JPH08204025A - Manufacture of cmos semiconductor device - Google Patents

Manufacture of cmos semiconductor device

Info

Publication number
JPH08204025A
JPH08204025A JP7007703A JP770395A JPH08204025A JP H08204025 A JPH08204025 A JP H08204025A JP 7007703 A JP7007703 A JP 7007703A JP 770395 A JP770395 A JP 770395A JP H08204025 A JPH08204025 A JP H08204025A
Authority
JP
Japan
Prior art keywords
mask
resist film
oxide film
transistor
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7007703A
Other languages
Japanese (ja)
Other versions
JP3101515B2 (en
Inventor
Mamoru Kaneko
守 金子
Atsushi Itabashi
厚 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07007703A priority Critical patent/JP3101515B2/en
Publication of JPH08204025A publication Critical patent/JPH08204025A/en
Application granted granted Critical
Publication of JP3101515B2 publication Critical patent/JP3101515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a CMOS semiconductor device whose manufacturing process is shortened by a method wherein a gate oxide film which is formed in a first gate oxidation process is etched by making use of a second resist film as a mask and a mask alignment process which is required for setting a threshold voltage at a proper value is reduced as far as possible. CONSTITUTION: While a first resist film 6 is used as a mask, P-type impurities are ion-implanted into a first NMOS transistor formation region, a second NMOS transistor formation region and a part under a field oxide film 4. While the first resist film 6 and the field oxide film 4 are used as a mask, N-type impurities are ion-implanted into the first and second NMOS transistor formation regions. While a second resist film 10 is used as a mask, P-type impurities are ion-implanted into a first PMOS transistor formation region and a first NMOS transistor formation region. While the second resist film 10 is used as a mask, gate oxide films 11, 12 which are formed in a first gate oxidation process are etched. Thereby, a threshold voltage can be set at a proper value, and a mask alignment process can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、第1のPMOSトラン
ジスタ及びNMOSトランジスタと、それらより厚いゲ
ート酸化膜を有する第2のPMOSトランジスタ及びN
MOSトランジスタとを同一半導体基板上に具備するC
MOS半導体装置の製造方法に関するものであり、特
に、上記4種類のMOSトランジスタのしきい値電圧の
設定方法の改良に関する。ここで、PMOSトランジス
タとは、Pチャネル型MOSトランジスタ、NMOSト
ランジスタとは、Nチャネル型MOSトランジスタ、の
意である。
The present invention relates to a first PMOS transistor and an NMOS transistor, and a second PMOS transistor and an N transistor having a thicker gate oxide film.
C including a MOS transistor on the same semiconductor substrate
The present invention relates to a method for manufacturing a MOS semiconductor device, and more particularly, to an improvement in the threshold voltage setting methods for the above four types of MOS transistors. Here, the PMOS transistor means a P-channel MOS transistor, and the NMOS transistor means an N-channel MOS transistor.

【0002】[0002]

【従来の技術】LSIは、デバイスの微細化に伴い、従
来の5V系から3.3V系へ移行する傾向にある。しか
しながら、現行では5V系のLSIとのインターフェー
スをとる都合上、入出力回路(I/O)については従来
通り5Vで動作させ、かつ内部回路については3.3V
で動作させるということが行われている。この場合、ゲ
ート酸化膜にかかる電圧も異なってくるので、酸化膜の
信頼性と高速性とを実現するために、3.3V系では薄
く、5.5Vでは比較的厚いゲート酸化膜を形成する必
要がある。
2. Description of the Related Art LSIs tend to shift from the conventional 5V system to 3.3V system as devices are miniaturized. However, at present, for the convenience of interfacing with a 5V LSI, the input / output circuit (I / O) is operated at 5V as usual and the internal circuit is 3.3V.
It is being operated in. In this case, since the voltage applied to the gate oxide film also differs, a gate oxide film which is thin at 3.3 V and relatively thick at 5.5 V is formed in order to realize reliability and high speed of the oxide film. There is a need.

