JPH08199233A - Production of high strength gauge h steel excellent in surface characteristic - Google Patents

Production of high strength gauge h steel excellent in surface characteristic

Info

Publication number
JPH08199233A
JPH08199233A JP1235595A JP1235595A JPH08199233A JP H08199233 A JPH08199233 A JP H08199233A JP 1235595 A JP1235595 A JP 1235595A JP 1235595 A JP1235595 A JP 1235595A JP H08199233 A JPH08199233 A JP H08199233A
Authority
JP
Japan
Prior art keywords
rolling
steel
temperature range
slab
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1235595A
Other languages
Japanese (ja)
Inventor
Taku Yoshida
卓 吉田
Koichi Yamamoto
山本広一
Masao Kurokawa
黒川征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1235595A priority Critical patent/JPH08199233A/en
Publication of JPH08199233A publication Critical patent/JPH08199233A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce a high strength gauge H steel excellent in corrosion resistance, strength, toughness and surface characteristic by executing a specific acceleration-cooling after a specific hot-rolling and descaling to a cast slab having a specific composition composed of C, Si, Mn, N, Al, Cr, Cu and Fe. CONSTITUTION: The continuously cast slab composed of 0.05-0.15wt.% C, 0.05-0.50% Si, 0.8-2.0% Mn, 0.003-0.015% N, <=0.005% Al, 0.50-1.50% Cr, 0.30-1.00% Cu and if necessary <=1.00% Ni and the balance Fe with inevitable impurities is reheated at 1100-1300 deg.C for 1-<3hr, and the rolling is started. At the initial stage of the rough rolling process, the positions corresponding to the outer side surfaces of flanges are descaled, and the surface layer part of the steel material is water-cooled to (Ar3 -20 deg.C)-(Ar3 -10 deg.C) and finish rolling is executed at 750-1050 deg.C according to needs. Thereafter, immediately, this rolled steel is acceleration-cooled from 700 deg.C to 400 deg.C at 0.5-10.0 deg.C/s average cooling speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビルディングや橋梁等
の建造物の構造部材として用いられるH形鋼の製造方法
に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an H-section steel used as a structural member for buildings such as buildings and bridges.

【0002】[0002]

【従来の技術】建築物の安全基準の厳格化や美観性の追
求等により梁および柱用に用いられるフランジを有する
形鋼の代表的な形鋼であるH形鋼には、一層の高機能化
が求められている。例えば、H形鋼表面をむき出しで使
用する場合の梁、柱用には耐蝕性、耐候性が求められ、
従来はステンレスH形鋼に代表されるように鋼材表面の
錆の発生を解消した対環境耐久性の高い鋼材が使用され
ている。ところが、ステンレス鋼はCr,Ni等の高価
な合金元素を多量に必要とするため製造コストは高価で
あり、機能的には優れるもののその経済性には問題があ
る。鋼材に耐蝕性の機能を付加する他の方法としては例
えば特開昭54−53627号公報記載の発明の如く、
鋼材の表面スケール除去後、合成樹脂皮膜で被覆する方
法があるが、鋼材が200〜300℃の温度領域でのデ
スケーリング工程、合成樹脂皮膜の被覆工程等の工程が
増加すること、またこれらの工程能力は一般的に製造ラ
インのなかでもっとも工程能力が低く全体の生産能力を
律速することにより生産能力が低下すること等の理由に
より、製造コストが上昇し、この方法も経済性に問題が
ある。
2. Description of the Related Art H-shaped steel, which is a typical shaped steel having a flange used for beams and columns due to stricter safety standards for buildings and pursuit of aesthetic appearance, has a higher performance. Is required. For example, when using the H-section steel surface exposed, corrosion resistance and weather resistance are required for beams and columns.
Conventionally, a steel material having high environmental durability, which is free from the occurrence of rust on the surface of the steel material, as represented by stainless H-section steel, has been used. However, since stainless steel requires a large amount of expensive alloying elements such as Cr and Ni, the manufacturing cost is high, and although it is excellent in function, its economical efficiency is problematic. As another method of adding a function of corrosion resistance to a steel material, for example, the invention described in JP-A-54-53627 is disclosed.
After removing the surface scale of the steel material, there is a method of coating with a synthetic resin film, but the descaling step of the steel material in the temperature range of 200 to 300 ° C., the number of steps such as the synthetic resin film coating step, and the like. In general, the process capacity is the lowest in the manufacturing line and the production capacity is lowered by limiting the overall production capacity. is there.

【0003】そこで錆の発生は不可避であるものの安価
でかつ錆の進行を抑制し、腐食量を最小限に抑えた耐候
性鋼がステンレス鋼に代替して使用される場合が多い。
この耐候性鋼の特徴は、鋼材表面に鉄および酸化鉄以外
の被覆層を生成させることにより、鉄の酸化の進行すな
わち錆の発生を抑制するものである。この被覆層は、C
uが最もよく用いられている。その理由は、鋼にCuを
添加し素材を加熱するだけで表面にCuの濃化域を形成
し、これが被覆層となり、外部からのO原子の侵入を防
ぐためである。JISで規定される耐候性鋼はCuを
0.3%以上添加することを義務付けている。
Therefore, although rust is inevitable, stainless steel is often used instead of stainless steel, which is inexpensive and which suppresses the progress of rust and minimizes the amount of corrosion.
The characteristic of this weather resistant steel is that by forming a coating layer other than iron and iron oxide on the surface of the steel material, the progress of oxidation of iron, that is, the generation of rust is suppressed. This coating layer is C
u is most commonly used. The reason is that a Cu concentrated region is formed on the surface only by adding Cu to the steel and heating the material, and this serves as a coating layer to prevent O atoms from entering from the outside. The weathering steel defined by JIS requires Cu to be added in an amount of 0.3% or more.

【0004】ところが、この鋼をH形鋼に製造する場
合、素材加熱段階で表面にCuの濃化域が形成され、そ
の後変形量の多い粗圧延工程でこの温度域では液相とし
て存在する濃化域のCuが、オーステナイト粒界に侵入
して脆化する、所謂「赤熱脆化」を発現し、疵の発生頻
度が高くなる。さらにこれらの疵は、圧延後の冷却段階
で鋼材表面に生成されるスケールに被覆され内在するた
め、冷却後の目視等による外観検査では疵を検出するこ
とは困難である。従って、製品出荷後にショットブラス
ト等のスケール除去工程で始めて疵が発見されるなど、
品質管理の点で問題となる場合が生じていた。
However, when this steel is manufactured into an H-section steel, a Cu enriched region is formed on the surface during the material heating step, and thereafter, in the rough rolling process with a large amount of deformation, the concentrated region present as a liquid phase in this temperature region. Cu in the chemical region develops so-called “red-heat embrittlement” in which the Cu penetrates into the austenite grain boundaries and becomes brittle, and the frequency of defects increases. Further, since these flaws are inherent in the scale produced on the surface of the steel material in the cooling stage after rolling, it is difficult to detect the flaws by visual inspection after cooling. Therefore, after the product is shipped, defects are first discovered in the scale removal process such as shot blasting,
In some cases, there was a problem in terms of quality control.

