mask portion. That is, as a modification of the method for manufacturing an element according to the present embodiment, the step of forming a pair of metal films includes the step of forming a mask portion extending in one direction on the III-V group semiconductor layer; The method may include a step of forming a pair of metal films facing each other with the mask part in between by forming a metal film on the III-V group semiconductor layer in which the mask part is formed.
 かかる製造方法の変形例を、図10を用いて説明する。まず、第1工程として、図10(A)に示すように、絶縁層110上にIII-V族半導体層1010を形成する。第2工程として、図10(B)に示すように、マスク部1020を形成する。マスク部1020の、図10の紙面方向の奥行及び幅は、形成しようとする半導体部と同程度としてよい。マスク部1020は、金属膜1030を構成する金属と合金を形成しない、絶縁性の材料からなってよい。マスク部1020は、例えばプラズマ励起化学気相成膜(PECVD)等により形成されるSiO層であってよい。 A modification of this manufacturing method will be explained using FIG. 10. First, as a first step, a III-V semiconductor layer 1010 is formed on an insulating layer 110, as shown in FIG. 10(A). As a second step, a mask portion 1020 is formed as shown in FIG. 10(B). The depth and width of the mask portion 1020 in the paper direction of FIG. 10 may be approximately the same as the semiconductor portion to be formed. The mask portion 1020 may be made of an insulating material that does not form an alloy with the metal constituting the metal film 1030. The mask portion 1020 may be, for example, a SiO 2 layer formed by plasma-enhanced chemical vapor deposition (PECVD) or the like.
 次に、第3工程として、マスク部1020が形成されたIII-V族半導体層1010上に金属膜1030を形成する。このような第1~第3工程により、マスク部を挟んで互いに対向する1対の金属膜を形成することができる。なお、その後は、図4及び5を用いて説明した製造方法と同様に、積層体を焼成し、III-V族半導体と金属とを合金化させ、1対の金属含有部を形成すればよい。 Next, as a third step, a metal film 1030 is formed on the III-V semiconductor layer 1010 in which the mask portion 1020 is formed. Through these first to third steps, a pair of metal films facing each other with the mask portion in between can be formed. Note that, after that, in the same manner as the manufacturing method explained using FIGS. 4 and 5, the laminate is fired, the III-V group semiconductor and the metal are alloyed, and a pair of metal-containing parts is formed. .
 図10(D)及び(E)を用いて、説明すると、第4工程として、第3工程で得られた積層体を焼成し、III-V族半導体と金属とを合金化させることにより、1対の金属含有部130を形成する。第5工程として、III-V族半導体と金属との合金化後に、合金化されなかった金属膜1030を除去する工程を含んでいてもよい(図10(E))。また、マスク部1020を除去する工程を含んでいてもよい。なお、図10において、図9に示す素子900と同様に、半導体部120が1対の金属含有部130に対して突出していてもよい。 To explain using FIGS. 10(D) and (E), in the fourth step, the laminate obtained in the third step is fired to alloy the III-V group semiconductor and the metal. A pair of metal-containing portions 130 are formed. The fifth step may include a step of removing the unalloyed metal film 1030 after alloying the III-V semiconductor and the metal (FIG. 10E). Further, the step of removing the mask portion 1020 may be included. Note that in FIG. 10, the semiconductor portion 120 may protrude from the pair of metal-containing portions 130, similar to the element 900 shown in FIG.
