JPH08236602A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JPH08236602A
JPH08236602A JP3868895A JP3868895A JPH08236602A JP H08236602 A JPH08236602 A JP H08236602A JP 3868895 A JP3868895 A JP 3868895A JP 3868895 A JP3868895 A JP 3868895A JP H08236602 A JPH08236602 A JP H08236602A
Authority
JP
Japan
Prior art keywords
electrode
wafer
dielectric layer
voltage
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3868895A
Other languages
Japanese (ja)
Other versions
JP3292270B2 (en
Inventor
Akihiro Hasegawa
明広 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3868895A priority Critical patent/JP3292270B2/en
Publication of JPH08236602A publication Critical patent/JPH08236602A/en
Application granted granted Critical
Publication of JP3292270B2 publication Critical patent/JP3292270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To realize efficient plasma processing by disposing a second electrode for applying DC voltage under a dielectric layer while insulating from a first electrode and setting the distance between the first electrode and the upper surface of the dielectric layer shorter than the distance between the second electrode and the upper surface of the dielectric layer thereby restraining the self-bias voltage of a wafer from lowering. CONSTITUTION: A first electrode 2 for applying high frequency voltage is disposed under a dielectric layer 1 of ceramic, for example, having flat upper surface. A second layer 3 for applying DC voltage is disposed under the dielectric layer 1 while insulating from the first electrode 2. The distance (d) between the first electrode 2 and the upper surface of the dielectric layer 1 is set shorter than the distance between the second electrode 3 and the upper surface of the dielectric layer 1. With such arrangement, the self-bias voltage of a wafer is retrained from lowering when high density plasma is employed thus realizing high rate efficient plasma processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電吸着装置に関し、
特に、プラズマ処理装置内にウエハを吸着保持する静電
吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck.
In particular, the present invention relates to an electrostatic attraction device that attracts and holds a wafer in a plasma processing apparatus.

【0002】[0002]

【従来の技術】従来の静電吸着装置について、図4を参
照して説明する。図4は、従来の静電吸着装置の断面図
を示す。導電性のRF電極50の上に、静電チャック5
3が取り付けられている。静電チャック53は、上面に
ウエハ54を保持する誘電体部材51と、その中に埋め
込まれた2つの電極52a、52bから構成されてい
る。
2. Description of the Related Art A conventional electrostatic attraction device will be described with reference to FIG. FIG. 4 shows a cross-sectional view of a conventional electrostatic attraction device. The electrostatic chuck 5 is placed on the conductive RF electrode 50.
3 is attached. The electrostatic chuck 53 is composed of a dielectric member 51 that holds a wafer 54 on its upper surface, and two electrodes 52a and 52b embedded therein.

【0003】誘電体部材51の上面にウエハ54を載置
して電極52a及び52bにそれぞれ正電圧及び負電圧
を印加すると、ウエハ54の各電極に対向する領域に反
対極性の電荷が誘起される。この電荷に働くクーロン力
によってウエハ54は静電チャック53に吸着固定され
る。
When the wafer 54 is placed on the upper surface of the dielectric member 51 and a positive voltage and a negative voltage are applied to the electrodes 52a and 52b, charges of opposite polarities are induced in the regions of the wafer 54 facing the electrodes. . The wafer 54 is attracted and fixed to the electrostatic chuck 53 by the Coulomb force acting on the electric charges.

【0004】ウエハ54の上方にプラズマを発生させ、
RF電極50に高周波電圧を印加すると、RF電極50
とウエハ54によって構成されるコンデンサがプラズマ
中を流れる電流により充放電を繰り返す。RF電極50
に正電圧が印加されている期間には電子がウエハに入射
し、負電圧が印加されている期間には陽イオンがウエハ
に入射する。
A plasma is generated above the wafer 54,
When a high frequency voltage is applied to the RF electrode 50, the RF electrode 50
The capacitor constituted by the wafer 54 repeats charging and discharging by the current flowing in the plasma. RF electrode 50
Electrons are incident on the wafer while a positive voltage is applied to the wafer, and cations are incident on the wafer while a negative voltage is applied.

【0005】イオンは電子に比べて動きにくいため、高
周波電圧の周波数を100kHz〜20MHzとする
と、ウエハへのイオンの入射量が電子の入射量よりも少
なくなる。このため、ウエハは負に自己バイアスされ
る。この自己バイアス電圧により、正イオンがウエハに
効率よく入射する。正イオンがウエハに効率よく入射す
ることにより、プラズマエッチング、プラズマCVD、
反応性スパッタエッチング等のプラズマ処理の効率が向
上する。
Ions are less likely to move than electrons. Therefore, when the frequency of the high-frequency voltage is 100 kHz to 20 MHz, the amount of ions incident on the wafer is smaller than the amount of electrons incident. Therefore, the wafer is negatively self-biased. Due to this self-bias voltage, positive ions are efficiently incident on the wafer. Efficient incidence of positive ions on the wafer allows plasma etching, plasma CVD,
The efficiency of plasma processing such as reactive sputter etching is improved.

【0006】[0006]

【発明が解決しようとする課題】プラズマ処理効率の向
上のため、プラズマ中の電子密度を増加させた高密度プ
ラズマの使用が注目されている。プラズマ中の電子密度
が増加すると、ウエハとプラズマとの間に形成されるシ
ース間隔が狭くなり、プラズマとウエハ間の静電容量が
大きくなる。プラズマ中から流入する電子の多くは、こ
のプラズマとウエハ間のコンデンサに蓄積される。この
ため、ウエハとRF電極間のコンデンサに蓄積される電
子が減少し、自己バイアス電圧が低下する。
In order to improve the plasma processing efficiency, the use of high-density plasma with an increased electron density in the plasma has attracted attention. When the electron density in the plasma increases, the space between the sheath formed between the wafer and the plasma becomes narrow, and the capacitance between the plasma and the wafer becomes large. Most of the electrons flowing from the plasma are accumulated in the capacitor between the plasma and the wafer. Therefore, the number of electrons stored in the capacitor between the wafer and the RF electrode is reduced, and the self-bias voltage is lowered.