【0005】上述の状況から、この疵の発生に関しては
問題点は2点あると考えられる。第1点は、如何にして
疵の発生を防止することができるかということであり、
第2点は如何にして疵の検出を容易にするかということ
である。
From the above-mentioned situation, it is considered that there are two problems regarding the occurrence of this flaw. The first point is how to prevent defects from occurring,
The second point is how to facilitate the detection of defects.

【0006】まず、第1点の疵の防止に関して、液状C
uによる赤熱脆化を如何に抑制するかが重要なポイント
となる。従来は、Cuの融点を上昇させるためにCuと
全率固溶し、融点を上昇させるNiの添加が有効である
が、Cuの融点を最低でも粗圧延工程初期での温度域で
ある1300℃近傍まで上昇させる必要があり、このた
めにはNiをCuとの原子比で0.5〜1.0倍の量を
添加しなければならず、製造コストを著しく上昇させ
る。また、Cuの無添加は赤熱脆化を抑制できるが同時
にCuの濃化域は形成されないので耐候性の機能も消失
する。この場合はCuの濃化域に代替する表面被覆層が
必要となる。
[0006] First, regarding the first point of prevention of flaws, liquid C
An important point is how to suppress red heat embrittlement due to u. Conventionally, in order to raise the melting point of Cu, it is effective to add Ni to form a solid solution with Cu and raise the melting point. However, the melting point of Cu is at least 1300 ° C. which is the temperature range in the initial stage of the rough rolling process. It is necessary to increase the temperature to the vicinity, and for this purpose, Ni must be added in an amount of 0.5 to 1.0 times the atomic ratio with Cu, which significantly increases the manufacturing cost. Further, when Cu is not added, red hot embrittlement can be suppressed, but at the same time, since the Cu concentrated region is not formed, the weather resistance function also disappears. In this case, a surface coating layer that substitutes for the Cu concentrated region is required.

【0007】次に第2点の疵の検出に関しては、表面を
被覆するスケールの生成を抑制することが必須の条件で
ある。スケールは熱間圧延およびその後の冷却段階での
鉄の酸化反応により生成することから、圧延中および冷
却段階での表面の温度をできるだけ低減し、かつ短時間
で冷却を完了させることが必要である。ところが、これ
までに圧延中およびその後の冷却段階での温度制御はT
MCP法が周知であるが、この方法は鋼材の高強度化、
高靭性化には適用された実例があるものの、鋼材の表面
性状の改質に適用された実績はない。
Next, regarding the detection of the second flaw, it is an essential condition to suppress the generation of scale that covers the surface. Since the scale is generated by the oxidation reaction of iron in the hot rolling and the subsequent cooling step, it is necessary to reduce the temperature of the surface during rolling and the cooling step as much as possible and complete the cooling in a short time. . However, the temperature control so far during rolling and during the cooling stage after that has been
The MCP method is well known, but this method is for strengthening steel materials,
Although it has been applied to improve the toughness, it has not been applied to improve the surface properties of steel.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の課題
を解決するために鉄よりも酸化反応し易く、不動態であ
るCr酸化膜を熱間圧延とその後の冷却過程で鋼材表面
に生成し、この酸化膜で鋼材を被覆することにより耐蝕
性を確保し、かつ強度・靭性・表面性状に優れた新規な
機能を有するとともに、含Cu鋼における赤熱脆性に起
因するヘゲ疵等の発生を低減したH形鋼を低コストで製
造する方法の提供を目的とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention forms a Cr oxide film, which is more susceptible to an oxidation reaction than iron and is passive, on the surface of a steel material during hot rolling and subsequent cooling. However, by coating the steel material with this oxide film, corrosion resistance is secured, and it has a new function of excellent strength, toughness, and surface properties, and the occurrence of bald spots and the like due to red heat embrittlement in Cu-containing steel. It is an object of the present invention to provide a method for manufacturing an H-section steel with reduced heat at low cost.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであり、その特徴点は適正
な成分と圧延前の加熱温度と圧延中、後の鋼材温度のコ
ントロールにより、鋼材の表層にCr酸化物を形成して
耐蝕性の機能を付加し、加えて圧延中を発端として生成
される2次スケールの生成量を圧延中・後の温度コント
ロールによりその発生を極力抑制し、鋼材表面のスケー
ルの厚みを10μm以下かつ平滑にし、優れた表面性状
を付加するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its characteristic points are appropriate components, heating temperature before rolling, and control of steel material temperature during rolling and after rolling. As a result, Cr oxide is formed on the surface layer of the steel material to add a function of corrosion resistance, and in addition, the amount of secondary scale that is generated starting from the rolling is controlled by temperature control during and after rolling as much as possible. It suppresses the thickness of the scale on the surface of the steel material to 10 μm or less and smoothes it, and adds excellent surface properties.

【0010】発明の要旨は、下記(1)〜(4)項のと
おりである。
The gist of the invention is as described in the following items (1) to (4).

【0011】(1) 重量%でC:0.05〜0.15
%、Si:0.05〜0.50%、Mn:0.8〜2.
0%、N:0.003〜0.015%、Al≦0.00
5%、Cr:0.50〜1.50%、Cu:0.30〜
1.00%、を含み、残部がFe、及び不可避不純物か
らなる溶鋼を連続鋳造で鋳片に鋳造し、該鋳片を110
0〜1300℃の温度域に1時間以上3時間未満再加熱
した後に圧延を開始し、粗圧延工程初期でフランジ外側
面に相当する部位をデスケーリングし、750〜105
0℃の温度範囲で仕上圧延を終了させ、その後ただちに
700℃から400℃までの鋼材の平均冷却速度を0.
5℃/s〜10.0℃/sの範囲内で加速冷却する表面
性状の優れた高強度H形鋼の製造方法。
(1) C by weight%: 0.05 to 0.15
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.
0%, N: 0.003 to 0.015%, Al ≦ 0.00
5%, Cr: 0.50 to 1.50%, Cu: 0.30
Molten steel containing 1.00% and the balance of Fe and unavoidable impurities is cast into a slab by continuous casting.
After reheating to a temperature range of 0 to 1300 ° C. for 1 hour or more and less than 3 hours, rolling is started, and a portion corresponding to the flange outer side surface is descaled at the initial stage of the rough rolling process, and 750 to 105
Finish rolling is completed in the temperature range of 0 ° C., and immediately thereafter, the average cooling rate of the steel material from 700 ° C. to 400 ° C. is set to 0.
A method for producing a high-strength H-section steel having excellent surface properties, which comprises accelerated cooling within a range of 5 ° C / s to 10.0 ° C / s.