[付記]
 本発明は、以下の実施形態を含む。
[1]
 絶縁層上に配置され、一方向に延在する、III-V族半導体からなる半導体部と、
 前記絶縁層上に、前記半導体部を挟むように、前記一方向に直交する方向に沿って延在し、金属又は合金からなる、1対の金属含有部と、を備える、
 素子。
[2]
 前記III-V族半導体の価電子帯上部及び伝導帯底部のエネルギーを、それぞれE及びEとし、
 前記1対の金属含有部のうち第1の金属含有部のフェルミ準位を、Ef1とし、
 前記1対の金属含有部のうち第2の金属含有部のフェルミ準位を、Ef2とし、
 波長λを有する光のエネルギーを、Eλとしたときに、
 前記半導体部においてプラズモン共鳴による光閉じ込めが生じる波長λが存在し、
 以下の式(1)及び(2)が成立する、
 [1]に記載の素子。
Figure JPOXMLDOC01-appb-M000007
[3]
 前記III-V族半導体のバンドギャップエネルギーをEとしたときに、
 さらに以下の式(3)が成立する、
 [2]に記載の素子。
Figure JPOXMLDOC01-appb-M000008
[4]
 前記金属含有部が、前記III-V族半導体と金属との合金である、
 [1]~[3]のいずれか1つに記載の素子。
[5]
 前記1対の金属含有部間に電圧を印加するための電圧印加手段をさらに備える、
 [1]~[4]のいずれか1つに記載の素子。
[6]
 前記III-V族半導体が、Al、Ga、及びInからなる群より選択される少なくとも1種と、P及びAsからなる群より選択される少なくとも1種とからなる、
 [1]~[5]のいずれか1つに記載の素子。
[7]
 前記金属含有部が、Au、Ni、又はPtを含む、
 [1]~[6]のいずれか1つに記載の素子。
[8]
 前記III-V族半導体が、InGaAs又はInPを含み、
 前記金属含有部が、AuとInGaAs若しくはInPとの合金、又はNiとInGaAs若しくはInPとの合金を含む、
 [1]~[7]のいずれか1つに記載の素子。
[9]
 前記半導体部に光を導入するための導波路をさらに備える、
 [1]~[8]のいずれか1つに記載の素子。
[10]
 前記導波路と前記半導体部とが一体として前記一方向に延在し、
 前記導波路は、前記1対の金属含有部と隣接していない、
 [9]に記載の素子。
[11]
 前記導波路が、前記絶縁層に対して前記半導体部と反対側に配置されている、
 [9]に記載の素子。
[12]
 光電変換素子、光変調器又は受光器である、
 [1]~[11]のいずれか1つに記載の素子。
[13]
 受光器であり、
 前記半導体部が受光した際に光電流を発生させる、
 [1]~[11]のいずれか1つに記載の素子。
[14]
 [13]に記載の素子と、
 前記素子と電気的に接続され、前記素子からの光電流によりスピンホール効果を発現するスピンホール素子と、を備える、
 フォトニックスピンレジスタ。
[15]
 [1]~[13]のいずれか1つに記載の素子の製造方法であって、
 絶縁層上にIII-V族半導体層を形成する工程と、
 前記III-V族半導体層上に、互いに対向する1対の金属膜を形成することにより、前記絶縁層と前記III-V族半導体層と金属膜とを含む積層体を得る工程と、
 前記積層体を焼成し、前記III-V族半導体と前記金属膜の少なくとも一部とを合金化させることにより、前記1対の金属含有部を形成する工程と、
 を含む、製造方法。
[16]
 前記絶縁層と前記III-V族半導体層と前記金属膜とを含む前記積層体を得る工程が、
 前記III-V族半導体層上に、一方向に延在するマスク部を形成する工程と、
 前記マスク部が形成された前記III-V族半導体層上に金属膜を形成することで、前記マスク部を挟んで互いに対向する1対の金属膜を形成する工程と、
 を含み、
 前記1対の金属含有部を形成する工程の後に、合金化せずに残留した前記金属膜を除去する工程をさらに含む、
 [15]に記載の製造方法。
[Additional notes]
The present invention includes the following embodiments.
[1]
a semiconductor portion made of a III-V semiconductor disposed on the insulating layer and extending in one direction;
a pair of metal-containing parts made of a metal or an alloy and extending along a direction perpendicular to the one direction so as to sandwich the semiconductor part on the insulating layer;
element.