【0003】図11は、このような2種類のゲート酸化
膜を有するCMOS半導体装置の断面図である。図にお
いて明らかなように、この種のCMOS半導体装置では
4種類のMOSトランジスタがある。すなわち、ゲート
酸化膜厚が例えば110Åの第1のPMOS,第1のN
MOS、ゲート酸化膜厚が例えば180Åの第2のPM
OS,第2のNMOSである。
FIG. 11 is a sectional view of a CMOS semiconductor device having such two types of gate oxide films. As is clear from the figure, there are four types of MOS transistors in this type of CMOS semiconductor device. That is, the first PMOS and the first N having a gate oxide film thickness of 110 Å, for example.
Second PM with MOS and gate oxide film thickness of 180Å
OS and second NMOS.

【0004】これらのMOSトランジスタは、チャネル
の導電型とゲート酸化膜が異なるために、しきい値電圧
をイオン注入法により所望の値に設定するには、それぞ
れイオン種、注入量を個別に選択することが必要であ
る。
Since the channel conductivity type and the gate oxide film are different in these MOS transistors, the ion species and the implantation amount are individually selected to set the threshold voltage to a desired value by the ion implantation method. It is necessary to.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
CMOS半導体装置の製造方法では、4種類のMOSト
ランジスタのしきい値電圧を設定するにあたり、各トラ
ンジスタ領域に選択的にイオン注入を行うために、4回
のマスク合わせ工程を行っていた。このため、製造コス
トが高く、TATも長いという欠点があった。
However, in the conventional method for manufacturing a CMOS semiconductor device, when the threshold voltages of four types of MOS transistors are set, ion implantation is selectively performed in each transistor region. The mask alignment process was performed four times. Therefore, there are drawbacks that the manufacturing cost is high and the TAT is long.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るCMOS半導体装置の製造方法は、第
1のPMOSトランジスタ及びNMOSトランジスタ
と、それらより厚いゲート酸化膜を有する第2のPMO
Sトランジスタ及びNMOSトランジスタとを同一半導
体基板上に具備するCMOS半導体装置の製造方法にお
いて、各トランジスタを分離するフィールド酸化膜を形
成する工程と、第1及び第2のPMOSトランジスタの
形成領域を第1のレジスト膜で被覆する工程と、第1の
レジスト膜をマスクとしてP型不純物を第1及び第2の
NMOSトランジスタの形成領域とフィールド酸化膜下
にイオン注入する工程と、第1のレジスト膜及びフィー
ルド酸化膜をマスクとしてN型不純物を第1及び第2の
NMOSトランジスタの形成領域にイオン注入する工程
と、第1のレジスト膜を除去する工程と、半導体基板の
全面にP型不純物をイオン注入する工程と、第1のゲー
ト酸化工程と、第2のPMOSトランジスタ及びNMO
Sトランジスタの形成領域を第2のレジスト膜で被覆す
る工程と、第2のレジスト膜をマスクとして、第1のP
MOSトランジスタ及びNMOSトランジスタの形成領
域にP型不純物をイオン注入する工程と、第2のレジス
ト膜をマスクとして、第1のゲート酸化工程で形成した
ゲート酸化膜をエッチングする工程と、第2のレジスト
膜を除去する工程と、第2のゲート酸化工程とを有す
る。
In order to solve the above-mentioned problems, a method of manufacturing a CMOS semiconductor device according to the present invention comprises a first PMOS transistor and an NMOS transistor, and a second PMOS transistor having a thicker gate oxide film. PMO
In a method of manufacturing a CMOS semiconductor device having an S transistor and an NMOS transistor on the same semiconductor substrate, a step of forming a field oxide film for separating each transistor and a first and a second PMOS transistor forming region are provided. And a step of ion-implanting P-type impurities into the formation regions of the first and second NMOS transistors and under the field oxide film using the first resist film as a mask, and the first resist film and A step of ion-implanting N-type impurities into the formation regions of the first and second NMOS transistors using the field oxide film as a mask, a step of removing the first resist film, and ion-implantation of P-type impurities on the entire surface of the semiconductor substrate. Step, first gate oxidation step, second PMOS transistor and NMO
The step of covering the formation region of the S transistor with the second resist film, and the first P film using the second resist film as a mask.
A step of ion-implanting P-type impurities into the formation region of the MOS transistor and the NMOS transistor, a step of etching the gate oxide film formed in the first gate oxidation step using the second resist film as a mask, and a second resist It has a step of removing the film and a second gate oxidation step.