【0012】(2) 重量%でC:0.05〜0.15
%、Si:0.05〜0.50%、Mn:0.8〜2.
0%、N:0.003〜0.015%、Al≦0.00
5%、Cr:0.50〜1.50%、Cu:0.30〜
1.00%を含み、残部がFe、及び不可避不純物から
なる溶鋼を連続鋳造で鋳片に鋳造し、該鋳片を1100
〜1300℃の温度域に1時間以上3時間未満再加熱し
た後に圧延を開始し、粗圧延工程初期でフランジ外側面
に相当する部位をデスケーリングした後、中間圧延工程
のパス間で鋼材表層部の温度をAr3 −20℃以下、A
3 −100℃以上に水冷し、その復熱過程で少なくと
も1回以上圧延し、750〜1050℃の温度範囲で仕
上圧延を終了させ、その後ただちに700℃から400
℃までの鋼材の平均冷却速度を0.5℃/s〜10.0
℃/sの範囲内で加速冷却する表面性状の優れた高強度
H形鋼の製造方法。
(2) C by weight%: 0.05 to 0.15
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.
0%, N: 0.003 to 0.015%, Al ≦ 0.00
5%, Cr: 0.50 to 1.50%, Cu: 0.30
Molten steel containing 1.00% and the balance of Fe and unavoidable impurities was cast into a slab by continuous casting.
After reheating to a temperature range of 1300 ° C. for 1 hour or more and less than 3 hours, rolling is started, and after descaling the portion corresponding to the flange outer surface at the initial stage of the rough rolling step, the steel material surface layer portion is provided between the passes of the intermediate rolling step. Temperature of Ar 3 -20 ° C or lower, A
r 3 −100 ° C. or higher, water-cooled, rolled at least once in the recuperating process, finished rolling in the temperature range of 750 to 1050 ° C., and immediately thereafter from 700 ° C. to 400 ° C.
The average cooling rate of steel up to ℃ 0.5 ℃ / s ~ 10.0
A method for producing a high-strength H-section steel having excellent surface properties, which is accelerated cooling within a range of ° C / s.

【0013】(3) 重量%でC:0.05〜0.15
%、Si:0.05〜0.50%、Mn:0.8〜2.
0%、N:0.003〜0.015%、Al≦0.00
5%、Cr:0.50〜1.50%、Cu:0.30〜
1.00%、Ni≦1.00%を含み、残部がFe、及
び不可避不純物からなる溶鋼を連続鋳造で鋳片に鋳造
し、該鋳片を1100〜1300℃の温度域に1時間以
上3時間未満再加熱した後に圧延を開始し、粗圧延工程
初期でフランジ外側面に相当する部位をデスケーリング
し、750〜1050℃の温度範囲で仕上圧延を終了さ
せ、その後ただちに700℃から400℃までの鋼材の
平均冷却速度を0.5℃/s〜10.0℃/sの範囲内
で加速冷却する表面性状の優れた高強度H形鋼の製造方
法。
(3) C by weight%: 0.05 to 0.15
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.
0%, N: 0.003 to 0.015%, Al ≦ 0.00
5%, Cr: 0.50 to 1.50%, Cu: 0.30
Molten steel containing 1.00% and Ni ≦ 1.00%, the balance being Fe and unavoidable impurities, is cast into a slab by continuous casting, and the slab is cast in a temperature range of 1100 to 1300 ° C. for 1 hour or more 3 Rolling is started after reheating for less than a time, the portion corresponding to the flange outer surface is descaled in the initial stage of the rough rolling process, finish rolling is completed in the temperature range of 750 to 1050 ° C, and immediately thereafter, from 700 ° C to 400 ° C. A method for producing a high-strength H-section steel having excellent surface properties, which comprises accelerating and cooling an average cooling rate of the steel material within the range of 0.5 ° C / s to 10.0 ° C / s.

【0014】(4) 重量%でC:0.05〜0.15
%、Si:0.05〜0.50%、Mn:0.8〜2.
0%、N:0.003〜0.015%、Al≦0.00
5%、Cr:0.50〜1.50%、Cu:0.30〜
1.00%、Ni≦1.00%を含み、残部がFe、及
び不可避不純物からなる溶鋼を連続鋳造で鋳片に鋳造
し、該鋳片を1100〜1300℃の温度域に1時間以
上3時間未満再加熱した後に圧延を開始し、粗圧延工程
初期でフランジ外側面に相当する部位をデスケーリング
した後、中間圧延工程のパス間で鋼材表層部の温度をA
3 −20℃以下、Ar3 −100℃以上に水冷し、そ
の復熱過程で少なくとも1回以上圧延し、750〜10
50℃の温度範囲で仕上圧延を終了させ、その後ただち
に700℃から400℃までの鋼材の平均冷却速度を
0.5℃/s〜10.0℃/sの範囲内で加速冷却する
ことを特徴とする表面性状の優れた高強度H形鋼の製造
方法。
(4) C by weight%: 0.05 to 0.15
%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.
0%, N: 0.003 to 0.015%, Al ≦ 0.00
5%, Cr: 0.50 to 1.50%, Cu: 0.30
Molten steel containing 1.00% and Ni ≦ 1.00%, the balance being Fe and unavoidable impurities, is cast into a slab by continuous casting, and the slab is cast in a temperature range of 1100 to 1300 ° C. for 1 hour or more 3 After reheating for less than a time, rolling is started, and after descaling the portion corresponding to the outer surface of the flange at the initial stage of the rough rolling process, the temperature of the steel surface layer portion is A between the passes of the intermediate rolling process.
r 3 −20 ° C. or lower, Ar 3 −100 ° C. or higher, water-cooled, rolled at least once in the recuperating process, 750 to 10
Characteristically, finish rolling is finished in a temperature range of 50 ° C., and immediately thereafter, an average cooling rate of steel products from 700 ° C. to 400 ° C. is accelerated and cooled within a range of 0.5 ° C./s to 10.0 ° C./s. And a method for producing a high-strength H-section steel having excellent surface properties.

【0015】[0015]

【作用】以下、本発明の作用を実施例に基づき詳細に説
明する。
The operation of the present invention will be described in detail below with reference to examples.

【0016】鋼材の酸化(腐触)は主に外部からの酸素
の侵入により進行する。酸素の侵入は雰囲気中の酸素濃
度、鋼材表面から内部への酸素イオンあるいは内部から
表面への金属イオン(陽)の拡散の何れかが律速段階と
なる。このとき鋼材表層部に気密性の高い酸化膜が形成
されると酸素の侵入が妨害され、酸化の進行を遅らせ
る。気密性の高い酸化膜としてはステンレス鋼等にも適
用されているようにCr酸化膜が代表的である。本発明
では、Cr添加量を0.5〜1.5%としており、ステ
ンレス鋼でのCr添加量の10分の1以下であることか
ら、ステンレス鋼の耐蝕性には及ばないものの、構造材
に要求される程度の耐蝕性を確保することができ、かつ
安価であることが特徴である。このCr酸化膜は熱間圧
延前の加熱段階で生成し、圧延での加工により、その膜
厚は減ぜられるものの、圧延後においても残存し、耐蝕
性を発揮させる。
Oxidation (corrosion) of the steel material proceeds mainly by the penetration of oxygen from the outside. The rate of oxygen invasion is determined by the oxygen concentration in the atmosphere, oxygen ions from the surface of the steel material to the inside, or diffusion of metal ions (positive) from the inside to the surface. At this time, if a highly airtight oxide film is formed on the surface layer of the steel material, the penetration of oxygen is hindered and the progress of oxidation is delayed. As an oxide film having high airtightness, a Cr oxide film is typical as applied to stainless steel and the like. In the present invention, the amount of added Cr is 0.5 to 1.5%, which is 1/10 or less of the amount of added Cr in stainless steel. Therefore, although it does not reach the corrosion resistance of stainless steel, it is a structural material. It is characterized by being able to secure the degree of corrosion resistance required for, and being inexpensive. This Cr oxide film is formed in the heating stage before hot rolling, and although the film thickness is reduced by processing in rolling, it remains after rolling and exhibits corrosion resistance.