[2]
Let the energies of the upper valence band and the lower part of the conduction band of the III-V group semiconductor be E V and E C , respectively;
The Fermi level of the first metal-containing part of the pair of metal-containing parts is E f1 ,
The Fermi level of the second metal-containing part of the pair of metal-containing parts is E f2 ,
When the energy of light with wavelength λ is E λ ,
There is a wavelength λ at which optical confinement occurs due to plasmon resonance in the semiconductor portion,
The following formulas (1) and (2) hold true,
The element according to [1].
Figure JPOXMLDOC01-appb-M000007
[3]
When the band gap energy of the III-V group semiconductor is E g ,
Furthermore, the following equation (3) holds true,
The element according to [2].
Figure JPOXMLDOC01-appb-M000008
[4]
the metal-containing portion is an alloy of the III-V group semiconductor and a metal;
The device according to any one of [1] to [3].
[5]
further comprising voltage application means for applying a voltage between the pair of metal-containing parts;
The device according to any one of [1] to [4].
[6]
The III-V group semiconductor consists of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As,
The device according to any one of [1] to [5].
[7]
The metal-containing portion contains Au, Ni, or Pt.
The device according to any one of [1] to [6].
[8]
The III-V semiconductor includes InGaAs or InP,
The metal-containing portion includes an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP.
The device according to any one of [1] to [7].
[9]
further comprising a waveguide for introducing light into the semiconductor section,
The device according to any one of [1] to [8].
[10]
The waveguide and the semiconductor section extend as one in the one direction,
the waveguide is not adjacent to the pair of metal-containing parts;
The element according to [9].
[11]
the waveguide is arranged on a side opposite to the semiconductor section with respect to the insulating layer;
The element according to [9].
[12]
A photoelectric conversion element, a light modulator or a light receiver,
The device according to any one of [1] to [11].
[13]
It is a light receiver,
generating a photocurrent when the semiconductor section receives light;
The device according to any one of [1] to [11].
[14]
The element described in [13],
a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect due to a photocurrent from the element;
Photonic spin register.
[15]
A method for manufacturing the device according to any one of [1] to [13],
forming a III-V semiconductor layer on the insulating layer;
forming a pair of metal films facing each other on the III-V group semiconductor layer to obtain a laminate including the insulating layer, the III-V group semiconductor layer, and a metal film;
forming the pair of metal-containing parts by firing the laminate and alloying the III-V group semiconductor and at least a portion of the metal film;
manufacturing method, including.
[16]
Obtaining the laminate including the insulating layer, the III-V semiconductor layer, and the metal film,
forming a mask portion extending in one direction on the III-V group semiconductor layer;
forming a pair of metal films facing each other with the mask part in between, by forming a metal film on the III-V semiconductor layer in which the mask part is formed;
including;
After the step of forming the pair of metal-containing parts, the method further includes a step of removing the remaining metal film without being alloyed.
The manufacturing method according to [15].
 100,200,900…素子、110,210,521,522…絶縁層、120,220,920…半導体部、130,131,132,230,231,232,930,931,932…金属含有部、140,240…導波路、230T…テーパ部、250…クラッド部、410,510,1010…III-V族半導体層、420,540,1030…金属膜、530…マスク層、1020…マスク部。 100,200,900...Element, 110,210,521,522...Insulating layer, 120,220,920...Semiconductor part, 130,131,132,230,231,232,930,931,932...Metal-containing part, 140, 240... Waveguide, 230T... Tapered part, 250... Clad part, 410, 510, 1010... III-V group semiconductor layer, 420, 540, 1030... Metal film, 530... Mask layer, 1020... Mask part.