【0007】[0007]

【作 用】上記のCMOS半導体装置の製造方法によれ
ば、4種類のMOSトランジスタのしきい値電圧を適切
な値に設定するために必要なマスク合わせ工程を極力少
なくすることができる。
[Operation] According to the method of manufacturing a CMOS semiconductor device described above, the mask alignment process required to set the threshold voltages of the four types of MOS transistors to appropriate values can be minimized.

【0008】[0008]

【実施例】以下で、本発明の一実施例に係るCMOS半
導体装置の製造方法を図面を参照しながら説明する。 1.ウェル領域及びフィールド酸化膜の形成工程 図1において、P型シリコン基板(1)上のPMOSト
ランジスタ形成領域にNウェル領域(2)を、NMOS
トランジスタ形成領域にPウェル領域(3)を形成す
る。本工程で、Nウェル領域(2)は、リンイオン(31
P+)及びヒ素イオン(75As+)をそれぞれ加速電圧160
KeV,注入量6E12/cm2(6E12とは、6掛け
る10の12乗を意味する。以下において、同様であ
る。)の条件でイオン注入し、Pウェル領域(2)は、
ボロンイオン(11B+)を加速電圧80KeV,注入量4
E12/cm2の条件でイオン注入し、その後、1150
℃で4時間の熱拡散を行うことにより形成している。次
いで、選択酸化法により、上記各トランジスタを分離す
るために、5000Å程度のフィールド酸化膜(4)を
形成し、そのフィールド酸化膜(4)を除くトランジス
タ形成領域に400Å程度のダミー酸化膜(5)を形成
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a CMOS semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. 1. Step of Forming Well Region and Field Oxide Film In FIG. 1, an N well region (2) is formed in a PMOS transistor formation region on a P-type silicon substrate (1) and an NMOS region is formed.
A P well region (3) is formed in the transistor formation region. In this step, the N well region (2) is exposed to phosphorus ions (31
P +) and arsenic ion (75As +) are accelerated at 160
KeV, the implantation amount is 6E12 / cm2 (6E12 means 6 times 10 to the 12th power. The same applies in the following.), And the P well region (2) is
Boron ion (11B +) acceleration voltage 80 KeV, injection amount 4
Ion implantation is performed under the condition of E12 / cm2, and then 1150
It is formed by performing thermal diffusion at 4 ° C. for 4 hours. Next, a field oxide film (4) of about 5000 Å is formed by a selective oxidation method in order to separate each transistor, and a dummy oxide film (5) of about 400 Å is formed in the transistor formation region excluding the field oxide film (4). ) Is formed.

【0009】2.FPイオン注入工程 図2において、第1及び第2のPMOSトランジスタの
形成領域を第1のレジスト膜(6)で被覆し、第1のレ
ジスト膜(6)をマスクとしてP型不純物であるボロン
イオン(11B+)を例えば加速電圧160KeV,注入量
5E12/cm2の条件で、第1及び第2のNMOSトラ
ンジスタの形成領域とフィールド酸化膜下(4)にイオ
ン注入する。このイオン注入をFPイオン注入と称す。
この第1及び第2のNMOSトランジスタの形成領域の
注入領域はいわゆる深いチャネルドープ層(7)として
短チャネル効果を抑制し、フィールド酸化膜下(4)の
注入層は、チャネルストッパ層(8)として、フィール
ドの反転を防止する。
2. FP ion implantation step In FIG. 2, the formation regions of the first and second PMOS transistors are covered with a first resist film (6), and boron ions which are P-type impurities are masked with the first resist film (6). (11B +) is ion-implanted into the formation regions of the first and second NMOS transistors and under the field oxide film (4) under the conditions of an acceleration voltage of 160 KeV and an implantation amount of 5E12 / cm @ 2. This ion implantation is called FP ion implantation.
The injection region of the formation region of the first and second NMOS transistors suppresses the short channel effect as a so-called deep channel dope layer (7), and the injection layer below the field oxide film (4) is a channel stopper layer (8). As a result, the field inversion is prevented.