【0017】つぎに本発明H形鋼の基本成分範囲の限定
理由について述べる。
Next, the reasons for limiting the basic composition range of the H-section steel of the present invention will be described.

【0018】まず、Cは鋼の強度を向上させる有効な成
分として添加するもので0.05%未満では、構造用鋼
として必要な強度が得られず、また0.15%を超える
過剰の添加は、母材靭性、耐溶接割れ性、溶接熱影響部
靭性等を著しく低下させるので、下限を0.05%、上
限を0.15%とした。
First, C is added as an effective component for improving the strength of steel. If it is less than 0.05%, the strength required for structural steel cannot be obtained, and if it is added in excess of 0.15%. Causes significantly lower base metal toughness, weld crack resistance, weld heat affected zone toughness, etc., so the lower limit was made 0.05% and the upper limit was made 0.15%.

【0019】Siは母材の強度確保、溶鋼の予備脱酸等
に必要であるが0.50%を超えると溶接熱影響部内に
硬化組織の高炭素マルテンサイトを生成し、溶接継手部
靭性を著しく低下させる。また、0.05%未満では必
要な溶鋼の予備脱酸ができないため、Si含有量を0.
05%〜0.50%の範囲に限定した。
Si is necessary for securing the strength of the base metal, pre-deoxidizing molten steel, etc., but if it exceeds 0.50%, high carbon martensite having a hardened structure is formed in the heat affected zone of the weld, and the toughness of the weld joint is improved. Significantly lowers. Further, if it is less than 0.05%, the necessary preliminary deoxidation of molten steel cannot be performed, so that the Si content is set to 0.
It was limited to the range of 05% to 0.50%.

【0020】Mnは母材の強度、靭性の確保には0.8
%以上の添加が必要であるが、溶接部の靭性、割れ性等
の許容できる範囲内で上限を2.0%とした。
Mn is 0.8 to secure the strength and toughness of the base material.
% Or more is required, but the upper limit was set to 2.0% within the allowable range of the toughness and crackability of the welded portion.

【0021】Nは不可避不純物として鋼中に混入する元
素であり、過剰に固溶すると靭性を低下させる元素であ
るため、できるだけ低減することが望ましいが、0.0
03%未満とすると、脱Nのためのコストがかかり、製
造原価が高くなるので、下限を0.003%とした。他
方0.015%を超えると母材靭性が劣化し、連続鋳造
時に鋼片に表面割れが生じるため0.015%を上限と
した。
N is an element mixed in steel as an unavoidable impurity and is an element that reduces toughness if it forms an excessive solid solution, so it is desirable to reduce it as much as possible.
If it is less than 03%, the cost for removing N increases and the manufacturing cost increases, so the lower limit was made 0.003%. On the other hand, if it exceeds 0.015%, the toughness of the base material deteriorates and surface cracks occur in the steel slab during continuous casting, so 0.015% was made the upper limit.

【0022】Alは強力な脱酸元素であるが、0.00
5%超の含有は鋼中に多量の酸化物を形成し、靭性の低
下がもたらされるため、0.005%以下とした。
Al is a strong deoxidizing element, but 0.00
If the content exceeds 5%, a large amount of oxide is formed in the steel and the toughness is lowered, so the content is made 0.005% or less.

【0023】Crは前述の耐蝕性の機能付加と母材の強
化に有効である。耐蝕性を満足するための酸化膜を形成
するには0.5%以上の添加が必要である。同時にCr
の過剰の添加は靭性および硬化性の観点から有害となる
ため上限を1.5%とした。また、耐候性の機能を付加
する鋼材にはCu,Niを添加するが、それぞれの成分
範囲を下記に制限した。
Cr is effective in adding the function of corrosion resistance and strengthening the base material. It is necessary to add 0.5% or more to form an oxide film for satisfying the corrosion resistance. At the same time Cr
Excessive addition of is harmful from the viewpoint of toughness and curability, so the upper limit was made 1.5%. Further, Cu and Ni are added to the steel material having the function of weather resistance, but the respective component ranges are limited to the following.

【0024】Cuは母材の強化、耐候性に有効な元素で
あるが、耐候性の機能付加のためには0.3%以上の添
加が必要である。また、応力除去焼鈍による焼戻し脆
性、溶接割れ、熱間加工割れなどを考慮して、上限を
1.0%とした。
Cu is an element effective in strengthening the base material and weather resistance, but it is necessary to add 0.3% or more in order to add the function of weather resistance. In addition, considering the temper embrittlement due to stress relief annealing, weld cracking, hot work cracking, etc., the upper limit was made 1.0%.

【0025】Niは、母材の強靭性を高める極めて有効
な元素であるが、1.0%超の添加は合金コストを増加
させて経済的でないので上限を1.0%とした。
Ni is an extremely effective element for enhancing the toughness of the base material, but the addition of more than 1.0% increases the alloy cost and is not economical, so the upper limit was made 1.0%.

【0026】不可避不純物として含有するP,Sはその
量について特に限定しないが、凝固時のマクロ偏析によ
り溶接割れや靭性の低下が生じるので、極力低減すべき
であり、また、本発明でP,S量が、目的とする量まで
低減できるのは、それぞれ0.02未満である。
The amounts of P and S contained as unavoidable impurities are not particularly limited, but since macro-segregation during solidification causes welding cracks and a decrease in toughness, they should be reduced as much as possible. It is less than 0.02 that the amount of S can be reduced to the target amount.

【0027】上記の製造方法で溶製した溶鋼を連続鋳造
機により鋳片に製造した後、1100〜1300℃の温
度域に再加熱する。この温度域に再加熱温度を限定した
のは、熱間加工による形鋼の製造には塑性変形を容易に
するため1100℃以上の加熱が必要であり、また、加
熱炉の性能、経済性から上限を1300℃とした。さら
に1100〜1300℃の温度域での保持時間を1〜3
時間に限定したのは、1時間未満ではCrの酸化反応時
間が不十分で、鋼片表面に緻密なCr酸化膜を形成し、
被覆するまでには到らず、3時間では反応が十分に進行
し、鋼片内部にCr酸化物を形成するようになり、Cr
酸化物で鋼片表面を被覆できなくなるためである。
The molten steel produced by the above production method is produced into a slab by a continuous casting machine, and then reheated to a temperature range of 1100 to 1300 ° C. The reason why the reheating temperature is limited to this temperature range is that the manufacturing of shaped steel by hot working requires heating at 1100 ° C or higher in order to facilitate plastic deformation, and from the performance and economical efficiency of the heating furnace. The upper limit was 1300 ° C. Further, the holding time in the temperature range of 1100 to 1300 ° C is 1 to 3
If the time is limited to less than 1 hour, the oxidation reaction time of Cr is insufficient and a dense Cr oxide film is formed on the surface of the steel slab.
The reaction did not proceed until the coating was completed, and the reaction proceeded sufficiently in 3 hours to form Cr oxide inside the steel slab.
This is because the surface of the steel billet cannot be covered with the oxide.