Claims (15)

  1.  絶縁層上に配置され、一方向に延在する、III-V族半導体からなる半導体部と、
     前記絶縁層上に、前記半導体部を挟むように、前記一方向に直交する方向に沿って延在し、金属又は合金からなる、1対の金属含有部と、を備える、
     素子。
    a semiconductor portion made of a III-V semiconductor disposed on the insulating layer and extending in one direction;
    a pair of metal-containing parts made of a metal or an alloy and extending along a direction perpendicular to the one direction so as to sandwich the semiconductor part on the insulating layer;
    element.
  2.  前記III-V族半導体の価電子帯上部及び伝導帯底部のエネルギーを、それぞれE及びEとし、
     前記1対の金属含有部のうち第1の金属含有部のフェルミ準位を、Ef1とし、
     前記1対の金属含有部のうち第2の金属含有部のフェルミ準位を、Ef2とし、
     波長λを有する光のエネルギーを、Eλとしたときに、
     前記半導体部においてプラズモン共鳴による光閉じ込めが生じる波長λが存在し、
     以下の式(1)及び(2)が成立する、
     請求項1に記載の素子。
    Figure JPOXMLDOC01-appb-M000001
    Let the energies of the upper valence band and the lower part of the conduction band of the III-V group semiconductor be E V and E C , respectively;
    The Fermi level of the first metal-containing part of the pair of metal-containing parts is E f1 ,
    The Fermi level of the second metal-containing part of the pair of metal-containing parts is E f2 ,
    When the energy of light with wavelength λ is E λ ,
    There is a wavelength λ at which optical confinement occurs due to plasmon resonance in the semiconductor portion,
    The following formulas (1) and (2) hold true,
    The device according to claim 1.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記III-V族半導体のバンドギャップエネルギーをEとしたときに、
     さらに以下の式(3)が成立する、
     請求項2に記載の素子。
    Figure JPOXMLDOC01-appb-M000002
    When the band gap energy of the III-V group semiconductor is E g ,
    Furthermore, the following equation (3) holds true,
    The element according to claim 2.
    Figure JPOXMLDOC01-appb-M000002
  4.  前記金属含有部が、前記III-V族半導体と金属との合金である、
     請求項1~3のいずれか1項に記載の素子。
    the metal-containing portion is an alloy of the III-V group semiconductor and a metal;
    The element according to any one of claims 1 to 3.
  5.  前記1対の金属含有部間に電圧を印加するための電圧印加手段をさらに備える、
     請求項1~3のいずれか1項に記載の素子。
    further comprising voltage application means for applying a voltage between the pair of metal-containing parts;
    The element according to any one of claims 1 to 3.
  6.  前記III-V族半導体が、Al、Ga、及びInからなる群より選択される少なくとも1種と、P及びAsからなる群より選択される少なくとも1種とからなる、
     請求項1~3のいずれか1項に記載の素子。
    The III-V group semiconductor consists of at least one selected from the group consisting of Al, Ga, and In, and at least one selected from the group consisting of P and As,
    The element according to any one of claims 1 to 3.
  7.  前記金属含有部が、Au、Ni、又はPtを含む、
     請求項1~3のいずれか1項に記載の素子。
    The metal-containing portion contains Au, Ni, or Pt.
    The element according to any one of claims 1 to 3.
  8.  前記III-V族半導体が、InGaAs又はInPを含み、
     前記金属含有部が、AuとInGaAs若しくはInPとの合金、又はNiとInGaAs若しくはInPとの合金を含む、
     請求項1~3のいずれか1項に記載の素子。
    The III-V semiconductor includes InGaAs or InP,
    The metal-containing portion includes an alloy of Au and InGaAs or InP, or an alloy of Ni and InGaAs or InP.
    The element according to any one of claims 1 to 3.
  9.  前記半導体部に光を導入するための導波路をさらに備える、
     請求項1~3のいずれか1項に記載の素子。
    further comprising a waveguide for introducing light into the semiconductor section,
    The element according to any one of claims 1 to 3.