【0007】自己バイアス電圧が低下すると、プラズマ
処理効率が低下する。また、反応性スパッタエッチング
においては、エッチングの異方性が低下してしまう。自
己バイアス電圧の低下を補償するために、ウエハに直接
直流バイアス電圧を印加する方法が特開平5−1906
55号に開示されている。この方法では、ウエハを伝導
電流が流れるため、ウエハに半導体素子が形成されてい
る場合には半導体素子の受けるダメージが問題になる。
When the self-bias voltage is lowered, the plasma processing efficiency is lowered. Further, in reactive sputter etching, the anisotropy of etching is reduced. A method of directly applying a DC bias voltage to a wafer in order to compensate for a decrease in self-bias voltage is disclosed in JP-A-5-1906.
No. 55. In this method, a conduction current flows through the wafer, so that when a semiconductor element is formed on the wafer, damage to the semiconductor element becomes a problem.

【0008】本発明の目的は、高密度プラズマを用いた
ときのウエハの自己バイアス電圧の低下を抑制し、効率
的なプラズマ処理を行うことができる静電吸着装置を提
供することである。
An object of the present invention is to provide an electrostatic adsorption device capable of suppressing a decrease in self-bias voltage of a wafer when high density plasma is used and performing an efficient plasma treatment.

【0009】[0009]

【課題を解決するための手段】本発明の静電吸着装置
は、基板を保持するための平坦な上面を有する誘電体層
と、前記誘電体層の下に配置され、高周波電圧が印加さ
れる第1の電極と、前記誘電体層の下に配置され、前記
第1の電極と絶縁され、直流電圧が印加される第2の電
極とを有し、前記第1の電極と前記誘電体層の上面との
距離は、前記第2の電極と前記誘電体層の上面との距離
以下である。
An electrostatic attraction device according to the present invention is provided with a dielectric layer having a flat upper surface for holding a substrate and a dielectric layer disposed below the dielectric layer, and a high frequency voltage is applied to the dielectric layer. A first electrode and a second electrode that is disposed below the dielectric layer and is insulated from the first electrode and to which a direct current voltage is applied; the first electrode and the dielectric layer The distance from the upper surface of the second electrode is less than or equal to the distance between the second electrode and the upper surface of the dielectric layer.

【0010】前記第2の電極は、前記第1の電極の外周
を取り囲むように配置してもよい。また、前記第2の電
極を、リング状形状としてもよい。前記第2の電極を、
相互に絶縁された少なくとも2つの電極から構成しても
よい。前記第2の電極を、少なくとも2つのリング状の
電極から構成し、同心円状に配置してもよい。前記誘電
体層の体積抵抗率は109 Ω・cm〜1013Ω・cmと
してもよい。
The second electrode may be arranged so as to surround the outer periphery of the first electrode. Further, the second electrode may have a ring shape. The second electrode,
It may be composed of at least two electrodes insulated from each other. The second electrode may be composed of at least two ring-shaped electrodes and arranged concentrically. The volume resistivity of the dielectric layer may be 10 9 Ω · cm to 10 13 Ω · cm.

【0011】[0011]

【作用】自己バイアス用の高周波電極を静電チャック用
の直流電極よりもウエハに近づけて配置することによ
り、ウエハと高周波電極との間の静電容量を大きくする
ことができる。静電容量が大きくなれば、より効率的に
自己バイアス電圧が発生する。この自己バイアス電圧に
より正イオンがウエハ表面に入射し、プラズマ処理速度
を向上させることができる。
By placing the high-frequency electrode for self-bias closer to the wafer than the DC electrode for electrostatic chuck, the electrostatic capacitance between the wafer and the high-frequency electrode can be increased. The larger the capacitance, the more efficiently the self-bias voltage is generated. Due to this self-bias voltage, positive ions are incident on the wafer surface and the plasma processing speed can be improved.

【0012】静電チャック用の電極をウエハ外周部近傍
領域に配置することにより、ウエハ外周部を強く吸着す
ることができる。このため、ウエハ外周部におけるウエ
ハと静電チャックとの熱伝導が良好になりウエハ外周部
が内部に比べて高温になるのを抑制することができる。
静電チャック用電極をリング状にすることにより、円盤
状のウエハの外周部近傍領域を強く吸着することができ
る。静電チャック用の電極を2つに分割し、一方に正電
圧、他方に負電圧を印加することにより、ウエハを強く
吸着することができる。
By arranging the electrode for the electrostatic chuck in the region near the outer peripheral portion of the wafer, the outer peripheral portion of the wafer can be strongly attracted. For this reason, heat conduction between the wafer and the electrostatic chuck in the outer peripheral portion of the wafer becomes good, and the outer peripheral portion of the wafer can be prevented from having a temperature higher than that of the inside.
By making the electrode for the electrostatic chuck into a ring shape, it is possible to strongly attract the outer peripheral area of the disk-shaped wafer. By dividing the electrode for the electrostatic chuck into two and applying a positive voltage to one side and a negative voltage to the other side, the wafer can be strongly attracted.