【0028】加熱した鋼材は、粗圧延、中間圧延、仕上
圧延の各工程によって圧延形成を行う。
The heated steel material is rolled and formed by the steps of rough rolling, intermediate rolling and finish rolling.

【0029】粗圧延の初期段階でフランジ外側に相当す
る部位にデスケーリングを施すのは、本発明での成分系
におけるCuが表面に偏析しており、粗圧延での温度域
では液体状となっており、デスケーリングによりこの液
状Cuを除去するためである。もしも除去しなければ、
圧延変形時に液状Cuが粒界に侵入し、割れを引き起こ
す。圧延終了温度を750〜1050℃としたのは、低
温圧延ほど靭性は向上するが、形鋼の造形上750℃未
満での加工は困難であり、また1050℃を超えての加
工は粗粒組織を生成して靭性が低下するためである。
The descaling of the portion corresponding to the outside of the flange in the initial stage of rough rolling is because Cu in the component system of the present invention is segregated on the surface and becomes liquid in the temperature range of rough rolling. This is because the liquid Cu is removed by descaling. If not removed,
Liquid Cu penetrates into grain boundaries during rolling deformation and causes cracking. The rolling end temperature is set to 750 to 1050 ° C. The toughness is improved as the rolling temperature is low, but it is difficult to process at less than 750 ° C. due to the shaping of the shaped steel, and the processing at more than 1050 ° C. has a coarse grain structure. Is generated and the toughness is reduced.

【0030】また、中間圧延工程での圧延パス間におい
て鋼材表層部の温度をAr3 −20℃以下、Ar3 −1
00℃以上に水冷し、その復熱過程で少なくとも1回以
上圧延し、750〜1050℃の温度範囲で圧延を終了
させるのは、低温圧延で表層部を極細粒な組織とし、そ
の後の復熱により、フェライトからオーステナイトへ再
変態させ、加工歪を除去するためという従来の使用目的
に加え、圧延途中で表面を強制的に冷却することで、そ
れまでに生成したスケールと地鉄との熱収縮量の差によ
り歪みを生じさせることによるスケールの除去、および
鋼材表面の低温化による鉄の酸化反応(スケール生成)
の抑制を目的としている。
Further, the temperature of the surface layer portion of the steel material is kept below Ar 3 -20 ° C. and Ar 3 -1 between rolling passes in the intermediate rolling process.
Water cooling to 00 ° C. or higher, rolling at least once in the recuperating process, and finishing rolling in the temperature range of 750 to 1050 ° C. are achieved by forming a superfine grain structure in the surface layer part by low temperature rolling and subsequent reheating. In addition to the conventional purpose of re-transforming ferrite to austenite and removing work strain, the surface is forcibly cooled during rolling, so that the heat shrinkage of the scale and base steel generated up to that point. Removal of scale by causing strain due to difference in amount, and oxidation reaction of iron due to low temperature of steel surface (scale formation)
The purpose is to suppress.

【0031】仕上圧延終了後、700℃から400℃ま
での鋼材の平均冷却速度を0.5℃/s〜10.0℃/
sの範囲内で加速冷却することは、従来から用いられて
いるように、細粒なフェライト−パ−ライト組織として
強度、靭性を向上させるためだけではなく、鋼材表面の
冷却を加速して、スケール生成の余裕を与えないためで
ある。
After finishing rolling, the average cooling rate of the steel material from 700 ° C. to 400 ° C. is 0.5 ° C./s to 10.0 ° C. /
Accelerated cooling within the range of s is not only for improving strength and toughness as a fine-grained ferrite-pearlite structure, as conventionally used, but also for accelerating cooling of the steel surface, This is because it does not give a margin for scale generation.

【0032】この平均冷却速度を0.5℃/s〜10.
0℃/sの範囲内で冷却して製造するとしたのは、この
冷却速度範囲よりも高冷却速度で加速冷却すると、ベイ
ナイト相やマルテンサイト相の組織分率が上昇し、靭性
の低下等の材質劣化が出現する。また、この冷却速度範
囲よりも低冷却速度で加速冷却しても、表面の温度低下
の効果がみられなくなり、スケールは厚肉で生成され
る。従って、上述の冷却速度の範囲を最適な冷却速度範
囲とする。
The average cooling rate is 0.5 ° C./s to 10.
The cooling is performed within the range of 0 ° C./s, and the reason for producing is that accelerated cooling at a cooling rate higher than this cooling rate range increases the structure fraction of the bainite phase and martensite phase, resulting in lower toughness. Material deterioration appears. Further, even if accelerated cooling is performed at a cooling rate lower than this cooling rate range, the effect of lowering the temperature of the surface is no longer observed, and the scale is formed thick. Therefore, the range of the cooling rate described above is set as the optimum cooling rate range.

【0033】スケール厚については特に限定しないが、
スケールが剥離後も平滑な表面性状を得るためには10
μm以下が望ましい。
The scale thickness is not particularly limited,
To obtain a smooth surface texture even after the scale is peeled off, 10
μm or less is desirable.

【0034】[0034]

【実施例】試作形鋼は転炉溶製し、成分調整後、連続鋳
造により240mm〜300mm厚鋳片に鋳造した後、
図1に示すレイアウトの加熱炉1で加熱し、粗圧延機2
で粗圧延した後、引き続いて第1中間圧延機3、第2中
間圧延機4で所定の寸法のH形鋼となるまで成形を行
う。このとき、必要に応じて第2中間圧延機4での圧延
パス間で、鋼材表層部の温度をAr3 −20℃以下、A
3 −100℃以上に水冷し、その復熱過程で少なくと
も1回以上圧延し、750〜1050℃の温度範囲で中
間圧延を終了させる。その後、仕上圧延を経て、仕上圧
延機5の下流側に設置された水冷による鋼材の加速冷却
装置6により、所定の冷却速度、即ち700℃から40
0℃までの冷却速度を0.5℃/s〜3.0℃/sの範
囲内に確保できるように加速冷却を行う。冷却後は冷却
床7で次工程の矯正まで放冷される。
[Example] A prototype shaped steel was melted in a converter, adjusted in composition, and cast into a 240 mm to 300 mm thick ingot by continuous casting.
Heated in the heating furnace 1 having the layout shown in FIG.
After rough rolling in, the first intermediate rolling mill 3 and the second intermediate rolling mill 4 continue to form H-shaped steel having a predetermined size. At this time, if necessary, the temperature of the steel material surface layer portion is set to Ar 3 −20 ° C. or lower between rolling passes in the second intermediate rolling mill 4, A
It is water-cooled to r 3 −100 ° C. or higher, rolled at least once in the recuperating process, and finished the intermediate rolling in the temperature range of 750 to 1050 ° C. Then, after finishing rolling, a predetermined cooling rate, that is, 700 ° C. to 40 ° C., is set by a water-cooled accelerated cooling device 6 for steel material installed on the downstream side of the finishing rolling mill 5.
Accelerated cooling is performed so that the cooling rate up to 0 ° C can be ensured within the range of 0.5 ° C / s to 3.0 ° C / s. After cooling, the cooling floor 7 is allowed to cool until the correction of the next step.

