JPH08203990A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH08203990A
JPH08203990A JP1038095A JP1038095A JPH08203990A JP H08203990 A JPH08203990 A JP H08203990A JP 1038095 A JP1038095 A JP 1038095A JP 1038095 A JP1038095 A JP 1038095A JP H08203990 A JPH08203990 A JP H08203990A
Authority
JP
Japan
Prior art keywords
wafer
insulating film
range
electrode
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1038095A
Other languages
Japanese (ja)
Inventor
Yoichi Ito
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1038095A priority Critical patent/JPH08203990A/en
Publication of JPH08203990A publication Critical patent/JPH08203990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: To provide an electrostatic chuck capable of reducing a remaining chucking force expanding over a wide temperature range of a room temperature or less and excellent in reliability of wafer carriage. CONSTITUTION: An insulation film 11 is formed with a material that TiO2 is added to Al2 O3 on an electrode 10 to constitute an electrostatic chucking electrode. A film thickness and a chucking area of a wafer 1 are determined so that resistance of the insulation film 11 is within a range of 10<3> to 10<6> Ω. Further, TiO2 is added to Al2 O3 that a peculiar resistor value is in the range of 10<7> to 10<9> Ω-cm, as the insulation film 11, to form a film or a SiC sintered body to be used. Thus, it is possible to reduce a remaining chucking force when a wafer is released, expanding over a wide temperature range of a room temperature or less and enhance reliability of wafer carriage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ等により処理
される試料を静電吸着力により支持する静電吸着装置に
おいて、室温以下の広い温度範囲にわたって残留吸着力
を低減してウエハ搬送の信頼性を向上するのに好適な静
電吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chucking device for supporting a sample processed by plasma or the like by electrostatic chucking force to reduce the residual chucking force over a wide temperature range below room temperature and to improve wafer transfer reliability. The present invention relates to an electrostatic adsorption device suitable for improving the property.

【0002】[0002]

【従来の技術】静電吸着に関する従来技術としては、特
開平3−204924号公報に記載のように絶縁膜がT
iO2を含み、100℃以下の使用温度において、固有
抵抗値を109〜1011Ω−cmの範囲に調整することが
提案されている。
2. Description of the Related Art As a conventional technique relating to electrostatic attraction, an insulating film is made of T as described in JP-A-3-204924.
It has been proposed to adjust the specific resistance value to a range of 10 9 to 10 11 Ω-cm at a use temperature of 100 ° C. or less including iO 2 .

【0003】[0003]

【発明が解決しようとする課題】前記従来技術を電極を
室温以下の任意の温度に温調してウエハを連続してプラ
ズマにより処理するエッチング装置に適用することを考
えると次のような解決すべき課題が二つある。まず、第
1は従来技術では、各使用温度に応じて絶縁膜の固有抵
抗値を最適化しているので広い温度範囲にわたって残留
吸着力を低減して、ウエハ搬送の信頼性を向上できなか
った。このために電極温度を変化して処理するたびに静
電吸着電極を交換する必要があり、電極交換後の装置の
立ち上げ等に時間がかかりスル−プットを向上すること
が困難であった。次に、第2はエッチング処理されるウ
エハは、通常熱酸化工程を経て送られてくるので裏面に
SiO2膜、Si34膜等が形成されており、このよう
なウエハを処理する場合においても残留吸着力を低減で
きるように絶縁膜の固有抵抗値すなわち抵抗を低くする
必要があった。しかし、従来技術では固有抵抗値が10
9〜1011Ω−cmの範囲であるので抵抗を低くするため
には絶縁膜の膜厚を薄くする必要があり、絶縁破壊を生
じ易くなるという課題があった。
Considering that the above-mentioned conventional technique is applied to an etching apparatus in which the temperature of an electrode is adjusted to an arbitrary temperature below room temperature and a wafer is continuously processed by plasma, the following problem is solved. There are two issues to be addressed. First, in the prior art, since the specific resistance value of the insulating film is optimized according to each operating temperature, the residual suction force can be reduced over a wide temperature range and the reliability of wafer transfer cannot be improved. For this reason, it is necessary to replace the electrostatic adsorption electrode each time the electrode temperature is changed and processed, and it takes time to start up the device after the electrode replacement and it is difficult to improve the throughput. Next, since the second wafer to be etched is usually sent through a thermal oxidation process, a SiO 2 film, a Si 3 N 4 film or the like is formed on the back surface. Also in the above, it was necessary to lower the specific resistance value of the insulating film, that is, the resistance so that the residual adsorption force could be reduced. However, in the conventional technique, the specific resistance value is 10
Since it is in the range of 9 to 10 11 Ω-cm, it is necessary to reduce the film thickness of the insulating film in order to reduce the resistance, and there is a problem that dielectric breakdown easily occurs.