【0013】ウエハと静電チャック用電極との間の誘電
体の抵抗率を109 Ω・cm〜10 13Ω・cmとすれ
ば、ウエハを通してわずかに電流が流れる。この電流に
より、ウエハと電極間にジョンソンラーベック力が働
き、より強力にウエハを吸着することができる。
Dielectric between wafer and electrode for electrostatic chuck
Body resistivity 109Ω · cm-10 13Ω · cm
For example, a slight current will flow through the wafer. To this current
The Johnson-Rahbek force acts between the wafer and the electrode.
The wafer can be more strongly adsorbed.

【0014】[0014]

【実施例】図4に示す従来例において、プラズマ処理時
の自己バイアス電圧の低下を抑制するためには、ウエハ
54とRF電極50で構成されたコンデンサ及びプラズ
マで構成された抵抗からなる電気回路の時定数を大きく
すればよい。このためには、ウエハ54とRF電極50
で構成されたコンデンサの静電容量を大きくすればよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the conventional example shown in FIG. 4, in order to suppress a decrease in self-bias voltage during plasma processing, an electric circuit composed of a capacitor composed of a wafer 54 and an RF electrode 50 and a resistance composed of plasma. The time constant of should be increased. To this end, the wafer 54 and the RF electrode 50
It suffices to increase the capacitance of the capacitor constituted by.

【0015】静電容量を大きくするためには、コンデン
サの電極の面積を大きくするか、電極間の距離を短くす
るか、または誘電体の誘電率を大きくすればよい。電極
の面積は処理対象ウエハの大きさによって決まる。ま
た、静電チャック用の電極52aと52b間には通常2
〜4kV程度の電位差ができるため、誘電体部材51に
は高い絶縁耐性が要求される。このため、誘電体部材5
1として使用可能な誘電体材料が制限され、誘電率を大
きくするにも限度がある。
In order to increase the capacitance, the area of the electrodes of the capacitor may be increased, the distance between the electrodes may be decreased, or the dielectric constant of the dielectric material may be increased. The area of the electrode depends on the size of the wafer to be processed. Further, between the electrodes 52a and 52b for the electrostatic chuck, usually 2
Since a potential difference of approximately 4 kV is possible, the dielectric member 51 is required to have high insulation resistance. Therefore, the dielectric member 5
The dielectric material that can be used as No. 1 is limited, and there is also a limit to increasing the dielectric constant.

【0016】従って、静電容量を大きくするためには、
ウエハ54とRF電極50との距離を短くすることが有
効である。図4に示す静電チャックの構造では、RF電
極50とウエハ54との間に電極52a、52bが配置
されているため、ウエハ54とRF電極50との距離を
短くすることは困難である。また、誘電体部材51の厚
さが薄くなるため、機械的強度も弱くなる。
Therefore, in order to increase the capacitance,
It is effective to shorten the distance between the wafer 54 and the RF electrode 50. In the structure of the electrostatic chuck shown in FIG. 4, since the electrodes 52 a and 52 b are arranged between the RF electrode 50 and the wafer 54, it is difficult to shorten the distance between the wafer 54 and the RF electrode 50. Moreover, since the thickness of the dielectric member 51 is reduced, the mechanical strength is also reduced.

【0017】次に、図1を参照して、上記問題点を解決
した本発明の実施例による静電チャックの構造を説明す
る。図1(A)は、本発明の実施例による静電チャック
10の平面図、図1(B)は断面図を示す。図1(B)
に示すように、平坦な上面を有するセラミック等の誘電
体部材1内に、例えば銅で形成されたRF電極2及び直
流電極3が埋め込まれている。処理ウエハは、誘電体部
材1の上面に載置される。RF電極2と直流電極3とは
同一平面内に配置されており、ウエハ載置面と両電極と
の距離は等しい。
Next, the structure of the electrostatic chuck according to the embodiment of the present invention which solves the above problems will be described with reference to FIG. 1A is a plan view of an electrostatic chuck 10 according to an embodiment of the present invention, and FIG. 1B is a sectional view thereof. Figure 1 (B)
As shown in, an RF electrode 2 and a DC electrode 3 made of, for example, copper are embedded in a dielectric member 1 such as a ceramic having a flat upper surface. The processed wafer is placed on the upper surface of the dielectric member 1. The RF electrode 2 and the DC electrode 3 are arranged in the same plane, and the distance between the wafer mounting surface and both electrodes is the same.

【0018】図1(A)に示すように、直流電極3はウ
エハ載置面の外周部近傍領域に、RF電極2を取り囲む
ように配置されている。各電極は、処理対象ウエハの形
状に合わせて、円形状もしくはリング状にされている。
また、直流電極3は2つの電極3a、3bに分割され、
相互に同心円状に配置されている。
As shown in FIG. 1A, the DC electrode 3 is arranged so as to surround the RF electrode 2 in a region near the outer peripheral portion of the wafer mounting surface. Each electrode has a circular shape or a ring shape according to the shape of the wafer to be processed.
Further, the DC electrode 3 is divided into two electrodes 3a and 3b,
They are arranged concentrically with each other.

【0019】図1(B)に示すように、RF電極2に
は、マッチング回路6を介して高周波電源5から高周波
電圧が印加される。直流電極3aには、ローパスフィル
タ8aを介して直流電源7aから負電圧が印加され、直
流電極3bには、ローパスフィルタ8bを介して直流電
源7bから正電圧が印加される。
As shown in FIG. 1B, a high frequency voltage is applied to the RF electrode 2 from a high frequency power source 5 via a matching circuit 6. A negative voltage is applied to the DC electrode 3a from the DC power supply 7a via the low pass filter 8a, and a positive voltage is applied to the DC electrode 3b from the DC power supply 7b via the low pass filter 8b.