【0035】機械特性は、図2に示すH形鋼8のフラン
ジ9の板厚t1 の中心部(1/2t1 )でフランジ軸全
長(B)の1/4幅(1/4B)から試験片を採取して
求めた。なお、この箇所の特性を求めたのは、フランジ
1/4B部は母材の平均的な機械特性を示すので、この
部位でH形鋼の機械試験特性を代表できるとしたためで
ある。
The mechanical characteristics are shown in FIG. 2 from the 1/4 width (1 / 4B) of the total length (B) of the flange shaft at the center (1 / 2t 1 ) of the plate thickness t 1 of the flange 9 of the H-section steel 8. A test piece was collected and determined. The characteristics of this portion were obtained because the flange 1 / 4B portion shows the average mechanical characteristics of the base metal, so that the mechanical test characteristics of the H-section steel can be represented at this portion.

【0036】また、本発明における表面性状の評価に関
してはスケール厚で判断した。すなわち、製品のスケー
ル厚が10μm以下であれば表面性状が優れているもの
とみなし、後述する表2において○印で示した。
Further, the evaluation of the surface texture in the present invention was judged by the scale thickness. That is, if the scale thickness of the product is 10 μm or less, it is considered that the surface properties are excellent, and it is indicated by a circle in Table 2 described later.

【0037】耐蝕性については、JIS Z 2381
での屋外暴露試験方法通則における直接暴露試験に準拠
して実施し、1ヶ月間で発生したさびを引張歪を与えて
剥離させ、暴露前のさびと比較する事により評価した。
すなわち、暴露後のさび量が暴露前のそれと比較し、5
倍以下であれば、耐蝕性に優れているとみなし、後述す
る表2において○印で示した。
Regarding corrosion resistance, JIS Z 2381
The outdoor exposure test method was carried out in accordance with the general direct exposure test, and the rust generated during one month was peeled by applying tensile strain, and the rust was compared with that before the exposure.
That is, the amount of rust after exposure is 5% less than that before exposure.
If it is not more than twice, it is considered that the corrosion resistance is excellent, and it is shown by a circle in Table 2 described later.

【0038】さらに、耐蝕性に優れた鋼のうちで3ヶ月
後のさび発生量が1ヶ月後のそれと比較して2倍以下で
あれば、耐候性も優れているとみなし、後述する表2に
おいて◎で示した。
Further, among the steels excellent in corrosion resistance, if the amount of rust generated after 3 months is less than twice as much as that after 1 month, it is considered that the weather resistance is also excellent, and Table 2 described later. Is indicated by ⊚.

【0039】表1は、試作鋼の化学成分値を示し、表2
は圧延と冷却条件に対する機械試験特性を示す。なお、
加熱温度を1280℃あるいは1300℃としたのは、
一般的に加熱温度の低減は、機械的特性を向上させるこ
とは周知であり、高温加熱条件は機械特性の最低値を示
すと推定され、この値がそれ以下の加熱温度での特性を
代表できると判断したためである。また、表1での成分
範囲においてはAr3点は860℃から800℃の間に
ある。
Table 1 shows the chemical composition values of the trial steels, and Table 2
Shows mechanical test characteristics for rolling and cooling conditions. In addition,
The heating temperature is 1280 ° C or 1300 ° C.
Generally, it is well known that reduction of heating temperature improves mechanical properties, and it is estimated that high temperature heating condition shows the lowest value of mechanical properties, and this value can represent the property at heating temperature lower than that. This is because it was determined. In addition, in the composition range shown in Table 1, the Ar 3 point is between 860 ° C. and 800 ° C.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表2に示すように本発明による鋼1〜6
は、母材を代表する部位であるフランジ1/4B部、で
目標の母材強度(前記JIS G 3106、SM49
0)と0℃でのシャルピー衝撃吸収エネルギーの目標値
(前記JIS G 3106、SM490C)である4
5(J)以上を充分に満足する。このなかで中間圧延工
程で鋼材表層部の温度をAr3 −20℃以下、Ar3
100℃以上に水冷し、その復熱過程で少なくとも1回
以上圧延した鋼4,5,6については、同様の水冷をし
ない鋼1,2,3よりもスケール厚が薄い方向にある。
As shown in Table 2, steels 1 to 6 according to the present invention
Indicates the target base metal strength (JIS G 3106, SM49 mentioned above) at the flange 1 / 4B part which is a part representing the base metal.
0) and the target value of Charpy impact absorbed energy at 0 ° C. (said JIS G 3106, SM490C) 4
Sufficiently satisfies 5 (J) or more. Among them, in the intermediate rolling process, the temperature of the surface layer of the steel material is set to Ar 3 −20 ° C. or less, Ar 3
Steels 4, 5 and 6 which have been water-cooled to 100 ° C. or higher and rolled at least once in the recuperative process have a smaller scale thickness than steels 1, 2 and 3 which are not water-cooled similarly.

【0043】一方、比較鋼7では、Mn,Cr以外の成
分および製造条件は本発明を満足するものの、Mn含有
量が2.11%で上限値を越えるため、引張強度が目標
値を上回り過剰に高く、鋼材表面のCr酸化膜による被
覆は不十分であるため耐蝕性に劣る。鋼8においては、
Mn以外の成分および製造条件は本発明を満足するもの
の、Mn含有量が0.65%で下限値以下となり、引張
強度が、目標値に満たない。
On the other hand, in Comparative Steel 7, the components other than Mn and Cr and the manufacturing conditions satisfied the present invention, but the Mn content was 2.11%, which exceeded the upper limit, so the tensile strength exceeded the target value and was excessive. However, the corrosion resistance is poor because the coating of the steel surface with the Cr oxide film is insufficient. In Steel 8,
Although the components other than Mn and the manufacturing conditions satisfy the present invention, the Mn content is 0.65% and is below the lower limit, and the tensile strength is less than the target value.

【0044】また、鋼9,10については、Cr含有量
がそれぞれ0.27%,0.46%で本発明での下限値
に満たないため鋼材表面のCr酸化膜による被覆は不十
分であるため耐蝕性に劣る。
Further, in the steels 9 and 10, the Cr contents are 0.27% and 0.46%, respectively, which are below the lower limit value of the present invention, so that the coating of the steel surface with the Cr oxide film is insufficient. Therefore, it is inferior in corrosion resistance.