【0010】3.NEイオン注入工程 図3において、第1のレジスト膜(6)及びフィールド
酸化膜(4)をマスクとしてN型不純物であるヒ素イオ
ン(75As+)を例えば加速電圧160KeV,注入量1.
0E12から1.5E12/cm2の条件で、第1及び第
2のNMOSトランジスタの形成領域にイオン注入す
る。このイオン注入をNEイオン注入と称す。
3. NE ion implantation step In FIG. 3, arsenic ions (75As +), which are N-type impurities, are implanted with the first resist film (6) and the field oxide film (4) as a mask at an acceleration voltage of 160 KeV and an implantation amount of 1.
Ions are implanted into the formation regions of the first and second NMOS transistors under the condition of 0E12 to 1.5E12 / cm 2. This ion implantation is referred to as NE ion implantation.

【0011】4.Gイオン注入工程 図4において、第1のレジスト膜(6)を除去し、シリ
コン基板(1)の全面にP型不純物であるボロンイオン
(11B+)を例えば加速電圧30KeV,注入量3.0E
12から4.0E12/cm2の条件で全面イオン注入す
る。このイオン注入をGイオン注入と称す。
4. G ion implantation step In FIG. 4, the first resist film (6) is removed, and boron ions (11B +), which is a P-type impurity, are deposited on the entire surface of the silicon substrate (1) at, for example, an acceleration voltage of 30 KeV and an implantation amount of 3.0E.
Ion implantation is performed on the entire surface under the condition of 12 to 4.0E12 / cm2. This ion implantation is called G ion implantation.

【0012】5.第1ゲート酸化工程 図5において、ダミー酸化膜(5)を除去し、110Å
程度のゲート酸化膜(9)を形成する。 6.GSイオン注入工程 図6において、第2のPMOSトランジスタ及びNMO
Sトランジスタの形成領域を第2のレジスト膜(10)
で被覆し、第2のレジスト膜(10)をマスクとして、
第1のPMOSトランジスタ及びNMOSトランジスタ
の形成領域にP型不純物であるボロンイオン(11B+)を
例えば加速電圧30KeV,注入量1.0E12から
1.5E12/cm2の条件で全面イオン注入する。この
イオン注入をGSイオン注入と称す。
5. First Gate Oxidation Step In FIG. 5, the dummy oxide film (5) is removed and 110 Å
A gate oxide film (9) is formed to some extent. 6. GS ion implantation step Referring to FIG. 6, the second PMOS transistor and the NMO are formed.
A second resist film (10) is formed on the formation region of the S transistor.
And using the second resist film (10) as a mask,
Boron ions (11B +), which is a P-type impurity, are ion-implanted into the formation regions of the first PMOS transistor and NMOS transistor under the conditions of an acceleration voltage of 30 KeV and an implantation amount of 1.0E12 to 1.5E12/cm@2. This ion implantation is called GS ion implantation.

【0013】7.GSホトエッチ工程 図7において、第2のレジスト膜(10)をマスクとし
て、第1のゲート酸化工程で形成したゲート酸化膜
(9)をエッチング除去する。 8.第2ゲート酸化工程 図8において、第2のレジスト膜(10)を除去し、第
2のゲート酸化工程を行う。これにより、第1のPMO
S及びNMOS形成領域に再び110Å程度の薄いゲー
ト酸化膜(11)を形成するとともに、第2のPMOS
及びNMOS形成領域に追酸化による厚いゲート酸化膜
(12)を形成する。
7. GS Photo-etching Step In FIG. 7, the gate oxide film (9) formed in the first gate oxidation step is removed by etching using the second resist film (10) as a mask. 8. Second Gate Oxidation Step In FIG. 8, the second resist film (10) is removed and a second gate oxidation step is performed. As a result, the first PMO
A thin gate oxide film (11) of about 110 Å is formed again in the S and NMOS formation regions, and the second PMOS is formed.
And a thick gate oxide film (12) is formed by additional oxidation in the NMOS formation region.