【0020】例えば、6インチウエハを吸着する場合、
誘電体部材1を6インチよりも1cm程度小さい径と
し、厚さを約1cm、ウエハ載置面とRF電極2との距
離dを0.5mm程度、RF電極2、直流電極3a、3
bの各隙間は約1mmとすればよい。
For example, when a 6-inch wafer is adsorbed,
The diameter of the dielectric member 1 is about 1 cm smaller than 6 inches, the thickness is about 1 cm, the distance d between the wafer mounting surface and the RF electrode 2 is about 0.5 mm, the RF electrode 2, the DC electrodes 3a, 3
Each gap b may be about 1 mm.

【0021】図2は、図1に示す静電チャック10を組
み込んだプラズマ処理装置の一例を示す。真空排気可能
な処理容器20内の上方にプラズマ発生室22、下方に
処理室21が画定されている。プラズマ発生室22には
ガス導入管26から処理ガスが導入され、処理室21に
設けられたガス排気管27から排気される。処理室21
の下方に静電チャック10が取り付けられている。プラ
ズマ処理時には、静電チャック10のウエハ載置面に処
理ウエハ11が吸着される。
FIG. 2 shows an example of a plasma processing apparatus incorporating the electrostatic chuck 10 shown in FIG. A plasma generation chamber 22 is defined above the processing chamber 20 that can be evacuated, and a processing chamber 21 is defined below. A processing gas is introduced into the plasma generation chamber 22 through a gas introduction pipe 26, and is exhausted through a gas exhaust pipe 27 provided in the processing chamber 21. Processing room 21
An electrostatic chuck 10 is attached below the. During plasma processing, the processing wafer 11 is adsorbed on the wafer mounting surface of the electrostatic chuck 10.

【0022】プラズマ発生室22の周囲に、高周波コイ
ル23が巻かれている。高周波コイル23には、マッチ
ング回路24を通してRF電源25から高周波電流が流
される。プラズマ発生室22内に処理ガスを導入し、高
周波コイル23に高周波電流を流すと、誘導性プラズマ
が発生する。プラズマ中のイオンが自己バイアスされた
ウエハ11に入射して、ウエハ11の表面がプラズマ処
理される。
A high frequency coil 23 is wound around the plasma generating chamber 22. A high frequency current is supplied to the high frequency coil 23 from the RF power source 25 through the matching circuit 24. When a processing gas is introduced into the plasma generation chamber 22 and a high frequency current is passed through the high frequency coil 23, inductive plasma is generated. Ions in the plasma enter the self-biased wafer 11 and the surface of the wafer 11 is plasma-processed.

【0023】図1に示す構造の静電チャックでは、ウエ
ハ載置面とRF電極2との間に直流電極がないため、図
4の従来例に比べてウエハとRF電極との距離dを短く
することが容易になる。距離dを短くすることにより、
ウエハとRF電極で形成されるコンデンサの静電容量を
大きくすることができる。このため、上述のように、高
密度プラズマを使用した場合でも比較的大きな自己バイ
アス電圧が発生する。
In the electrostatic chuck having the structure shown in FIG. 1, since there is no DC electrode between the wafer mounting surface and the RF electrode 2, the distance d between the wafer and the RF electrode is shorter than that in the conventional example shown in FIG. Easy to do. By shortening the distance d,
The capacitance of the capacitor formed by the wafer and the RF electrode can be increased. Therefore, as described above, a relatively large self-bias voltage is generated even when high density plasma is used.

【0024】図1(B)では、RF電極2と直流電極3
が同一平面内に配置されている場合について説明した
が、RF電極2を直流電極3よりもウエハ載置面に近づ
けてもよい。逆に、十分な静電容量が得られるのであれ
ばRF電極2を直流電極3よりもウエハ載置面から離し
てもよい。例えば、RF電極2とウエハ間との静電容量
が1000pF以上あれば、十分な自己バイアス電圧を
確保することができる。図1(A)のRF電極2の直径
が5cmのとき比誘電率が14.39以上の絶縁体を使
用すれば、RF電極2とウエハ載置面との間隔dが1m
mでも1000pFの静電容量を確保することができ
る。
In FIG. 1B, the RF electrode 2 and the DC electrode 3
However, the RF electrode 2 may be closer to the wafer mounting surface than the DC electrode 3 is. On the contrary, if a sufficient capacitance can be obtained, the RF electrode 2 may be located farther from the wafer mounting surface than the DC electrode 3. For example, if the electrostatic capacitance between the RF electrode 2 and the wafer is 1000 pF or more, a sufficient self-bias voltage can be secured. If an insulator having a relative dielectric constant of 14.39 or more is used when the RF electrode 2 of FIG. 1 (A) has a diameter of 5 cm, the distance d between the RF electrode 2 and the wafer mounting surface is 1 m.
Even with m, a capacitance of 1000 pF can be secured.

【0025】円形のRF電極2、円環状の直流電極3
a、3bを用いる場合を説明したが、吸着すべき対象物
の形状に合わせた他の形状としてもよい。例えば、オリ
エンテーションフラットに合わせて、円及び円環の一部
を切り欠いた形状や多角形の形状を用いてもよい。
Circular RF electrode 2 and circular DC electrode 3
Although the case where a and 3b are used has been described, other shapes may be used in accordance with the shape of the object to be adsorbed. For example, a shape obtained by cutting out a part of a circle or a ring or a polygonal shape may be used in accordance with the orientation flat.