【0045】また、鋼11,12,13,14,15は
いずれも成分は本発明での範囲内で推移しているもの
の、その製造法において、以下のような不適当な点があ
るために、要求する特性を満足しない。すなわち、鋼1
1は圧延終了後の冷却速度が0.4℃/sで本発明での
下限値を下回るため、スケール厚みが10μmを越え平
滑な表面性状が得られない。鋼12は、加熱段階で11
00〜1300℃の温度域での保持時間が足りないた
め、鋼材表面のCr酸化膜による被覆は不十分である。
鋼13は、圧延終了後の冷却速度および加熱段階での1
100〜1300℃の温度域での保持時間が本発明での
範囲に満たないため、スケール厚みが10μmを越え平
滑な表面性状が得られず、かつ鋼材表面のCr酸化膜に
よる被覆は不十分である。さらに、鋼14では圧延終了
後の冷却速度が0.4℃/sで本発明での下限値を下回
るため、スケール厚みが10μmを越え平滑な表面性状
が得られず、加えて粗圧延段階でデスケーリングを施さ
なかったため、フランジ外側面にヘゲ疵が発生した。鋼
15,16に関しても、粗圧延段階でデスケーリングを
施さなかったため、フランジ外側面にヘゲ疵が発生し
た。
Although the composition of each of the steels 11, 12, 13, 14, and 15 has been changed within the range of the present invention, the manufacturing method thereof has the following inadequate points. , Does not meet the required characteristics. Ie steel 1
In No. 1, the cooling rate after rolling was 0.4 ° C./s, which was below the lower limit of the present invention, so the scale thickness exceeded 10 μm and smooth surface properties could not be obtained. Steel 12 is 11 at the heating stage
Since the holding time in the temperature range of 00 to 1300 ° C is insufficient, the coating of the steel material surface with the Cr oxide film is insufficient.
Steel 13 has a cooling rate after completion of rolling and 1 at the heating stage.
Since the holding time in the temperature range of 100 to 1300 ° C. is less than the range of the present invention, the scale thickness exceeds 10 μm and a smooth surface property cannot be obtained, and the coating of the steel material surface with the Cr oxide film is insufficient. is there. Further, with Steel 14, the cooling rate after rolling is 0.4 ° C./s, which is below the lower limit of the present invention, so the scale thickness exceeds 10 μm and smooth surface properties cannot be obtained. Since descaling was not performed, a bald defect was generated on the outer surface of the flange. With respect to the steels 15 and 16 as well, since descaling was not performed in the rough rolling stage, a dent defect was generated on the outer surface of the flange.

【0046】[0046]

【発明の効果】本発明により、熱間圧延およびその後の
冷却過程における酸化反応で鋼材表面にCr酸化膜を被
覆することにより耐蝕性を確保し、かつ強度・靭性・表
面の平滑性に優れる新規な機能を有するとともに、含C
u鋼における赤熱脆性に起因するヘゲ疵、焼け疵等の発
生を低減したH形鋼を低コストで製造でき、建築物の信
頼性向上、安全性確保、経済性の向上等の産業上の効果
は極めて顕著なものがある。
EFFECTS OF THE INVENTION According to the present invention, corrosion resistance is secured by coating a Cr oxide film on the surface of a steel material by an oxidation reaction in the hot rolling and the subsequent cooling process, and the strength, toughness and smoothness of the surface are novel. It has various functions and contains C
u-shaped steel can be manufactured at low cost with less occurrence of bald spots, burn marks, etc. due to red hot embrittlement in u steel, and can improve the reliability of buildings, ensure safety, improve economic efficiency, etc. The effect is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置配置列例の説明略図。FIG. 1 is a schematic diagram illustrating an example of a device arrangement row for implementing the present invention.

【図2】H形鋼の断面形状を示し、各部位の名称と機械
試験片の採取位置を示す図
FIG. 2 is a diagram showing the cross-sectional shape of the H-section steel, showing the name of each part and the sampling position of the mechanical test piece.

【符号の説明】[Explanation of symbols]

1…加熱炉 2…粗圧延機 3…第1中間圧延機 4…第2中間圧延
機 5…仕上圧延機 6…鋼材冷却装置 7…冷却床 8…H形鋼 9…フランジ
DESCRIPTION OF SYMBOLS 1 ... Heating furnace 2 ... Rough rolling mill 3 ... 1st intermediate rolling mill 4 ... 2nd intermediate rolling mill 5 ... Finishing rolling mill 6 ... Steel material cooling device 7 ... Cooling floor 8 ... H-shaped steel 9 ... Flange

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/42 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C22C 38/42