【0014】9.ゲート電極及びソースドレイン形成工
程 図9において、ゲート酸化膜(11,12)上にゲート
電極(13)を形成し、第1、第2のNMOSのN+型
ソース層(14)及びドレイン層(15)を形成し、さ
らに第1、第2のPMOSのP+型ソース層(16)及
びドレイン層(17)を形成する。
9. Gate Electrode and Source / Drain Forming Step In FIG. 9, the gate electrode (13) is formed on the gate oxide film (11, 12), and the N + type source layer (14) and drain layer (14) of the first and second NMOS are formed. 15), and then the P + type source layer (16) and the drain layer (17) of the first and second PMOSs are formed.

【0015】上記のCMOS半導体装置の製造方法によ
れば、4種類のMOSトランジスタのしきい値電圧を適
切な値に設定するために必要なマスク合わせ工程を極力
少なくすることができる。特に、本実施例によれば、マ
スク合わせ工程の兼用化により、しきい値電圧を設定す
るための専用工程は全く必要としない。以下、図10及
び図11を参照しながら、しきい値電圧の設定方法を説
明する。
According to the method of manufacturing a CMOS semiconductor device described above, the mask alignment process required to set the threshold voltages of the four types of MOS transistors to appropriate values can be minimized. In particular, according to this embodiment, since the mask aligning process is also used, no dedicated process for setting the threshold voltage is required. Hereinafter, a method of setting the threshold voltage will be described with reference to FIGS. 10 and 11.

【0016】まず、5V系に使用するトランジスタにつ
いて考える。第2のPMOSについては、図11に示す
ように、Gイオン注入(全面注入)のみで、−1.0V
に設定される。そして、第2のNMOSについては、こ
のG,FP,NEの各イオン注入がなされるが、主とし
てNEイオン注入により制御される。この結果、1.0
Vに設定することができる。このとき、NEイオン注入
は、チャネルスットパ形成用のFPイオン注入のマスク
をそのまま使用できるので、マスク工程の増加を伴わな
い。
First, consider a transistor used for a 5V system. As for the second PMOS, as shown in FIG. 11, only -1.0 V is obtained by only G ion implantation (overall implantation).
Is set to The G, FP, and NE ions are implanted into the second NMOS, but the ion implantation is mainly controlled by the NE ion implantation. As a result, 1.0
It can be set to V. At this time, in the NE ion implantation, since the mask of the FP ion implantation for forming the channel stopper can be used as it is, the mask process is not increased.