  10.  前記導波路と前記半導体部とが一体として前記一方向に延在し、
     前記導波路は、前記1対の金属含有部と隣接していない、
     請求項9に記載の素子。
    The waveguide and the semiconductor section extend as one in the one direction,
    the waveguide is not adjacent to the pair of metal-containing parts;
    The element according to claim 9.
  11.  前記導波路が、前記絶縁層に対して前記半導体部と反対側に配置されている、
     請求項9に記載の素子。
    the waveguide is arranged on a side opposite to the semiconductor section with respect to the insulating layer;
    The element according to claim 9.
  12.  光電変換素子、光変調器又は受光器である、
     請求項1~3のいずれか1項に記載の素子。
    A photoelectric conversion element, a light modulator or a light receiver,
    The element according to any one of claims 1 to 3.
  13.  請求項1~3のいずれか1項に記載の素子と、
     前記素子と電気的に接続され、前記素子からの光電流によりスピンホール効果を発現するスピンホール素子と、を備える、
     フォトニックスピンレジスタ。
    The element according to any one of claims 1 to 3,
    a spin Hall element that is electrically connected to the element and exhibits a spin Hall effect due to a photocurrent from the element;
    Photonic spin register.
  14.  請求項1~3のいずれか1項に記載の素子の製造方法であって、
     絶縁層上にIII-V族半導体層を形成する工程と、
     前記III-V族半導体層上に、互いに対向する1対の金属膜を形成することにより、前記絶縁層と前記III-V族半導体層と前記金属膜とを含む積層体を得る工程と、
     前記積層体を焼成し、前記III-V族半導体と前記金属膜の少なくとも一部とを合金化させることにより、前記1対の金属含有部を形成する工程と、
     を含む、製造方法。
    A method for manufacturing an element according to any one of claims 1 to 3, comprising:
    forming a III-V semiconductor layer on the insulating layer;
    forming a pair of metal films facing each other on the III-V group semiconductor layer to obtain a laminate including the insulating layer, the III-V group semiconductor layer, and the metal film;
    forming the pair of metal-containing parts by firing the laminate and alloying the III-V group semiconductor and at least a portion of the metal film;
    manufacturing methods, including
  15.  前記絶縁層と前記III-V族半導体層と前記金属膜とを含む前記積層体を得る工程が、
     前記III-V族半導体層上に、一方向に延在するマスク部を形成する工程と、
     前記マスク部が形成された前記III-V族半導体層上に金属膜を形成することで、前記マスク部を挟んで互いに対向する1対の金属膜を形成する工程と、
     を含み、
     前記1対の金属含有部を形成する工程の後に、合金化せずに残留した前記金属膜を除去する工程をさらに含む、
     請求項14に記載の製造方法。
    Obtaining the laminate including the insulating layer, the III-V semiconductor layer, and the metal film,
    forming a mask portion extending in one direction on the III-V group semiconductor layer;
    forming a pair of metal films facing each other with the mask part in between, by forming a metal film on the III-V semiconductor layer in which the mask part is formed;
    including;
    After the step of forming the pair of metal-containing parts, the method further includes a step of removing the remaining metal film without being alloyed.
    The manufacturing method according to claim 14.