【0004】本発明の目的は、室温以下の広い温度範囲
にわたって残留吸着力を低減して、ウエハ搬送の信頼性
の高い静電吸着装置を提供することにある。
An object of the present invention is to provide an electrostatic chucking device which reduces the residual chucking force over a wide temperature range below room temperature and has high wafer transfer reliability.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、絶縁膜の抵抗が103〜106Ωの範囲となるように
膜厚、ウエハの吸着面積を決める。また、絶縁膜として
固有抵抗値が107〜109Ω-cmの範囲のAl23にT
iO2を添加して形成した膜またはSiC焼結体を用い
るものである。
To achieve the above object, the film thickness and the adsorption area of the wafer are determined so that the resistance of the insulating film is in the range of 10 3 to 10 6 Ω. In addition, as an insulating film, T 2 is used as Al 2 O 3 having a specific resistance value of 10 7 to 10 9 Ω-cm.
A film formed by adding iO 2 or a SiC sintered body is used.

【0006】[0006]

【作用】エッチング処理終了後ウエハを解放する際の絶
縁膜からの電荷の放電時定数は、絶縁膜の抵抗とウエハ
と絶縁膜の隙間の静電容量の積で表わされ、隙間すなわ
ちウエハ裏面と絶縁膜表面の粗さが一定であれば絶縁膜
の抵抗を低くすることにより、残留吸着力を低減するこ
とができる。また、裏面にSiO2膜、Si34膜等が
形成されている場合には、前述した時定数より若干長く
なる傾向を示すが同様に絶縁膜の抵抗を低くすることに
より、残留吸着力を低減することができる。
The discharge time constant of the electric charge from the insulating film when the wafer is released after the etching process is represented by the product of the resistance of the insulating film and the capacitance of the gap between the wafer and the insulating film. If the surface roughness of the insulating film is constant, the residual adsorption force can be reduced by lowering the resistance of the insulating film. Further, when a SiO 2 film, a Si 3 N 4 film or the like is formed on the back surface, it tends to be slightly longer than the above-mentioned time constant, but similarly, by lowering the resistance of the insulating film, the residual adsorption force is reduced. Can be reduced.

【0007】従って、室温以下の広い温度範囲にわたっ
て残留吸着力を低減するためには絶縁膜の抵抗を温度依
存性を考慮して最適化する必要がある。
Therefore, in order to reduce the residual adsorption force over a wide temperature range below room temperature, it is necessary to optimize the resistance of the insulating film in consideration of temperature dependence.

【0008】実際に、Al23にTiO2を添加して形
成した絶縁膜の抵抗を9×106Ω、5×105Ω、7×
103Ωに変化して、電極温度20〜−50℃の範囲で
残留吸着力を検討した。その結果、抵抗を103〜106
Ωの範囲とすることにより、Siウエハ、裏面にSiO
2膜が1μm形成されたSiウエハともに残留吸着力を
5S以内に目標の0.02N/cm2以下に低減でき、ウ
エハ搬送の信頼性を向上できることがわかった。また、
抵抗値を前述した範囲とするために、固有抵抗値が10
7〜109Ω-cmの範囲の絶縁膜を用いれば、絶縁破壊を
生じない膜厚を十分確保できた。さらに、SiC焼結体
を絶縁膜として用いても同様の結果が得られた。
Actually, the resistance of the insulating film formed by adding TiO 2 to Al 2 O 3 is 9 × 10 6 Ω, 5 × 10 5 Ω, 7 ×
The residual adsorption force was examined in the range of the electrode temperature of 20 to -50 ° C while changing to 10 3 Ω. As a result, the resistance is 10 3 to 10 6
By setting the value in the range of Ω, the Si wafer and the SiO
It was found that the residual adsorption force can be reduced to the target value of 0.02 N / cm 2 or less within 5 S for both Si wafers having the two films formed to 1 μm, and the reliability of wafer transfer can be improved. Also,
In order to set the resistance value within the above range, the specific resistance value is 10
By using an insulating film in the range of 7 to 10 9 Ω-cm, it was possible to secure a sufficient film thickness without causing dielectric breakdown. Further, similar results were obtained even when a SiC sintered body was used as an insulating film.