【0017】次に、3.3V系のトランジスタについて
考える。第1のPMOSについては、上記のGイオン注
入がなされているが、これでは、しきい値電圧が高すぎ
るので、GSイオン注入で追加注入し、−0.8Vとい
う適切な値に設定している。このとき、GSイオン注入
のマスク合わせは、ゲート酸化膜エッチのマスク合わせ
と兼用しているので、工程の増加はない。また、第1の
NMOSについても、同様にGSイオン注入がなされる
結果、しきい値電圧は上昇し、0.7Vという適切な値
に設定された。
Next, consider a 3.3V type transistor. Regarding the first PMOS, the above G ion implantation has been performed. However, since the threshold voltage is too high in this case, additional implantation is performed by GS ion implantation, and the appropriate value of −0.8V is set. There is. At this time, the mask alignment for GS ion implantation is also used as the mask alignment for etching the gate oxide film, so that the number of steps is not increased. As for the first NMOS, as a result of GS ion implantation in the same manner, the threshold voltage increased and was set to an appropriate value of 0.7V.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
ゲート酸化膜厚が異なるMOSトランジスタを有するC
MOS半導体装置の製造方法において、特別なマスク合
わせ工程を使用することなく、4種類のMOSトランジ
スタのしきい値電圧を適当な値に設定することでき、従
来に比べて、製造コストの削減及びTAT短縮に大幅に
寄与することができるものである。
As described above, according to the present invention,
C having MOS transistors having different gate oxide film thicknesses
In the method of manufacturing a MOS semiconductor device, it is possible to set the threshold voltages of four types of MOS transistors to appropriate values without using a special mask alignment process, which leads to a reduction in manufacturing cost and TAT as compared with the conventional method. It can greatly contribute to shortening.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第1の断面図である。
FIG. 1 is a first sectional view illustrating a method for manufacturing a CMOS semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第2の断面図である。
FIG. 2 is a second cross-sectional view explaining the method of manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図3】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第3の断面図である。
FIG. 3 is a third cross-sectional view explaining the method of manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図4】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第4の断面図である。
FIG. 4 is a fourth cross-sectional view illustrating the method of manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図5】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第5の断面図である。
FIG. 5 is a fifth cross-sectional view illustrating the method for manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図6】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第6の断面図である。
FIG. 6 is a sixth sectional view illustrating the method for manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図7】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第7の断面図である。
FIG. 7 is a seventh cross-sectional view illustrating the method for manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図8】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第8の断面図である。
FIG. 8 is an eighth cross-sectional view explaining the method for manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図9】本発明の一実施例に係るCMOS半導体装置の
製造方法を説明する第9の断面図である。
FIG. 9 is a ninth cross-sectional view illustrating the method for manufacturing the CMOS semiconductor device according to the embodiment of the present invention.

【図10】MOSトランジスタのしきい値とイオン注入
量との関係を示す図である。
FIG. 10 is a diagram showing a relationship between a threshold value of a MOS transistor and an ion implantation amount.

【図11】MOSトランジスタのしきい値とイオン注入
量との関係を示す図である。
FIG. 11 is a diagram showing a relationship between a threshold value of a MOS transistor and an ion implantation amount.

【図12】従来例に係るCMOS半導体装置の製造方法
を説明する断面図である。
FIG. 12 is a cross-sectional view illustrating the method of manufacturing the CMOS semiconductor device according to the conventional example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1のPMOSトランジスタ及びNMO
Sトランジスタと、それらより厚いゲート酸化膜を有す
る第2のPMOSトランジスタ及びNMOSトランジス
タとを同一半導体基板上に具備するCMOS半導体装置
の製造方法において、 各トランジスタを分離するフィールド酸化膜を形成する
工程と、 第1及び第2のPMOSトランジスタの形成領域を第1
のレジスト膜で被覆する工程と、 第1のレジスト膜をマスクとしてP型不純物を第1及び
第2のNMOSトランジスタの形成領域とフィールド酸
化膜下にイオン注入する工程と、 第1のレジスト膜及びフィールド酸化膜をマスクとして
N型不純物を第1及び第2のNMOSトランジスタの形
成領域にイオン注入する工程と、 第1のレジスト膜を除去する工程と、 半導体基板の全面にP型不純物をイオン注入する工程
と、 第1のゲート酸化工程と、 第2のPMOSトランジスタ及びNMOSトランジスタ
の形成領域を第2のレジスト膜で被覆する工程と、 第2のレジスト膜をマスクとして、第1のPMOSトラ
ンジスタ及びNMOSトランジスタの形成領域にP型不
純物をイオン注入する工程と、 第2のレジスト膜をマスクとして、第1のゲート酸化工
程で形成したゲート酸化膜をエッチングする工程と、 第2のレジスト膜を除去する工程と、 第2のゲート酸化工程と、を有することを特徴とするC
MOS半導体装置の製造方法。
1. A first PMOS transistor and an NMO.
In a method of manufacturing a CMOS semiconductor device having an S transistor and a second PMOS transistor and an NMOS transistor having a thicker gate oxide film on the same semiconductor substrate, a step of forming a field oxide film for separating each transistor, The first and second PMOS transistor formation regions
And a step of ion-implanting P-type impurities into the formation regions of the first and second NMOS transistors and below the field oxide film using the first resist film as a mask, and the first resist film and A step of ion-implanting N-type impurities into the formation regions of the first and second NMOS transistors using the field oxide film as a mask, a step of removing the first resist film, and ion-implantation of P-type impurities on the entire surface of the semiconductor substrate. And a first gate oxidation step, a step of covering the formation regions of the second PMOS transistor and the NMOS transistor with a second resist film, and the first PMOS transistor and the first PMOS transistor using the second resist film as a mask. A step of ion-implanting P-type impurities into the formation region of the NMOS transistor, the first resist film as a mask, C for etching the gate oxide film formed in the gate oxidation process, and removing the second resist film, a second gate oxide process, characterized in that it has a
Manufacturing method of MOS semiconductor device.
JP07007703A 1995-01-20 1995-01-20 Method for manufacturing CMOS semiconductor device Expired - Fee Related JP3101515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07007703A JP3101515B2 (en) 1995-01-20 1995-01-20 Method for manufacturing CMOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07007703A JP3101515B2 (en) 1995-01-20 1995-01-20 Method for manufacturing CMOS semiconductor device