【0026】直流電極3aに正電圧、直流電極3bに負
電圧を印加することにより、ウエハ載置面に載置したウ
エハを静電吸着することができる。静電吸着の一つの目
的は、静電チャックを通してプラズマ処理中のウエハの
温度制御を行うことである。プラズマ処理中のウエハの
温度上昇はウエハ外周部近傍領域から始まる傾向があ
る。
By applying a positive voltage to the DC electrode 3a and a negative voltage to the DC electrode 3b, the wafer mounted on the wafer mounting surface can be electrostatically attracted. One purpose of electrostatic attraction is to control the temperature of the wafer during plasma processing through the electrostatic chuck. The temperature rise of the wafer during plasma processing tends to start from the area near the outer peripheral portion of the wafer.

【0027】図1(A)に示すように、静電吸着用の直
流電極3をウエハ吸着面の外周部近傍領域に配置する
と、ウエハ外周部近傍領域を強く吸着する。従って、ウ
エハ外周部近傍領域で静電チャックとの熱伝導が良好に
なり、ウエハ外周部の局所的な温度上昇を抑制すること
ができる。また、プラズマ処理中ウエハは負に帯電する
ため、正電極により強く吸着する。従って、2つに分割
した直流電極のうち外側の電極に正電圧を印加すること
が好ましい。
As shown in FIG. 1A, when the DC electrode 3 for electrostatic attraction is arranged in the outer peripheral area of the wafer attracting surface, the wafer outer peripheral area is strongly attracted. Therefore, heat conduction to the electrostatic chuck becomes good in the region near the outer peripheral portion of the wafer, and a local temperature rise in the outer peripheral portion of the wafer can be suppressed. In addition, since the wafer is negatively charged during plasma processing, it is strongly attracted to the positive electrode. Therefore, it is preferable to apply a positive voltage to the outer electrode of the two divided DC electrodes.

【0028】図1では、静電吸着用の直流電極として、
正電圧印加用と負電圧印加用の2つの電極を設けた双極
式の場合を示したが、1つの電極のみを設けた単極式と
してもよい。単極式の場合には、ウエハが負に帯電して
いるプラズマ処理中は強く吸着することができるが、ウ
エハが帯電していないときの吸着力は弱い。プラズマ処
理中以外に強く吸着する必要がない場合には、構造が簡
単な単極式としてもよい。
In FIG. 1, as a DC electrode for electrostatic attraction,
Although the bipolar type in which two electrodes for applying a positive voltage and the one for applying a negative voltage are provided has been shown, it may be a unipolar type in which only one electrode is provided. In the case of the unipolar type, the wafer can be strongly adsorbed during the plasma processing in which the wafer is negatively charged, but the adsorption force is weak when the wafer is not charged. When it is not necessary to strongly adsorb during the plasma treatment, a monopolar type having a simple structure may be used.

【0029】図1に示す静電チャックの静電吸着用電極
は、従来のものに比べて小さいため、吸着力が弱い。よ
り強い吸着力を得たい場合には、誘電体部材1の体積抵
抗率を109 〜1013Ω・cmとすることが好ましい。
誘電体部材1の体積抵抗率を109 〜1013Ω・cmと
することにより、直流電極3とウエハ間に微小電流が流
れ、クーロン力のみでなくジョンソンラーベック力も働
き、大きな吸着力を得ることができる。
Since the electrostatic chucking electrode of the electrostatic chuck shown in FIG. 1 is smaller than the conventional one, the chucking force is weak. In order to obtain a stronger adsorption force, it is preferable that the volume resistivity of the dielectric member 1 be 10 9 to 10 13 Ω · cm.
By setting the volume resistivity of the dielectric member 1 to 10 9 to 10 13 Ω · cm, a minute electric current flows between the DC electrode 3 and the wafer, and not only the Coulomb force but also the Johnson-Rahbek force works to obtain a large adsorption force. be able to.

【0030】上記実施例は、プラズマの電子密度が高く
なり、自己バイアス電圧が印加されにくくなった場合に
特に有効である。特に、プラズマの電子密度が1011
-3以上のときに効果が高い。
The above-described embodiment is particularly effective when the electron density of plasma becomes high and it becomes difficult to apply the self-bias voltage. In particular, the electron density of plasma is 10 11 c
The effect is high when m -3 or more.

【0031】次に、図3を参照して実験結果を示しつ
つ、上記実施例の効果を説明する。図3(A)は、実験
に使用した静電チャックの平面図、図3(B)は図3
(A)の一点鎖線B1−B1における断面図を示す。図
3(A)に示すように、複数の扇形の電極2a〜2hが
セラミック製の誘電体部材1内の同一平面内に配置され
ている。各扇形電極2a〜2hは相互に絶縁されてお
り、単独に異なる電圧を印加することができる。
Next, the effects of the above-described embodiment will be described with reference to FIG. 3 showing experimental results. 3A is a plan view of the electrostatic chuck used in the experiment, and FIG. 3B is FIG.
A sectional view taken along one-dot chain line B1-B1 in FIG. As shown in FIG. 3 (A), a plurality of fan-shaped electrodes 2a to 2h are arranged in the same plane in the dielectric member 1 made of ceramic. The fan-shaped electrodes 2a to 2h are insulated from each other so that different voltages can be applied independently.