【0009】[0009]

【実施例】以下、本発明の第1の実施例を適用したいわ
ゆる有磁場マイクロ波エッチング装置の構成を図1及び
図2により説明する。図1において、ウエハ1のエッチ
ングは、放電管2内に所定の流量導入したプロセスガス
3をマイクロ波4とソレノイド5による磁場の相互作用
によりプラズマ6化し、さらに下部電極7に高周波電源
8により高周波を印加して、ウエハ1に入射するイオン
のエネルギ−を制御しながら行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a so-called magnetic field microwave etching apparatus to which the first embodiment of the present invention is applied will be described below with reference to FIGS. In FIG. 1, the wafer 1 is etched by converting the process gas 3 introduced into the discharge tube 2 at a predetermined flow rate into plasma 6 by the interaction of the microwave 4 and the magnetic field of the solenoid 5, and further generating a high frequency power by the high frequency power source 8 on the lower electrode 7. Is applied to control the energy of the ions incident on the wafer 1.

【0010】ウエハ1のエッチングが終了すると該エッ
チング済みウエハ1は、ウエハ押し上げ装置9の作動に
より下部電極7から搬送装置(図示省略)に渡された
後、該搬送装置により他の場所に搬送される。
When the etching of the wafer 1 is completed, the wafer 1 having been etched is transferred from the lower electrode 7 to a transfer device (not shown) by the operation of the wafer lifting device 9, and then transferred to another place by the transfer device. It

【0011】また、電極10上にAl23にTiO2
添加した材料により絶縁膜11を形成して構成した静電
吸着電極12が下部電極7上に固定されており、さら
に、下部電極7と直流電源13の間にはスイッチ14が
設けてある。そして、エッチング処理開始時にウエハ1
を吸着する時には、スイッチ14を端子15と接続して
静電吸着電極12に直流電圧を印加し、エッチング処理
終了後ウエハ1を解放する時には、端子16と接続して
抵抗17を介して静電吸着電極12を接地する。
Further, an electrostatic adsorption electrode 12 formed by forming an insulating film 11 on the electrode 10 by using a material obtained by adding TiO 2 to Al 2 O 3 is fixed on the lower electrode 7, and further, the lower electrode. A switch 14 is provided between 7 and the DC power supply 13. Then, at the start of the etching process, the wafer 1
When the wafer 1 is released, the switch 14 is connected to the terminal 15 to apply a DC voltage to the electrostatic attraction electrode 12, and when the wafer 1 is released after the etching process is completed, the switch 14 is connected to the terminal 16 to electrostatically charge via the resistor 17. The adsorption electrode 12 is grounded.

【0012】一方、エッチングされるウエハ1の冷却
は、スイッチ14を端子15と接続して絶縁膜11とウ
エハ1間に直流電圧を印加した後、前述した方法により
プラズマ6を生成することにより生じる静電吸着力によ
りウエハ1を支持した状態で、マスフロ−コントロ−ラ
18を開いてHeガス19をウエハ1裏面に導入するこ
とにより行う。また、下部電極7はサ−キュレ−タ20
により冷媒21を循環することにより20〜−50℃の
範囲で任意の温度に温調されている。
On the other hand, the wafer 1 to be etched is cooled by connecting the switch 14 to the terminal 15 and applying a DC voltage between the insulating film 11 and the wafer 1, and then generating the plasma 6 by the above-mentioned method. With the wafer 1 supported by electrostatic attraction, the mass flow controller 18 is opened and He gas 19 is introduced to the back surface of the wafer 1. The lower electrode 7 is a circulator 20.
By circulating the refrigerant 21, the temperature is adjusted to an arbitrary temperature in the range of 20 to -50 ° C.