Publications (2)

Publication Number Publication Date
JPH08204025A true JPH08204025A (en) 1996-08-09
JP3101515B2 JP3101515B2 (en) 2000-10-23

Family

ID=11673116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07007703A Expired - Fee Related JP3101515B2 (en) 1995-01-20 1995-01-20 Method for manufacturing CMOS semiconductor device

Country Status (1)

Country Link
JP (1) JP3101515B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828294A1 (en) * 1996-09-06 1998-03-11 Matsushita Electronics Corporation Semiconductor integrated circuit device and method for manufacturing the same
US5989949A (en) * 1996-06-29 1999-11-23 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a complementary metal-oxide semiconductor device
US6087225A (en) * 1998-02-05 2000-07-11 International Business Machines Corporation Method for dual gate oxide dual workfunction CMOS
US6211003B1 (en) 1998-03-16 2001-04-03 Hitachi, Ltd. Semiconductor integrated circuit device and process for manufacturing the same
US6531363B2 (en) 1998-03-05 2003-03-11 Nec Corporation Method for manufacturing a semiconductor integrated circuit of triple well structure
KR100384860B1 (en) * 2000-08-31 2003-05-22 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
US6693331B2 (en) * 1999-11-18 2004-02-17 Intel Corporation Method of fabricating dual threshold voltage n-channel and p-channel MOSFETS with a single extra masked implant operation
WO2004093192A1 (en) 2003-04-10 2004-10-28 Fujitsu Limited Semiconductor device and its manufacturing method
KR100543061B1 (en) * 2001-06-01 2006-01-20 엘지.필립스 엘시디 주식회사 A method for manufacturing of array substrate using a driving circuit for one body Liquid Crystal Display Device
JP2007220736A (en) * 2006-02-14 2007-08-30 Toshiba Corp Semiconductor device, and manufacturing method thereof
KR100793672B1 (en) * 2005-05-27 2008-01-10 후지쯔 가부시끼가이샤 Semiconductor device and its manufacturing method
JP2010034569A (en) * 2009-09-24 2010-02-12 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
WO2012024391A2 (en) * 2010-08-17 2012-02-23 Texas Instruments Incorporated Cmos transistor fabrication with different threshold voltages
US8435861B2 (en) 2009-12-03 2013-05-07 Fujitsu Semiconductor Limited Method of manufacturing a semiconductor device having different kinds of insulating films with different thicknesses