【0032】図3に示す静電チャック10を図2のプラ
ズマ処理装置に取り付けてSiO2膜のエッチングレー
トを測定した。使用したガスはCF4 、ガス流量は10
0sccm、処理容器内の圧力は20mtorr、コイ
ル23に高周波電流を流すためのRF電源25の周波数
は13.56MHz、電力は1kW、基板バイアス用高
周波電源5の周波数は100kHz、電力は500Wで
ある。
The electrostatic chuck 10 shown in FIG. 3 was attached to the plasma processing apparatus shown in FIG. 2 to measure the etching rate of the SiO 2 film. The gas used was CF 4 , and the gas flow rate was 10
0 sccm, the pressure in the processing container is 20 mtorr, the frequency of the RF power supply 25 for flowing the high frequency current to the coil 23 is 13.56 MHz, the power is 1 kW, the frequency of the substrate bias high frequency power supply 5 is 100 kHz, and the power is 500 W.

【0033】扇形電極2a〜2hのうち、一部を静電吸
着用の直流電源7aもしくは7bに接続し、残りの扇形
電極を高周波電源5に接続した。また、参考のために全
ての扇形電極を直流電源7aもしくは7bに接続して図
4に示す従来構成の静電チャックについてもエッチング
レートを測定した。高周波電源5に接続する扇形電極の
個数を変えれば、ウエハと扇形電極間の静電容量が変化
するため、図1(B)に示すウエハ載置面とRF電極2
との間の距離dを変化させたと同等の効果が得られる。
Some of the sector electrodes 2a to 2h were connected to a DC power supply 7a or 7b for electrostatic attraction, and the remaining sector electrodes were connected to a high frequency power supply 5. For reference, all the fan-shaped electrodes were connected to the DC power supply 7a or 7b, and the etching rate was also measured for the electrostatic chuck of the conventional configuration shown in FIG. If the number of fan-shaped electrodes connected to the high-frequency power source 5 is changed, the electrostatic capacitance between the wafer and the fan-shaped electrodes changes, so that the wafer mounting surface and the RF electrode 2 shown in FIG.
An effect equivalent to that when the distance d between and is changed is obtained.

【0034】表1に実験結果を示す。Table 1 shows the experimental results.

【0035】[0035]

【表1】 [Table 1]

【0036】扇形電極2a〜2hを全て静電吸着用の直
流電極として使用し図4の構成としたとき、ウエハとR
F電極間の静電容量は300pFであった。このときの
自己バイアスは−100V、エッチングレートは60n
m/minであった。扇形電極の一部を高周波電源に接
続してウエハとRF電極間の静電容量を大きくすると、
表1に示すように自己バイアス電圧の絶対値が大きくな
り、エッチングレートも増加した。また、ウエハとRF
電極間の静電容量が大きいほどエッチングレートが大き
いことがわかる。
When all the fan-shaped electrodes 2a to 2h are used as the DC electrodes for electrostatic attraction and the structure shown in FIG.
The capacitance between the F electrodes was 300 pF. At this time, the self-bias is -100V and the etching rate is 60n.
It was m / min. When a part of the fan-shaped electrode is connected to a high frequency power source to increase the capacitance between the wafer and the RF electrode,
As shown in Table 1, the absolute value of the self-bias voltage increased and the etching rate also increased. Also, wafer and RF
It can be seen that the etching rate increases as the capacitance between the electrodes increases.

【0037】このように、ウエハとRF電極間の静電容
量を大きくすることにより、大きな自己バイアス電圧を
発生し、エッチングレートを増加させることができた。
上記実験では、RF電極の面積を大きくして静電容量を
増加させたが、RF電極をウエハ載置面に近づけて静電
容量を増加させても同様の結果が得られるであろう。こ
のことから、図1(B)において、RF電極2を直流電
極3に比べてウエハ載置面の近くに、もしくは直流電極
3と同一平面内に配置することが好ましいといえる。ま
た、RF電極2の面積を直流電極3の面積よりも大きく
することが好ましい。
As described above, by increasing the electrostatic capacitance between the wafer and the RF electrode, a large self-bias voltage was generated and the etching rate could be increased.
In the above experiment, the area of the RF electrode was increased to increase the electrostatic capacity, but similar results will be obtained even if the RF electrode is brought closer to the wafer mounting surface to increase the electrostatic capacity. From this, in FIG. 1B, it can be said that it is preferable to dispose the RF electrode 2 closer to the wafer mounting surface than the DC electrode 3 or in the same plane as the DC electrode 3. Moreover, it is preferable that the area of the RF electrode 2 is larger than the area of the DC electrode 3.

【0038】また、上記実験では、SiO2 膜のエッチ
ングを行う場合について示したが、自己バイアス電圧を
利用してイオンをウエハに入射させるプラズマ処理を行
う場合にも、ウエハとRF電極間の静電容量を大きくす
ることにより処理速度を増加することができるであろ
う。例えば、プラズマCVD等にも適用できるであろ
う。
Further, in the above experiment, the case of etching the SiO 2 film was shown, but also in the case of performing the plasma processing in which the ions are made to enter the wafer by using the self-bias voltage, the static electricity between the wafer and the RF electrode is also changed. The processing speed could be increased by increasing the capacitance. For example, it may be applicable to plasma CVD or the like.

【0039】上記実施例では、誘電体部材としてセラミ
ックを使用した場合について説明したが、その他の誘電
体材料を使用してもよい。例えば、アルミナ(Al2
3 )、ゴム、ガラスエポキシ、ポリイミド等の高分子膜
を使用してもよい。
In the above embodiments, the case where ceramic is used as the dielectric member has been described, but other dielectric materials may be used. For example, alumina (Al 2 O
3 ), polymer films of rubber, glass epoxy, polyimide, etc. may be used.

【0040】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。例えば、種
々の変更、改良、組み合わせ等が可能なことは当業者に
自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
ウエハを静電チャックに吸着してプラズマ容器内に配置
し、ウエハに効率的に自己バイアス電圧を発生させるこ
とができる。これにより、プラズマ処理速度を向上させ
ることができる。
As described above, according to the present invention,
The wafer can be attracted to the electrostatic chuck and placed in the plasma container to efficiently generate the self-bias voltage on the wafer. Thereby, the plasma processing speed can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による静電チャックの平面図、
断面図及び電源系統図である。
FIG. 1 is a plan view of an electrostatic chuck according to an embodiment of the present invention,
It is a cross-sectional view and a power supply system diagram.

【図2】本発明の実施例で使用したプラズマ処理装置の
概略断面図と電源系統図である。
FIG. 2 is a schematic sectional view and a power system diagram of a plasma processing apparatus used in an embodiment of the present invention.

【図3】実施例の効果確認実験で使用した静電チャック
の平面図及び断面図である。
3A and 3B are a plan view and a cross-sectional view of an electrostatic chuck used in an effect confirmation experiment of an example.

【図4】従来例による静電チャックの断面図及び電源系
統図である。
FIG. 4 is a sectional view and a power supply system diagram of an electrostatic chuck according to a conventional example.

【符号の説明】[Explanation of symbols]

1、51 誘電体部材 2、50 RF電極 3、52a、52b 直流電極 5、25 高周波電源 6、24 マッチング回路 7a、7b 直流電源 8a、8b ローパスフィルタ 10、53 静電チャック 11、54 ウエハ 20 処理容器 21 処理室 22 プラズマ発生室 23 コイル 26 ガス導入管 27 ガス排気管 1, 51 Dielectric member 2, 50 RF electrode 3, 52a, 52b DC electrode 5, 25 High frequency power supply 6, 24 Matching circuit 7a, 7b DC power supply 8a, 8b Low pass filter 10, 53 Electrostatic chuck 11, 54 Wafer 20 Processing Container 21 processing chamber 22 plasma generation chamber 23 coil 26 gas introduction pipe 27 gas exhaust pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C23C 16/50 H01L 21/302 B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // C23C 16/50 H01L 21/302 B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板を保持するための平坦な上面を有す
る誘電体層と、 前記誘電体層の下に配置され、高周波電圧が印加される
第1の電極と、 前記誘電体層の下に配置され、前記第1の電極と絶縁さ
れ、直流電圧が印加される第2の電極とを有し、 前記第1の電極と前記誘電体層の上面との距離は、前記
第2の電極と前記誘電体層の上面との距離以下である静
電吸着装置。
1. A dielectric layer having a flat upper surface for holding a substrate, a first electrode disposed under the dielectric layer and to which a high frequency voltage is applied, and a dielectric layer under the dielectric layer. A second electrode that is disposed and is insulated from the first electrode and to which a direct current voltage is applied, and a distance between the first electrode and an upper surface of the dielectric layer is equal to that of the second electrode. An electrostatic attraction device having a distance equal to or less than the distance from the upper surface of the dielectric layer.
【請求項2】 前記第2の電極は、前記第1の電極の外
周を取り囲むように配置されている請求項1記載の静電
吸着装置。
2. The electrostatic adsorption device according to claim 1, wherein the second electrode is arranged so as to surround the outer periphery of the first electrode.
【請求項3】 前記第2の電極は、リング状形状である
請求項2記載の静電吸着装置。
3. The electrostatic adsorption device according to claim 2, wherein the second electrode has a ring shape.
【請求項4】 前記第2の電極は、相互に絶縁された少
なくとも2つの電極を含む請求項1〜3のいずれかに記
載の静電吸着装置。
4. The electrostatic adsorption device according to claim 1, wherein the second electrode includes at least two electrodes insulated from each other.
【請求項5】 前記第2の電極は、同心円状に配置され
た少なくとも2つのリング状の電極を含む請求項4記載
の静電吸着装置。
5. The electrostatic adsorption device according to claim 4, wherein the second electrode includes at least two ring-shaped electrodes arranged concentrically.
【請求項6】 前記誘電体層の体積抵抗率は109 Ω・
cm〜1013Ω・cmである請求項1〜5のいずれかに
記載の静電吸着装置。
6. The volume resistivity of the dielectric layer is 10 9 Ω.multidot.
The electrostatic adsorption device according to any one of claims 1 to 5, wherein the electrostatic adsorption device has a cm to 10 13 Ω · cm.
【請求項7】 基板を保持するための平坦な上面を有す
る誘電体層と、 前記誘電体層の下に配置され、高周波電圧が印加される
第1の電極と、 前記誘電体層の下に配置され、前記第1の電極と絶縁さ
れ、直流電圧が印加される第2の電極とを有し、 前記誘電体層の上面に導体板を載置したとき、該導体板
と前記第1の電極との間の静電容量が1000pF以上
である静電吸着装置。
7. A dielectric layer having a flat upper surface for holding a substrate, a first electrode disposed under the dielectric layer and to which a high frequency voltage is applied, and a dielectric layer under the dielectric layer. A second electrode that is disposed and insulated from the first electrode and to which a DC voltage is applied; and when a conductor plate is placed on the upper surface of the dielectric layer, the conductor plate and the first electrode An electrostatic adsorption device having a capacitance between the electrodes of 1000 pF or more.
JP3868895A 1995-02-27 1995-02-27 Electrostatic suction device Expired - Lifetime JP3292270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3868895A JP3292270B2 (en) 1995-02-27 1995-02-27 Electrostatic suction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3868895A JP3292270B2 (en) 1995-02-27 1995-02-27 Electrostatic suction device

Publications (2)

Publication Number Publication Date
JPH08236602A true JPH08236602A (en) 1996-09-13
JP3292270B2 JP3292270B2 (en) 2002-06-17

Family

ID=12532243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3868895A Expired - Lifetime JP3292270B2 (en) 1995-02-27 1995-02-27 Electrostatic suction device

Country Status (1)

Country Link
JP (1) JP3292270B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144079A (en) * 1999-09-03 2001-05-25 Ulvac Japan Ltd Plasma treatment device
JP2002118095A (en) * 2000-10-06 2002-04-19 Kawasaki Microelectronics Kk Apparatus for manufacturing semiconductor, method for treating surface of substrate to be treated and method for observing adherence state of plasma product
KR101415551B1 (en) * 2008-01-25 2014-07-04 (주)소슬 Electrostatic chuck, method of manufacturing the same and apparatus for processing a substrate including the same
JP2015088686A (en) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method
JP2017195351A (en) * 2016-04-23 2017-10-26 株式会社クリエイティブテクノロジー Electrostatic chuck
KR20200031184A (en) * 2017-09-20 2020-03-23 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with multiple buried electrodes
JP2021010026A (en) * 2020-10-15 2021-01-28 東京エレクトロン株式会社 Substrate processing device and substrate processing method
KR20210142381A (en) * 2020-05-18 2021-11-25 재단법인 구미전자정보기술원 Manufacturing method for transparent electro static chuck through organic patterning process
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
US11521886B2 (en) 2014-12-25 2022-12-06 Tokyo Electron Limited Substrate processing apparatus and substrate support
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144079A (en) * 1999-09-03 2001-05-25 Ulvac Japan Ltd Plasma treatment device
JP4528418B2 (en) * 1999-09-03 2010-08-18 株式会社アルバック Plasma processing equipment
JP2002118095A (en) * 2000-10-06 2002-04-19 Kawasaki Microelectronics Kk Apparatus for manufacturing semiconductor, method for treating surface of substrate to be treated and method for observing adherence state of plasma product
KR101415551B1 (en) * 2008-01-25 2014-07-04 (주)소슬 Electrostatic chuck, method of manufacturing the same and apparatus for processing a substrate including the same
JP2015088686A (en) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method
US11521886B2 (en) 2014-12-25 2022-12-06 Tokyo Electron Limited Substrate processing apparatus and substrate support
JP2017195351A (en) * 2016-04-23 2017-10-26 株式会社クリエイティブテクノロジー Electrostatic chuck
JP2020534668A (en) * 2017-09-20 2020-11-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support with multiple embedded electrodes
KR20220019853A (en) * 2017-09-20 2022-02-17 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with multiple embedded electrodes
KR20220082946A (en) * 2017-09-20 2022-06-17 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with multiple embedded electrodes
CN110998782A (en) * 2017-09-20 2020-04-10 应用材料公司 Substrate support with multiple embedded electrodes
KR20200031184A (en) * 2017-09-20 2020-03-23 어플라이드 머티어리얼스, 인코포레이티드 Substrate support with multiple buried electrodes
US11284500B2 (en) 2018-05-10 2022-03-22 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11699572B2 (en) 2019-01-22 2023-07-11 Applied Materials, Inc. Feedback loop for controlling a pulsed voltage waveform
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
KR20210142381A (en) * 2020-05-18 2021-11-25 재단법인 구미전자정보기술원 Manufacturing method for transparent electro static chuck through organic patterning process
US11462389B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Pulsed-voltage hardware assembly for use in a plasma processing system
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11776789B2 (en) 2020-07-31 2023-10-03 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
JP2021010026A (en) * 2020-10-15 2021-01-28 東京エレクトロン株式会社 Substrate processing device and substrate processing method
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11887813B2 (en) 2021-06-23 2024-01-30 Applied Materials, Inc. Pulsed voltage source for plasma processing
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing

Also Published As

Publication number Publication date
JP3292270B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP3292270B2 (en) Electrostatic suction device
JP4544740B2 (en) Support for supporting a substrate in a plasma processing chamber, processing chamber for processing a substrate in plasma, and method for uniformly processing a substrate in a plasma region
US5539179A (en) Electrostatic chuck having a multilayer structure for attracting an object
US5880924A (en) Electrostatic chuck capable of rapidly dechucking a substrate
EP1070381B1 (en) Electrostatic wafer clamp having low particulate contamination of wafers
KR100803253B1 (en) Plasma chamber support with coupled electrode
JP5580760B2 (en) Physical vapor deposition apparatus and method using multi-point clamp
JP4354983B2 (en) Substrate processing equipment
TW200405443A (en) Electrostatic absorbing apparatus
JP2001035907A (en) Chuck device
JP3949186B2 (en) Substrate mounting table, plasma processing apparatus, and semiconductor device manufacturing method
JP2011179119A (en) Apparatus and method of physical vapor deposition with heat diffuser
TWI823273B (en) Electrostatic chuck and plasma reaction device
JP3847363B2 (en) Semiconductor wafer processing apparatus and semiconductor wafer processing method
JPH10154745A (en) Electrostatic attracting device
JP3146171B2 (en) Plasma processing method and apparatus
JP4033508B2 (en) Electrostatic chuck
JPH1027780A (en) Plasma treating method
JPH10189697A (en) Electrostatic chuck device
JP2004531880A (en) Substrate support with dual electrodes
JP2851766B2 (en) Electrostatic chuck
JP3218717B2 (en) Electrostatic chuck
JP3919942B2 (en) Electrostatic adsorption device and vacuum processing device
JPH02130915A (en) Plasma processing equipment
JPH09129716A (en) Electrostatic attraction apparatus, manufacture thereof and wafer processing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140329

Year of fee payment: 12

EXPY Cancellation because of completion of term