【0013】次に、本発明の第1の実施例において絶縁
膜11の抵抗を9×106Ω、5×105Ω、7×103
Ωとなるように膜厚、ウエハ1の吸着面積を決めて製作
した静電吸着電極12を用いて電極温度20〜−50℃
の範囲で、残留吸着力について検討した結果を図3乃至
図5に示す。まず、図3に示すように抵抗値が9×10
6Ωの場合の残留吸着力は、電極温度20℃では5S以
内に目標の0.02N/cm2以下に低減できるが、−2
0℃、−50℃に冷却した場合では5S後においても約
0.3N/cm2の吸着力が残留しており、適用できない
ことがわかった。これは、温度の低下とともに絶縁膜1
1の抵抗が高くなり放電時定数が長くなるためである。
これに対して、図4に示すように抵抗がさらに低い5×
105Ωの場合の残留吸着力は、同様に電極温度の低下
とともに大きくなるが20〜−50℃の範囲で5S以内
に目標の0.02N/cm2以下に低減できることがわか
る。さらに、図5に示すように抵抗を7×103Ωにさ
らに低くすることにより残留吸着力を、電極温度20〜
−50℃の範囲で瞬時に目標の0.02N/cm2以下に
低減できることがわかる。
Next, in the first embodiment of the present invention, the resistance of the insulating film 11 is set to 9 × 10 6 Ω, 5 × 10 5 Ω and 7 × 10 3.
The electrode temperature is 20 to -50 ° C. by using the electrostatic adsorption electrode 12 manufactured by determining the film thickness and the adsorption area of the wafer 1 so as to be Ω.
3 to 5 show the results of studying the residual adsorption force in the range of. First, as shown in FIG. 3, the resistance value is 9 × 10
The residual adsorption force in the case of 6 Ω can be reduced to the target 0.02 N / cm 2 or less within 5 S at an electrode temperature of 20 ° C., but −2
In the case of cooling to 0 ° C and -50 ° C, the adsorption force of about 0.3 N / cm 2 remained even after 5S, and it was found that it cannot be applied. This is because the insulating film 1
This is because the resistance of No. 1 becomes high and the discharge time constant becomes long.
On the other hand, as shown in FIG.
It can be seen that the residual adsorption force in the case of 10 5 Ω similarly increases with a decrease in the electrode temperature, but can be reduced to the target of 0.02 N / cm 2 or less within 5 S within the range of 20 to -50 ° C. Further, as shown in FIG. 5, the resistance is further lowered to 7 × 10 3 Ω, so that the residual adsorption force is reduced to 20 to 30 ° C.
It can be seen that the target value can be instantly reduced to 0.02 N / cm 2 or less in the range of -50 ° C.

【0014】また、例えば6インチウエハを処理するた
めにウエハ1の吸着面積を約140cm2として、それぞ
れ固有抵抗値が2×109、3×107Ω−cmのAl23
にTiO2を添加した絶縁膜11を用いると膜厚約30
0μmで抵抗を前述した5×105Ω、7×103Ωにで
き、印加電圧1000Vにおいても絶縁破壊を生じない
膜厚を十分確保できた。
Further, for example, for processing a 6-inch wafer, the adsorption area of the wafer 1 is set to about 140 cm 2 , and Al 2 O 3 having a specific resistance value of 2 × 10 9 and 3 × 10 7 Ω-cm, respectively.
If the insulating film 11 with TiO 2 added is used, the film thickness is about 30.
At 0 μm, the resistance can be made 5 × 10 5 Ω and 7 × 10 3 Ω described above, and a sufficient film thickness that does not cause dielectric breakdown even at an applied voltage of 1000 V can be secured.