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC:0.05〜0.15%、 Si:0.05〜0.50%、 Mn:0.8〜2.0%、 N:0.003〜0.015%、 Al≦0.005%、 Cr:0.50〜1.50%、 Cu:0.30〜1.00%、を含み、残部がFe、及
び不可避不純物からなる溶鋼を連続鋳造で鋳片に鋳造
し、該鋳片を1100〜1300℃の温度域に1時間以
上3時間未満再加熱した後に圧延を開始し、粗圧延工程
初期でフランジ外側面に相当する部位をデスケーリング
し、750〜1050℃の温度範囲で仕上圧延をさせ、
その後ただちに700℃から400℃までの鋼材の平均
冷却速度を0.5℃/s〜10.0℃/sの範囲内で加
速冷却することを特徴とする表面性状の優れた高強度H
形鋼の製造方法。
1. By weight%, C: 0.05 to 0.15%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015. %, Al ≦ 0.005%, Cr: 0.50 to 1.50%, Cu: 0.30 to 1.00%, with the balance Fe and unavoidable impurities, and cast into a cast piece by continuous casting. And then re-heating the slab to a temperature range of 1100 to 1300 ° C. for 1 hour or more and less than 3 hours, and then starting rolling, and descaling the portion corresponding to the outer side surface of the flange at the initial stage of the rough rolling step. Finish rolling in the temperature range of 1050 ° C,
Immediately thereafter, accelerated cooling of the steel material from 700 ° C. to 400 ° C. within the range of 0.5 ° C./s to 10.0 ° C./s is accelerated and the high strength H with excellent surface properties is characterized.
Shaped steel manufacturing method.
【請求項2】 重量%でC:0.05〜0.15%、 Si:0.05〜0.50%、 Mn:0.8〜2.0%、 N:0.003〜0.015%、 Al≦0.005%、 Cr:0.50〜1.50%、 Cu:0.30〜1.00%を含み、残部がFe、及び
不可避不純物からなる溶鋼を連続鋳造で鋳片に鋳造し、
該鋳片を1100〜1300℃の温度域に1時間以上3
時間未満再加熱した後に圧延を開始し、粗圧延工程初期
でフランジ外側面に相当する部位をデスケーリングした
後、中間圧延工程のパス間で鋼材表層部の温度をAr3
−20℃以下、Ar3 −100℃以上に水冷し、その復
熱過程で少なくとも1回以上圧延し、750〜1050
℃の温度範囲で仕上圧延を終了させ、その後ただちに7
00℃から400℃までの鋼材の平均冷却速度を0.5
℃/s〜10.0℃/sの範囲内で加速冷却することを
特徴とする表面性状の優れた高強度H形鋼の製造方法。
2. C: 0.05 to 0.15% by weight, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015 %, Al ≦ 0.005%, Cr: 0.50 to 1.50%, Cu: 0.30 to 1.00%, with the balance Fe and unavoidable impurities, and cast into a slab by continuous casting. Cast,
The slab is placed in a temperature range of 1100 to 1300 ° C for 1 hour or more 3
Rolling is started after reheating for less than time, and after descaling the portion corresponding to the flange outer surface at the initial stage of the rough rolling process, the temperature of the steel surface layer is set to Ar 3 between passes in the intermediate rolling process.
Water cooling to −20 ° C. or lower and Ar 3 −100 ° C. or higher, and rolling at least once in the recuperation process, 750 to 1050
Finish rolling in the temperature range of ℃, and immediately after 7
The average cooling rate of steel from 00 ℃ to 400 ℃ is 0.5
A method for producing a high-strength H-section steel having excellent surface properties, which comprises performing accelerated cooling within a range of ° C / s to 10.0 ° C / s.
【請求項3】 重量%でC:0.05〜0.15%、 Si:0.05〜0.50%、 Mn:0.8〜2.0%、 N:0.003〜0.015%、 Al≦0.005%、 Cr:0.50〜1.50%、 Cu:0.30〜1.00%、 Ni≦1.00%を含み、残部がFe、及び不可避不純
物からなる溶鋼を連続鋳造で鋳片に鋳造し、該鋳片を1
100〜1300℃の温度域に1時間以上3時間未満再
加熱した後に圧延を開始し、粗圧延初期工程でフランジ
外側面に相当する部位をデスケーリングし、750〜1
050℃の温度範囲で仕上圧延をさせ、その後ただちに
700℃から400℃までの鋼材の平均冷却速度を0.
5℃/s〜10.0℃/sの範囲内で加速冷却すること
を特徴とする表面性状の優れた高強度H形鋼の製造方
法。
3. C: 0.05 to 0.15% by weight%, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015 %, Al ≤ 0.005%, Cr: 0.50 to 1.50%, Cu: 0.30 to 1.00%, Ni ≤ 1.00%, with the balance being Fe and inevitable impurities Is cast into a slab by continuous casting, and the slab is
After reheating to a temperature range of 100 to 1300 ° C. for 1 hour or more and less than 3 hours, rolling is started, and the portion corresponding to the flange outer surface is descaled in the rough rolling initial step, and 750 to 1
Finish rolling is performed in the temperature range of 050 ° C., and immediately thereafter, the average cooling rate of the steel material from 700 ° C. to 400 ° C. is set to 0.
A method for producing a high-strength H-section steel having excellent surface properties, which comprises performing accelerated cooling within a range of 5 ° C / s to 10.0 ° C / s.
【請求項4】 重量%でC:0.05〜0.15%、 Si:0.05〜0.50%、 Mn:0.8〜2.0%、 N:0.003〜0.015%、 Al≦0.005%、 Cr:0.50〜1.50%、 Cu:0.30〜1.00%、 Ni≦1.00%を含み、残部がFe、及び不可避不純
物からなる溶鋼を連続鋳造で鋳片に鋳造し、該鋳片を1
100〜1300℃の温度域に1時間以上3時間未満再
加熱した後に圧延を開始し、粗圧延工程初期でフランジ
外側面に相当する部位をデスケーリングした後、中間圧
延工程のパス間で鋼材表層部の温度をAr3 −20℃以
下、Ar3 −100℃以上に水冷し、その復熱過程で少
なくとも1回以上圧延し、750〜1050℃の温度範
囲で仕上圧延を終了させ、その後ただちに700℃から
400℃までの鋼材の平均冷却速度を0.5℃/s〜1
0.0℃/sの範囲内で加速冷却することを特徴とする
表面性状の優れた高強度H形鋼の製造方法。
4. C: 0.05 to 0.15% by weight, Si: 0.05 to 0.50%, Mn: 0.8 to 2.0%, N: 0.003 to 0.015. %, Al ≤ 0.005%, Cr: 0.50 to 1.50%, Cu: 0.30 to 1.00%, Ni ≤ 1.00%, with the balance being Fe and inevitable impurities Is cast into a slab by continuous casting, and the slab is
After reheating to a temperature range of 100 to 1300 ° C. for 1 hour or more and less than 3 hours, rolling is started, and after descaling the portion corresponding to the flange outer surface at the initial stage of the rough rolling step, the steel material surface layer between the passes of the intermediate rolling step. Parts are water-cooled to Ar 3 -20 ° C or lower and Ar 3 -100 ° C or higher, rolled at least once in the recuperating process, finish rolling in the temperature range of 750 to 1050 ° C, and immediately thereafter 700. The average cooling rate of the steel material from ℃ to 400 ℃ is 0.5 ℃ / s ~ 1
A method for producing a high-strength H-section steel with excellent surface properties, which comprises accelerating cooling within a range of 0.0 ° C / s.
JP1235595A 1995-01-30 1995-01-30 Production of high strength gauge h steel excellent in surface characteristic Withdrawn JPH08199233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235595A JPH08199233A (en) 1995-01-30 1995-01-30 Production of high strength gauge h steel excellent in surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235595A JPH08199233A (en) 1995-01-30 1995-01-30 Production of high strength gauge h steel excellent in surface characteristic

Publications (1)

Publication Number Publication Date
JPH08199233A true JPH08199233A (en) 1996-08-06

Family

ID=11802980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235595A Withdrawn JPH08199233A (en) 1995-01-30 1995-01-30 Production of high strength gauge h steel excellent in surface characteristic

Country Status (1)

Country Link
JP (1) JPH08199233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190478A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Steam turbine member
CN114990441A (en) * 2022-06-02 2022-09-02 武汉钢铁有限公司 Weather-resistant steel used in-70 ℃ environment and production method thereof
KR20230125287A (en) 2021-03-03 2023-08-29 제이에프이 스틸 가부시키가이샤 H section steel
WO2024040759A1 (en) * 2022-08-25 2024-02-29 湖南华菱湘潭钢铁有限公司 Production method for marine atmospheric corrosion-resistant steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190478A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Steam turbine member
KR20230125287A (en) 2021-03-03 2023-08-29 제이에프이 스틸 가부시키가이샤 H section steel
CN114990441A (en) * 2022-06-02 2022-09-02 武汉钢铁有限公司 Weather-resistant steel used in-70 ℃ environment and production method thereof
WO2024040759A1 (en) * 2022-08-25 2024-02-29 湖南华菱湘潭钢铁有限公司 Production method for marine atmospheric corrosion-resistant steel sheet

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
JP5760519B2 (en) Rolled H-section steel with excellent toughness and method for producing the same
JPH0768583B2 (en) High-tensile cold-rolled steel sheet manufacturing method
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JP4222073B2 (en) H-section steel with excellent fillet part toughness and method for producing the same
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JPH08199233A (en) Production of high strength gauge h steel excellent in surface characteristic
JPH09137218A (en) Manufacture of wide flange shape for building construction
JP3440710B2 (en) H-section steel excellent in toughness of fillet portion and method for producing the same
JP3235416B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent workability and fatigue properties
JP3378923B2 (en) Method for producing steel sheet with small welding distortion and good bending workability by linear heating
JPH08199289A (en) High strength gauge h steel excellent in surface characteristic and its prodcuction
JP3181448B2 (en) Oxide-containing dispersed slab and method for producing rolled section steel with excellent toughness using the slab
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH08199290A (en) High strength gauge h steel excellent in surface characteristic and its production
JP3004154B2 (en) Manufacturing method of shaped steel with excellent toughness
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JPH0776751A (en) Slab for high toughness and high strength steel and production of rolled shape steel by the slab
JPH0692617B2 (en) Method for producing hot rolled high strength steel sheet with a composite structure having excellent surface properties and workability
JPH0776725A (en) Production of shape steel excellent in toughness
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPH05132716A (en) Manufacture of rolled shape steel excellent in toughness
JP2672236B2 (en) Method for producing H-beam with excellent toughness
JPH06122921A (en) Production of wide-flange shape steel excellent in toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402