PCT/JP2023/029737 2022-08-18 2023-08-17 Element, element manufacturing method, and photonic spin register WO2024038897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263399130P 2022-08-18 2022-08-18
US63/399,130 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024038897A1 true WO2024038897A1 (en) 2024-02-22

Family

ID=89941752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029737 WO2024038897A1 (en) 2022-08-18 2023-08-17 Element, element manufacturing method, and photonic spin register

Country Status (1)

Country Link
WO (1) WO2024038897A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221707A (en) * 1993-12-10 1995-08-18 Hamamatsu Photonics Kk Low noise light receiving device
JP2001053328A (en) * 1999-08-06 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector
JP2002208724A (en) * 2001-01-09 2002-07-26 Osaka Gas Co Ltd Semiconductor element and its fabricating method
JP2003520438A (en) * 2000-01-14 2003-07-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Photodetector using vertical metal semiconductor microresonator and manufacturing method thereof
JP2005210018A (en) * 2004-01-26 2005-08-04 Yoshinori Oyama Photoconductive element
CN210628323U (en) * 2019-12-12 2020-05-26 电子科技大学 Near infrared photoelectric detector
WO2022158545A1 (en) * 2021-01-20 2022-07-28 国立大学法人東京大学 Photonic spin register, information writing method, and information read-out method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221707A (en) * 1993-12-10 1995-08-18 Hamamatsu Photonics Kk Low noise light receiving device
JP2001053328A (en) * 1999-08-06 2001-02-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor photodetector
JP2003520438A (en) * 2000-01-14 2003-07-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Photodetector using vertical metal semiconductor microresonator and manufacturing method thereof
JP2002208724A (en) * 2001-01-09 2002-07-26 Osaka Gas Co Ltd Semiconductor element and its fabricating method
JP2005210018A (en) * 2004-01-26 2005-08-04 Yoshinori Oyama Photoconductive element
CN210628323U (en) * 2019-12-12 2020-05-26 电子科技大学 Near infrared photoelectric detector
WO2022158545A1 (en) * 2021-01-20 2022-07-28 国立大学法人東京大学 Photonic spin register, information writing method, and information read-out method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN QINGXIN, ZHANG CHENG, SHAO WEIJIA, LI XIAOFENG: "Photodetection by Hot Electrons or Hot Holes: A Comparable Study on Physics and Performances", ACS OMEGA, ACS PUBLICATIONS, US, vol. 4, no. 3, 31 March 2019 (2019-03-31), US , pages 6020 - 6027, XP093139569, ISSN: 2470-1343, DOI: 10.1021/acsomega.9b00267 *

Similar Documents

Publication Publication Date Title
Wei et al. Monolithic integration of embedded III-V lasers on SOI
JP3325825B2 (en) Three-dimensional periodic structure, method for producing the same, and method for producing film
US8213754B2 (en) Optical splitter, combiner and device
JP2928532B2 (en) Quantum interference optical device
JP2941805B2 (en) Solid-state optical waveguide, laser using the optical waveguide, and method for manufacturing optical waveguide and laser
US20030010979A1 (en) Vertical metal-semiconductor microresonator photodetecting device and production method thereof
US20190155068A1 (en) Double-layer graphene optical modulators and methods of fabrication thereof
Karle et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides
US8582929B2 (en) Ultra-sensitive electric field detection device
US9008467B2 (en) Nanoparticle-based quantum confined stark effect modulator
US20090180748A1 (en) Ridge Waveguide
US20170269391A1 (en) Temperature control of components on an optical device
US8384980B2 (en) Semiconductor optical modulation device, Mach-Zehnder interferometer type semiconductor optical modulator, and method for producing semiconductor optical modulation device
JP3109934B2 (en) Photoelectron field effect transistor
JPH07230066A (en) Semiconductor optical modulator
WO2024038897A1 (en) Element, element manufacturing method, and photonic spin register
CN104242052B (en) Ring cavity device and preparation method thereof
WO2021124440A1 (en) Optical device
JP3285651B2 (en) Quantum well-based waveguide optical receivers of semiconductor materials, especially for coherent communication systems with variable polarization
JP2808562B2 (en) Semiconductor optical amplifier
JPH06235889A (en) Semiconductor optical intensity modulator and
EP0350110A1 (en) Integrated optoelectronic semiconductor device including a TE/TM mode splitter
CN118077062A (en) Waveguide-type light receiving element, waveguide-type light receiving element array, and method for manufacturing waveguide-type light receiving element
US20020197016A1 (en) Photodetector having a waveguide and resonant coupler and a method of manufacture therefor
JP7435786B2 (en) receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854931

Country of ref document: EP

Kind code of ref document: A1