【0015】次に、本発明の第2の実施例の静電吸着電
極12の構成を図6に示す。第1の実施例と異なるとこ
ろは静電吸着電極12を絶縁膜11としてSiC焼結体
を用いて、電極10とろう材22により接合して形成し
たところである。絶縁膜の抵抗を8×104Ωとなるよ
うに膜厚、ウエハ1の吸着面積を決めて静電吸着電極1
2を製作して第1の実施例と同様な検討を行った。その
結果、残留吸着力は電極20〜−50℃の範囲で瞬時に
目標の0.02N/cm2以下に低減でき、ウエハ1の搬
送上問題を生じなかった。
Next, FIG. 6 shows the structure of the electrostatic attraction electrode 12 of the second embodiment of the present invention. The difference from the first embodiment is that the electrostatic attraction electrode 12 is formed by joining the electrode 10 and the brazing material 22 using a SiC sintered body as the insulating film 11. Determine the film thickness and the adsorption area of the wafer 1 so that the resistance of the insulating film is 8 × 10 4 Ω, and the electrostatic adsorption electrode 1
2 was manufactured and the same examination as in the first embodiment was conducted. As a result, the residual adsorption force can be instantly reduced to the target value of 0.02 N / cm 2 or less in the range of the electrode temperature of 20 to -50 ° C., and no problem occurs in the transportation of the wafer 1.

【0016】また、例えば6インチウエハを処理するた
めにウエハ1の吸着面積を約100cm2として、固有抵
抗値が8×107Ω−cmのSiC焼結体を用いると膜厚
約1mmで抵抗を前述した8×104Ωにでき、印加電
圧1000Vにおいても絶縁破壊を生じない膜厚を十分
確保できた。
Further, for example, in order to process a 6-inch wafer, when the adsorption area of the wafer 1 is set to about 100 cm 2 and a SiC sintered body having a specific resistance value of 8 × 10 7 Ω-cm is used, the resistance is about 1 mm in film thickness. Can be set to 8 × 10 4 Ω described above, and a sufficient film thickness that does not cause dielectric breakdown even at an applied voltage of 1000 V can be secured.

【0017】以上説明したように、絶縁膜11の抵抗が
103〜106Ωの範囲になるように固有抵抗値が107
〜109Ω−cmの範囲の材料を用いて絶縁膜の膜厚、ウ
エハ1の吸着面積を決めて静電吸着電極12を製作する
ことにより、電極温度20〜−50℃の広い範囲にわた
って残留吸着力を低減でき、ウエハ搬送の信頼性を向上
できた。
As described above, the specific resistance value is 10 7 so that the resistance of the insulating film 11 is in the range of 10 3 to 10 6 Ω.
By manufacturing the electrostatic adsorption electrode 12 by determining the film thickness of the insulating film and the adsorption area of the wafer 1 using a material in the range of -10 9 Ω-cm, the electrode temperature remains over a wide range of 20 to -50 ° C. The suction power can be reduced and the reliability of wafer transfer can be improved.

【0018】[0018]

【発明の効果】本発明によれば、室温以下の広い温度範
囲にわたって残留吸着力を低減でき、ウエハ搬送の信頼
性の高い静電吸着装置を提供することができる。
According to the present invention, it is possible to provide an electrostatic chucking device capable of reducing the residual chucking force over a wide temperature range below room temperature and having a high wafer transfer reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を適用したエッチング装
置の全体構成を示した説明図である。
FIG. 1 is an explanatory diagram showing the overall configuration of an etching apparatus to which a first embodiment of the present invention has been applied.

【図2】本発明の第1の実施例を適用した静電吸着電極
の構成を示した説明図である。
FIG. 2 is an explanatory diagram showing a configuration of an electrostatic attraction electrode to which the first embodiment of the present invention is applied.

【図3】本発明の第1の実施例について残留吸着力の温
度依存性を測定した結果を示した説明図である。
FIG. 3 is an explanatory diagram showing the results of measuring the temperature dependence of the residual adsorption force in the first example of the present invention.

【図4】本発明の第1の実施例について残留吸着力の温
度依存性を測定した結果を示した説明図である。
FIG. 4 is an explanatory diagram showing the results of measuring the temperature dependence of the residual adsorption force for the first example of the present invention.

【図5】本発明の第1の実施例について残留吸着力の温
度依存性を測定した結果を示した説明図である。
FIG. 5 is an explanatory diagram showing the results of measuring the temperature dependence of the residual adsorption force for the first example of the present invention.

【図6】本発明の第2の実施例を適用した静電吸着電極
の構成を示した説明図である。
FIG. 6 is an explanatory diagram showing a configuration of an electrostatic attraction electrode to which a second embodiment of the present invention has been applied.

【符号の説明】[Explanation of symbols]

11…絶縁膜、12…静電吸着電極、13…直流電源、
14…スイッチ。
11 ... Insulating film, 12 ... Electrostatic adsorption electrode, 13 ... DC power supply,
14 ... switch.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試料を絶縁膜との間に発生させた静電吸着
力により支持する静電吸着装置において、 前記絶縁膜の抵抗を103〜106Ωの範囲とすることを
特徴とする静電吸着装置。
1. An electrostatic chucking device for supporting a sample by an electrostatic chucking force generated between the sample and an insulating film, wherein the resistance of the insulating film is in the range of 10 3 to 10 6 Ω. Electrostatic adsorption device.
【請求項2】前記絶縁膜の固有抵抗値を107〜109Ω
−cmの範囲とすることを特徴とする請求項1記載の静電
吸着装置。
2. The specific resistance value of the insulating film is 10 7 to 10 9 Ω
The electrostatic attraction device according to claim 1, wherein the electrostatic attraction device has a range of −cm.
【請求項3】前記絶縁膜としてAl23にTiO2を添
加した材料を用いることを特徴とする請求項1記載の静
電吸着装置。
3. The electrostatic attraction device according to claim 1, wherein a material obtained by adding TiO 2 to Al 2 O 3 is used as the insulating film.
【請求項4】前記絶縁膜としてSiC焼結体を用いるこ
とを特徴とする請求項1記載の静電吸着装置。
4. The electrostatic chucking device according to claim 1, wherein a SiC sintered body is used as the insulating film.
JP1038095A 1995-01-26 1995-01-26 Electrostatic chuck Pending JPH08203990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038095A JPH08203990A (en) 1995-01-26 1995-01-26 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038095A JPH08203990A (en) 1995-01-26 1995-01-26 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JPH08203990A true JPH08203990A (en) 1996-08-09

Family

ID=11748531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038095A Pending JPH08203990A (en) 1995-01-26 1995-01-26 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JPH08203990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038214A1 (en) * 1999-11-19 2001-05-31 Matsushita Electric Industrial Co., Ltd. Printer
JP2007142456A (en) * 2007-02-05 2007-06-07 Fujitsu Ltd Electrostatic chuck

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038214A1 (en) * 1999-11-19 2001-05-31 Matsushita Electric Industrial Co., Ltd. Printer
JP2007142456A (en) * 2007-02-05 2007-06-07 Fujitsu Ltd Electrostatic chuck

Similar Documents

Publication Publication Date Title
US11404281B2 (en) Method of etching silicon containing films selectively against each other
US11342167B2 (en) Plasma processing method including cleaning of inside of chamber main body of plasma processing apparatus
TW200416801A (en) Plasma processing apparatus and focus ring
JP2000323456A (en) Plasma processing device and electrode used therefor
JP2001298015A (en) Plasma processing device
JP2001250815A (en) Device and method for plasma treatment
JP2007317772A (en) Electrostatic chuck device
JP2000299288A (en) Plasma treatment apparatus
JP2002198355A (en) Plasma treatment apparatus
JPH11265931A (en) Vacuum processor
JPH08236602A (en) Electrostatic chuck
JPH10154745A (en) Electrostatic attracting device
JPH08203990A (en) Electrostatic chuck
JP2880920B2 (en) Etching equipment
JPH058140A (en) Electrostatic chuck
JP2586768B2 (en) Electrostatic suction device
US11410869B1 (en) Electrostatic chuck with differentiated ceramics
JP2002009141A (en) Vacuum treatment apparatus having electrostatic attraction mechanism and operation control method for electrostatic attraction mechanism
JP2000183143A (en) Electrostatic chuck
JPH09199578A (en) Electrostatic attraction electrode and prasma treatment equipment using the same
JPH09293775A (en) Electrostatic chuck
JP2006120847A (en) Bipolar electrostatic chuck and its manufacturing method
JPH09330974A (en) Electrostatic chuck electrode
JPH06169008A (en) Electrostatic chucking device and method
JP2001217304A (en) Substrate stage, substrate processing apparatus and method using the substrate stage