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989949A (en) * 1996-06-29 1999-11-23 Hyundai Electronics Industries Co., Ltd. Method of manufacturing a complementary metal-oxide semiconductor device
EP0828294A1 (en) * 1996-09-06 1998-03-11 Matsushita Electronics Corporation Semiconductor integrated circuit device and method for manufacturing the same
US6087225A (en) * 1998-02-05 2000-07-11 International Business Machines Corporation Method for dual gate oxide dual workfunction CMOS
US6531363B2 (en) 1998-03-05 2003-03-11 Nec Corporation Method for manufacturing a semiconductor integrated circuit of triple well structure
US6211003B1 (en) 1998-03-16 2001-04-03 Hitachi, Ltd. Semiconductor integrated circuit device and process for manufacturing the same
US6387744B2 (en) 1998-03-16 2002-05-14 Hitachi, Ltd. Process for manufacturing semiconductor integrated circuit device
US6693331B2 (en) * 1999-11-18 2004-02-17 Intel Corporation Method of fabricating dual threshold voltage n-channel and p-channel MOSFETS with a single extra masked implant operation
KR100384860B1 (en) * 2000-08-31 2003-05-22 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
KR100543061B1 (en) * 2001-06-01 2006-01-20 엘지.필립스 엘시디 주식회사 A method for manufacturing of array substrate using a driving circuit for one body Liquid Crystal Display Device
JP4942009B2 (en) * 2003-04-10 2012-05-30 富士通セミコンダクター株式会社 Semiconductor device
WO2004093192A1 (en) 2003-04-10 2004-10-28 Fujitsu Limited Semiconductor device and its manufacturing method
JPWO2004093192A1 (en) * 2003-04-10 2006-07-06 富士通株式会社 Semiconductor device and manufacturing method thereof
EP1612861A1 (en) * 2003-04-10 2006-01-04 Fujitsu Limited Semiconductor device and its manufacturing method
US7323754B2 (en) 2003-04-10 2008-01-29 Fujitsu Limited Semiconductor device and its manufacture method
EP1612861A4 (en) * 2003-04-10 2008-09-17 Fujitsu Ltd Semiconductor device and its manufacturing method
US7605041B2 (en) 2003-04-10 2009-10-20 Fujitsu Microelectronics Limited Semiconductor device and its manufacture method
KR100793672B1 (en) * 2005-05-27 2008-01-10 후지쯔 가부시끼가이샤 Semiconductor device and its manufacturing method
JP2007220736A (en) * 2006-02-14 2007-08-30 Toshiba Corp Semiconductor device, and manufacturing method thereof
JP2010034569A (en) * 2009-09-24 2010-02-12 Fujitsu Microelectronics Ltd Method of manufacturing semiconductor device
US8435861B2 (en) 2009-12-03 2013-05-07 Fujitsu Semiconductor Limited Method of manufacturing a semiconductor device having different kinds of insulating films with different thicknesses
WO2012024391A2 (en) * 2010-08-17 2012-02-23 Texas Instruments Incorporated Cmos transistor fabrication with different threshold voltages
WO2012024391A3 (en) * 2010-08-17 2012-08-09 Texas Instruments Incorporated Cmos transistor fabrication with different threshold voltages

Also Published As

Publication number Publication date
JP3101515B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US7276407B2 (en) Method for fabricating semiconductor device
JP3101515B2 (en) Method for manufacturing CMOS semiconductor device
JPH10308458A (en) Manufacture of cmos device
JP2000068389A (en) Semiconductor device and manufacture thereof
JP3462886B2 (en) Semiconductor device
JPH0272661A (en) Manufacture of semiconductor device
JP2000269357A (en) Method of producing semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JP3128481B2 (en) Method for manufacturing CMOS semiconductor device
JP2001093986A (en) Mos device and its manufacturing method
JPH1117024A (en) Manufacture of semiconductor device
JP2001068560A (en) Fabrication of semiconductor device and semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JP2737626B2 (en) Method for manufacturing CMOS semiconductor device
JP2633525B2 (en) Method for manufacturing semiconductor device
JP3216110B2 (en) Method of manufacturing complementary semiconductor device
JPH08204022A (en) Production of semiconductor device
JPH11238806A (en) Semiconductor device and its manufacture
JPH1131814A (en) Manufacture of semiconductor device
JPH0320074A (en) Manufacture of complementary mis integrated circuit
JPH01209756A (en) Semiconductor device
JPH0722619A (en) Manufacture of mos transistor
JPH1027909A (en) Manufacture of semiconductor device
JPH0638474B2 (en) Method for manufacturing semiconductor device
JPS60142557A (en) Manufacture of semiconductor device with high withstand voltage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees