JPH08199118A - Joining of silicon to silicon - Google Patents

Joining of silicon to silicon

Info

Publication number
JPH08199118A
JPH08199118A JP2464495A JP2464495A JPH08199118A JP H08199118 A JPH08199118 A JP H08199118A JP 2464495 A JP2464495 A JP 2464495A JP 2464495 A JP2464495 A JP 2464495A JP H08199118 A JPH08199118 A JP H08199118A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
bonding
insulating film
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2464495A
Other languages
Japanese (ja)
Inventor
Hiroshi Shibatani
博志 柴谷
Tomoko Matsumoto
朋子 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2464495A priority Critical patent/JPH08199118A/en
Publication of JPH08199118A publication Critical patent/JPH08199118A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for joining silicon to silicon by which the joining can be carried out even at a relatively low temperature without using glass and the joining strength is high. CONSTITUTION: One surface to be joined of one silicon single crystal substance 2 is brought into close contact with one surface to be joined of another silicon single crystal substance 4 through an insulating film 3 formed on either or both of their surfaces and a high voltage is then applied across the silicon single crystal substances to produce the dielectric breakdown in the insulating film. Thereby, both the surfaces of the silicon single crystal substances are mutually joined. The insulating film is preferably a wet oxide film on the silicon surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばマイクロマシン
やセンサーなどを作製する際に有用なシリコンウエハ等
のシリコン単結晶体同士を接合する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining silicon single crystal bodies such as silicon wafers, which are useful when manufacturing, for example, a micromachine or a sensor.

【0002】[0002]

【従来の技術】従来より、マイクロマシンやSOI(Si
licon On Insulator)等の製作に有用なことから、シリ
コンウエハ同士を接合することが行われており、このよ
うなシリコンウエハの接合方法としては、直接接合法や
陽極接合法等が採用されている。
2. Description of the Related Art Conventionally, micromachines and SOI (Si (Si
Licon On Insulator) etc. are useful for bonding silicon wafers to each other, and direct bonding method or anodic bonding method is adopted as the bonding method for such silicon wafers. .

【0003】直接接合法は、極めて平滑な表面を持つシ
リコンウエハ同士を重ね合わせ、界面の原子間力で結合
を生じさせるもので、シリコンウエハ同士を直接あるい
はSiO2 を介して接合することができる。この原理
は、表面に水酸基のある状態の平滑なシリコンウエハ同
士を重ねると水素結合を生じ、これを高温にすると界面
で脱水縮合し、更に残った酸素が拡散してシリコン同士
の結合に至るものと考えられている。
The direct bonding method is a method in which silicon wafers having extremely smooth surfaces are superposed on each other and a bond is generated by an interatomic force at the interface, and the silicon wafers can be bonded directly or via SiO 2. . The principle is that when smooth silicon wafers with hydroxyl groups on the surface are piled up, hydrogen bonds are generated, and when they are heated to a high temperature, they are dehydrated and condensed at the interface, and the remaining oxygen diffuses and bonds to silicon. It is believed that.

【0004】陽極接合法は、シリコンウエハとガラスと
の平滑な面同士を合わせ、300〜400℃に加熱して
ガラス側に500ボルト程度の負電荷を印加すると、ガ
ラスとシリコンの間で大きな静電引力が生じ、界面で化
学結合に至るものである。シリコンウエハ同士を接合す
る場合には、ウエット熱酸化法により1μm程度の厚さ
の酸化シリコン膜を形成したシリコンウエハを用い、そ
れらのシリコンウエハ同士の酸化シリコン膜を合わせた
状態で850℃程度に加熱すると共に30ボルト程度の
電圧を印加し、これによって静電的に接合する方法があ
る。また、パイレックス系のガラスを介して接合する方
法があり、これにはシリコンウエハ間にパイレックスガ
ラス薄膜を挟む方法や、RFスパッタリングにより低融
点ガラスをシリコンウエハに1〜5μmの厚さで形成
し、絶縁破壊に至らない数十ボルト程度の電圧を印加し
て50℃程度以上の温度で接合する方法がある。
In the anodic bonding method, smooth surfaces of a silicon wafer and glass are brought together, heated to 300 to 400 ° C., and a negative charge of about 500 V is applied to the glass side. An electric attractive force is generated, which leads to a chemical bond at the interface. When bonding silicon wafers to each other, a silicon wafer on which a silicon oxide film having a thickness of about 1 μm is formed by a wet thermal oxidation method is used, and the silicon oxide films of the silicon wafers are combined to about 850 ° C. There is a method of heating and applying a voltage of about 30 V to electrostatically bond it. In addition, there is a method of bonding via a Pyrex glass, and a method of sandwiching a Pyrex glass thin film between silicon wafers, or a low melting point glass is formed on the silicon wafer by RF sputtering to a thickness of 1 to 5 μm. There is a method of applying a voltage of about several tens of volts which does not cause dielectric breakdown and joining at a temperature of about 50 ° C. or higher.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た方法には何れも大きな問題点を有するものである。ま
ず、直接接合法は、十分な接合強度を得るには400〜
1000℃程度の高温での熱処理を必要とするため、プ
ロセスの途中ないしは最終段階に近い工程で接合する必
要があるマイクロマシンやセンサーの製作工程では素子
の劣化を招くおそれがある。
However, each of the above-mentioned methods has a serious problem. First of all, the direct bonding method is 400 to 400% to obtain sufficient bonding strength.
Since heat treatment at a high temperature of about 1000 ° C. is required, element deterioration may occur in the manufacturing process of a micromachine or a sensor that requires bonding in the middle of the process or in a process close to the final stage.

【0006】また、陽極接合法の中の酸化シリコン膜を
介して接合を行う方法では、850℃程度の加熱が必要
であるので、直接接合法と同様の問題がある。一方、R
Fスパッタリングによる低融点ガラスを介する陽極接合
法では、50℃程度の温度で接合ができるが、接合強度
が30kgf/cm2 程度であり、接合強度が低いとい
う問題があるほか、パイレックス系のガラスを介しての
接合はナトリウム等の汚染を引き起こすという問題があ
る。なお、この方法は、室温では接合することはできな
いと報告されている。
In addition, the method of bonding through the silicon oxide film in the anodic bonding method requires heating at about 850 ° C., and therefore has the same problem as the direct bonding method. On the other hand, R
In the anodic bonding method through a low melting point glass by F sputtering, bonding can be performed at a temperature of about 50 ° C., but the bonding strength is about 30 kgf / cm 2 and there is a problem that the bonding strength is low, and Pyrex glass is used. There is a problem that the joining through causes contamination such as sodium. It is reported that this method cannot bond at room temperature.

【0007】シリコンウエハ同士の接合では、残留応力
の発生防止や素子の劣化を防止する観点から、できる限
り低い温度で接合できることが求められており、また、
接合後ポリシング工程などがある場合にはこれに耐える
強度が必要であるので、できる限り接合強度は高いこと
が望ましく、更に汚染を引き起こすガラスは用いないほ
うが望ましいが、従来、このような要望を満足できる接
合方法は存在しなかった。
In the joining of silicon wafers, it is required that the joining can be performed at a temperature as low as possible from the viewpoint of preventing the occurrence of residual stress and preventing the deterioration of elements.
If there is a polishing step after joining, etc., it is necessary to have strength that can withstand this, so it is desirable that the joining strength be as high as possible, and it is desirable not to use glass that causes contamination, but conventionally, such requirements were satisfied. There was no possible joining method.

【0008】本発明は、上記要望に鑑みなされたもの
で、ガラスを用いなくても比較的低い温度で接合可能で
あると共に、接合強度が高いシリコン―シリコン接合方
法を提供することを目的とする。
The present invention has been made in view of the above demands, and an object of the present invention is to provide a silicon-silicon bonding method capable of bonding at a relatively low temperature without using glass and having high bonding strength. .

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するため、下記のシリコン―シリコン接合方法を提供
する。 (1)一のシリコン単結晶体の接合すべき一面と他のシ
リコン単結晶体の接合すべき一面とを該両面の一方又は
双方に形成された絶縁膜を介して密着させ、これらのシ
リコン単結晶体間に高電圧を印加して該絶縁膜に絶縁破
壊を生ぜしめることにより両シリコン単結晶体の該両面
相互を接合することを特徴とするシリコン―シリコン接
合方法。 (2)絶縁膜がシリコン単結晶体の表面を熱酸化したシ
リコン酸化膜である上記(1)記載のシリコン―シリコ
ン接合方法。 (3)絶縁破壊後、シリコン単結晶体間に小電流を所定
時間通じさせる上記(1)又は(2)記載のシリコン―
シリコン接合方法。 (4)大気圧よりも減圧の雰囲気中で行う上記(1)乃
至(3)記載のシリコン―シリコン接合方法。
In order to achieve the above-mentioned object, the present invention provides the following silicon-silicon bonding method. (1) One surface of one silicon single crystal body to be bonded and one surface of another silicon single crystal body to be bonded are brought into close contact with each other through an insulating film formed on one or both of the both surfaces, and these silicon single crystals are bonded to each other. A silicon-silicon bonding method, characterized in that a high voltage is applied between crystal bodies to cause dielectric breakdown in the insulating film to bond the both surfaces of both silicon single crystal bodies. (2) The silicon-silicon bonding method according to (1), wherein the insulating film is a silicon oxide film obtained by thermally oxidizing the surface of a silicon single crystal. (3) The silicon according to (1) or (2) above, wherein a small current is passed between the silicon single crystals for a predetermined time after dielectric breakdown.
Silicon bonding method. (4) The silicon-silicon bonding method according to the above (1) to (3), which is performed in an atmosphere at a pressure lower than atmospheric pressure.

【0010】[0010]

【作用】本発明のシリコン―シリコン接合方法は、シリ
コンウエハ等のシリコン単結晶体相互の面をシリコン酸
化膜等の絶縁膜を介して密着させ、これらのシリコン単
結晶体間に高電圧を印加して該シリコン酸化膜に絶縁破
壊を生ぜしめて接合するもので、従来の接合方法と原理
が異なり、絶縁破壊により接合することに特徴がある。
According to the silicon-silicon bonding method of the present invention, the surfaces of silicon single crystals such as silicon wafers are brought into close contact with each other via an insulating film such as a silicon oxide film, and a high voltage is applied between these silicon single crystals. Then, the silicon oxide film is bonded by causing dielectric breakdown, and the principle is different from the conventional bonding method, and it is characterized by the bonding by dielectric breakdown.

【0011】即ち、従来の陽極接合法は、シリコンウエ
ハ同士をガラスなどの絶縁膜で電気的に絶縁し、絶縁破
壊に至らない電圧を印加することで接合するものである
が、本発明は、これとは本質的に異なり、絶縁破壊によ
り両シリコン単結晶体相互を導通せしめるものである。
このような絶縁破壊によりシリコンウエハ同士を接合で
きる理由は明らかではないが、意外にもシリコンウエハ
全面に亘って強固に接合することができる。また、接合
時の温度は200℃以下でも十分に行うことができ、し
かも、ガラスを使用しなくてもよいので、ナトリウムに
よる汚染を防止することができる。
That is, in the conventional anodic bonding method, silicon wafers are electrically insulated from each other by an insulating film such as glass, and a voltage which does not cause dielectric breakdown is applied to bond the silicon wafers. In essence, this is different in that both silicon single crystals are electrically connected to each other by dielectric breakdown.
Although the reason why the silicon wafers can be bonded to each other by such dielectric breakdown is not clear, surprisingly, the silicon wafers can be firmly bonded over the entire surface. Further, the temperature at the time of joining can be sufficiently performed even at 200 ° C. or lower, and since glass does not have to be used, contamination with sodium can be prevented.

【0012】[0012]

【実施例】以下、本発明のシリコン―シリコン接合方法
について、具体的に説明する。本発明の接合方法はシリ
コン単結晶体相互の面を接合するものであるが、この場
合、両シリコン単結晶体の接合すべき面に予め絶縁膜を
形成しておく必要がある。なお、接合すべき面は平滑面
とすることが望ましい。絶縁膜は、一方のシリコン単結
晶体の一平滑面と他方のシリコン単結晶体の一平滑面の
両方に形成しておいてもよく、あるいは図1(A)に示
すように、シリコンウエハ等の一のシリコン単結晶体2
の一方の平滑面に絶縁膜3を形成し、他方のシリコンウ
エハ等のシリコン単結晶体4の平滑面4aには絶縁膜を
形成しないようにしてもよい。
EXAMPLES The silicon-silicon bonding method of the present invention will be specifically described below. According to the bonding method of the present invention, the surfaces of the silicon single crystals are bonded to each other. In this case, it is necessary to form an insulating film in advance on the surfaces to be bonded of both silicon single crystals. The surface to be joined is preferably a smooth surface. The insulating film may be formed on both one smooth surface of one silicon single crystal body and one smooth surface of the other silicon single crystal body, or as shown in FIG. 1A, a silicon wafer or the like. No. 1 silicon single crystal body 2
The insulating film 3 may be formed on one of the smooth surfaces and the insulating film may not be formed on the smooth surface 4a of the silicon single crystal body 4 such as the other silicon wafer.

【0013】絶縁膜としては、シリコン単結晶体表面を
ウエット酸化したシリコン酸化膜が望ましい。また、C
VD等により堆積したシリコン酸化膜でもよい。ガラス
膜でもよいが、ナトリウムの汚染のおそれがあるので好
ましくない。シリコン単結晶体間に挟まれる絶縁膜の厚
さ(接合すべき両面に形成した場合はこれらの合計)は
特に制限されないが、自然酸化膜では数ボルト程度で電
流が通じて接合できないことから、下限は10nm程
度、上限は数μm程度まで可能であるが、好ましい範囲
は100〜1000nm程度である。
The insulating film is preferably a silicon oxide film obtained by wet-oxidizing the surface of the silicon single crystal. Also, C
It may be a silicon oxide film deposited by VD or the like. A glass film may be used, but it is not preferable because it may be contaminated with sodium. The thickness of the insulating film sandwiched between the silicon single crystal bodies (the total of these when formed on both surfaces to be bonded) is not particularly limited, but with a natural oxide film it is impossible to bond because a current flows through it in about several volts. The lower limit can be about 10 nm and the upper limit can be up to several μm, but a preferable range is about 100 to 1000 nm.

【0014】このようなシリコン単結晶体を、図1
(B)に示すように、絶縁膜3を間に挟むようにして両
シリコン単結晶体2、4の平面を密着させる。なお、密
着させるときに特に圧力を加えなくとも十分な強度で接
合することができる。これは、電圧の印加によりシリコ
ン単結晶体相互の密着面に大きな静電引力が生じて強く
密着すると考えられ、密着面全体に亘って接合できる原
因であると考えられる。
Such a silicon single crystal is shown in FIG.
As shown in (B), the flat surfaces of both silicon single crystal bodies 2 and 4 are brought into close contact with each other with the insulating film 3 interposed therebetween. It should be noted that the bonding can be performed with sufficient strength without applying any particular pressure when closely contacting. It is considered that this is because a large electrostatic attractive force is generated on the contact surfaces of the silicon single crystal bodies due to the application of the voltage, resulting in strong adhesion, and it is considered that this is the reason why the entire contact surfaces can be bonded.

【0015】接合時の雰囲気は真空状態とすることが望
ましい。空気などのガスが存在すると密着面に気泡が生
じて接合が不均一になるおそれがある。また、接合すべ
き密着面の温度は、特に高温に加熱する必要はなく、比
較的低温でよい。具体的には150〜500℃程度が好
ましいが、これ以下の温度でも十分に接合することがで
き、更にこの範囲を超える温度でも可能である。
It is desirable that the atmosphere at the time of joining is a vacuum state. If a gas such as air is present, bubbles may be generated on the contact surface, resulting in non-uniform bonding. The temperature of the contact surfaces to be joined does not need to be heated to a particularly high temperature and may be a relatively low temperature. Specifically, it is preferably about 150 to 500 ° C., but sufficient bonding can be achieved at a temperature below this range, and a temperature exceeding this range is also possible.

【0016】両シリコン単結晶体の接合すべき面を密着
させた状態で、図1(B)に示すように、高電圧を印加
する。この場合、陽極接合と異なり、いずれかのシリコ
ン単結晶体に対して正又は負電圧を印加して絶縁膜に高
電圧をかければよい。図2に示すように、印加電圧を増
加させていくと絶縁膜の種類や厚さ等に応じた電圧で絶
縁破壊が生じる。この時、電流値は急上昇するので、装
置を保護するために、図2に示すように印加電圧を低下
させ、低電圧で電流値を0.1mA以上に保ったまま数
分から数十分程度保持することが好ましい。絶縁破壊を
生じさせる電圧は、一般に数十ボルト〜数百ボルト程度
である。逆に言えば絶縁膜の厚さは絶縁破壊電圧がこの
範囲になるようにすることが好ましい。また、絶縁破壊
後の印加電圧は、数〜数十ボルト程度、電流値は0.1
〜10mA程度とすることがよい。
A high voltage is applied as shown in FIG. 1B in a state where the surfaces to be joined of both silicon single crystal bodies are in close contact with each other. In this case, unlike anodic bonding, a positive or negative voltage may be applied to any of the silicon single crystal bodies to apply a high voltage to the insulating film. As shown in FIG. 2, as the applied voltage is increased, dielectric breakdown occurs at a voltage according to the type and thickness of the insulating film. At this time, the current value suddenly rises. Therefore, in order to protect the device, the applied voltage is lowered as shown in FIG. 2, and the current value is kept at 0.1 mA or more at a low voltage and kept for several minutes to several tens of minutes. Preferably. The voltage that causes dielectric breakdown is generally about several tens to several hundreds of volts. Conversely speaking, the thickness of the insulating film is preferably such that the breakdown voltage is within this range. The applied voltage after the dielectric breakdown is about several to several tens of volts, and the current value is 0.1.
It is preferably about 10 mA.

【0017】このような操作により、図1(C)に示す
ように両シリコン単結晶体2、4相互の密着面が強固に
接合して接合面6が形成され、接合シリコン単結晶体7
を製造することができる。なお、図1(C)では絶縁膜
3が消失しているが、実際には絶縁膜の状態は不明であ
り、今後の研究により明らかになるであろう。
By such an operation, as shown in FIG. 1C, the contact surfaces of the two silicon single crystal bodies 2 and 4 are firmly bonded to each other to form the bonding surface 6, and the bonded silicon single crystal material 7 is formed.
Can be manufactured. Although the insulating film 3 disappears in FIG. 1C, the state of the insulating film is actually unknown and will be clarified by future research.

【0018】以上説明した本発明の接合方法は、陽極接
合法とは全く原理が異なるが、使用する装置は一般の陽
極接合装置をそのまま使用できる。図3にその陽極接合
装置の概略を示す。この装置は、防振台10上に真空チ
ャンバー11と真空チャンバー11の下方に存するXY
Zθ調整ステージ12とが設置されている。真空チャン
バー11内には、接合を行う一方のシリコンウエハ2を
保持する上部静電チャック(陰極)13ともう一方のシ
リコンウエハ4を保持する下部静電チャック14とが所
定距離離間して対向し、上部静電チャック13は真空チ
ャンバーに固定されている。下部静電チャック14は、
下部静電チャック14の下部に密着しこれを加熱するホ
ットプレート15を介してXYZθ調整ステージ12に
支持されており、このXYZθ調整ステージ12で下部
静電チャック14の上下の移動や傾きを調整することが
できる。また、真空チャンバー11には、内部を真空に
するためのターボ真空ポンプ20とロータリーポンプ2
1が配管を介して連結されていると共に、圧力調整用ガ
スを内部に導入する配管がマスフローコントローラ22
を介して接続されている。真空チャンバー11の上には
アライメント用顕微鏡30が設置され、赤外線カメラ3
1とモニター32で上下のウエハの位置合わせを行える
ようになっている。なお、図示していないが、シリコン
ウエハ間に印加する高電圧直流電源が設けられている。
Although the bonding method of the present invention described above is completely different in principle from the anodic bonding method, the apparatus used can be a general anodic bonding apparatus as it is. FIG. 3 shows the outline of the anodic bonding apparatus. This apparatus includes a vacuum chamber 11 on a vibration isolation table 10 and an XY located below the vacuum chamber 11.
A Zθ adjustment stage 12 is installed. In the vacuum chamber 11, an upper electrostatic chuck (cathode) 13 holding one silicon wafer 2 to be bonded and a lower electrostatic chuck 14 holding the other silicon wafer 4 face each other with a predetermined distance therebetween. The upper electrostatic chuck 13 is fixed to the vacuum chamber. The lower electrostatic chuck 14 is
The lower electrostatic chuck 14 is supported by an XYZθ adjusting stage 12 via a hot plate 15 which is in close contact with and heats the lower electrostatic chuck 14, and the XYZθ adjusting stage 12 adjusts the vertical movement and inclination of the lower electrostatic chuck 14. be able to. Further, in the vacuum chamber 11, a turbo vacuum pump 20 and a rotary pump 2 for evacuating the inside are provided.
1 is connected via a pipe, and a pipe for introducing a pressure adjusting gas into the inside is a mass flow controller 22.
Connected through. An alignment microscope 30 is installed on the vacuum chamber 11, and the infrared camera 3
The position of the upper and lower wafers can be aligned with the monitor 1 and the monitor 32. Although not shown, a high voltage DC power supply applied between silicon wafers is provided.

【0019】本発明の接合方法は、平坦なウエハ同士の
接合、あるいは図4(A)に示すように、平坦なウエハ
と凹部を設けたウエハ同士の接合、図4(B)に示すよ
うに、凹部を設けたウエハ相互の凹部を対向させた状態
でのウエハの凸部面同士の接合、図4(C)に示すよう
に、接合面と接合しない面とを交互に形成する接合な
ど、センサーやマイクロマシン等の分野での種々応用が
可能である。 [実施例、比較例] <実施例1>ウエット酸化法で厚さ7800Åのシリコ
ン酸化膜を全面に形成した直径4インチのシリコンウエ
ハとシリコン酸化膜を形成しないベアの直径4インチの
シリコンウエハとを用い、図3に示した陽極接合装置に
設置した。これらのウエハを重ね合わせ、真空中におい
て温度が400℃の条件で、印加電圧800ボルト(一
方のウエハはシリコン酸化膜を介して印加)で絶縁破壊
を起こさせ、絶縁破壊が起こった後、10〜20ボル
ト、約1mA程度の電流を流しながら40分間そのまま
保持した。
According to the bonding method of the present invention, flat wafers are bonded to each other, or, as shown in FIG. 4A, a flat wafer and a wafer having a recess are bonded to each other, and as shown in FIG. 4B. , Bonding of the convex surfaces of the wafers in a state where the concave portions of the wafers provided with the concave portions face each other, bonding in which a bonding surface and a non-bonding surface are alternately formed as shown in FIG. Various applications are possible in the fields of sensors and micromachines. [Examples and Comparative Examples] <Example 1> A silicon wafer having a diameter of 4 inches and a silicon oxide film having a thickness of 7800Å formed on the entire surface by a wet oxidation method, and a silicon wafer having a diameter of 4 inches of a bare wafer having no silicon oxide film formed thereon. Was installed in the anodic bonding apparatus shown in FIG. These wafers are superposed, dielectric breakdown is caused by an applied voltage of 800 V (one wafer is applied via a silicon oxide film) under the condition of a temperature of 400 ° C. in vacuum, and after the dielectric breakdown, 10 It was kept for 40 minutes while applying a current of about 20 V and about 1 mA.

【0020】得られた接合ウエハを図5に示すように一
辺が15mmの正方形に切断した。次いで、図6に示す
ように切断した接合ウエハ7aの両面に接着剤でロッド
Rを接着し、このロッドに上下に引き離す力を与えて、
接合面6が剥がれたときの力を接合強度とした。なお、
接着剤の強度から、約200kgf/cm2 が測定でき
る接合強度の上限で、この値を超えるとロッドと接合ウ
エハとが分離してしまう。
The obtained bonded wafer was cut into a square having a side of 15 mm as shown in FIG. Then, as shown in FIG. 6, a rod R is bonded to both surfaces of the bonded wafer 7a cut by an adhesive, and a force for pulling the rod up and down is applied to the rod R,
The force when the joining surface 6 was peeled off was defined as the joining strength. In addition,
From the strength of the adhesive, about 200 kgf / cm 2 is the upper limit of the bond strength that can be measured. If this value is exceeded, the rod and the bonded wafer will separate.

【0021】接合ウエハの各部の接合強度の値を図5に
併記する。図中>とあるのは、接着剤の部分で剥がれ、
それ以上の接合強度を測定できなかったことを示す。ま
た、接合ウエハのX線トポグラフの写真を図7に示す。
接合ウエハの平均の接合強度は、185kgf/cm2
であった。なお、参考として他の接合方法による接合強
度を示すと、直接接合法による接合強度は、1000℃
の熱処理で約120kgf/cm2 、400℃の熱処理
で約50kgf/cm2 (応用物理 第56巻第3号
(1987))、RFスパッタリングによる低融点ガラ
スを介する陽極接合法(電子情報通信学会論文誌 C―
II Vol.J72―C―II No.2 pp.1
81―183 1989年2月)では、最大で約30k
gf/cm2 である。 <比較例1>実施例1と同様にして密着ウエハに電圧を
印加したが、絶縁破壊を生じる直前で印加電圧の上昇を
止め、電圧の印加を中止した後、シリコンウエハを取り
出してみたところ、全く接合していなかった。 <比較例2>自然酸化膜を生じているウエハ同士を用い
て接合を試みたが、数ボルトで電流が流れ、接合はでき
なかった。 <実施例2>接合温度を170℃とした以外は、実施例
1と同様のウエハ、装置を用い、同様の操作で接合ウエ
ハを得た。この接合ウエハの接合強度分布を図8に示
す。平均の接合強度は124kgf/cm2 であった。 <実施例3>シリコンウエハの一方にのみ酸化膜を厚さ
200nmで形成し、実施例1と同様に接合ウエハを得
た。平均の接合強度は150kgf/cm2 であった。
The values of the bonding strength of each part of the bonded wafer are also shown in FIG. In the figure,> means peeling off at the adhesive part,
This indicates that the bonding strength beyond that could not be measured. Further, a photograph of the X-ray topography of the bonded wafer is shown in FIG.
The average bonding strength of the bonded wafers is 185 kgf / cm 2.
Met. In addition, when showing the bonding strength by other bonding methods as a reference, the bonding strength by the direct bonding method is 1000 ° C.
About 120 kgf / cm 2 at the heat treatment, the heat treatment at 400 ° C. to about 50 kgf / cm 2 (Applied Physics Vol. 56 No. 3 (1987)), anodic bonding via the low-melting glass by RF sputtering (IEICE Magazine C-
II Vol. J72-C-II No. 2 pp. 1
81-183 (February 1989), the maximum is about 30k.
It is gf / cm 2 . <Comparative Example 1> A voltage was applied to the contact wafer in the same manner as in Example 1. However, the increase in the applied voltage was stopped immediately before the dielectric breakdown occurred, the voltage application was stopped, and the silicon wafer was taken out. It wasn't joined at all. <Comparative Example 2> An attempt was made to join wafers having a natural oxide film, but a current flowed at several volts, and joining was not possible. <Example 2> A bonded wafer was obtained by the same operation as in Example 1 except that the bonding temperature was 170 ° C. The bonding strength distribution of this bonded wafer is shown in FIG. The average bonding strength was 124 kgf / cm 2 . <Example 3> An oxide film having a thickness of 200 nm was formed on only one side of a silicon wafer, and a bonded wafer was obtained in the same manner as in Example 1. The average bonding strength was 150 kgf / cm 2 .

【0022】[0022]

【発明の効果】本発明のシリコン―シリコン接合方法
は、比較的低温でシリコン単結晶体相互の強固な接合が
可能である。
According to the silicon-silicon bonding method of the present invention, it is possible to firmly bond silicon single crystal bodies to each other at a relatively low temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリコン―シリコン接合方法の工程を
説明する断面図である。
FIG. 1 is a cross-sectional view illustrating a process of a silicon-silicon bonding method of the present invention.

【図2】接合するシリコン単結晶体間に印加した電圧と
電流を示すグラフである。
FIG. 2 is a graph showing a voltage and a current applied between bonded silicon single crystal bodies.

【図3】本発明の接合方法に使用する装置を示す概略図
である。
FIG. 3 is a schematic view showing an apparatus used in the joining method of the present invention.

【図4】本発明の接合方法の態様を示すもので、(A)
〜(C)はそれぞれ断面図である。
FIG. 4 shows an embodiment of the joining method of the present invention.
(C) is a sectional view, respectively.

【図5】実施例1で得られた接合ウエハの各部分の接合
強度を示す平面図である。
5 is a plan view showing the bonding strength of each part of the bonded wafer obtained in Example 1. FIG.

【図6】実施例で接合強度を測定する方法を示す断面図
である。
FIG. 6 is a cross-sectional view showing a method for measuring the bonding strength in an example.

【図7】実施例1で接合したシリコンウエハのX線トポ
グラフの写真である。
7 is a photograph of an X-ray topograph of the silicon wafer bonded in Example 1. FIG.

【図8】実施例2で得られた接合ウエハの各部分の接合
強度を示す平面図である。
8 is a plan view showing the bonding strength of each part of the bonded wafer obtained in Example 2. FIG.

【符号の説明】[Explanation of symbols]

2 一の単結晶体 3 絶縁膜 4 他の単結晶体 6 接合面 7 接合体 2 One single crystal 3 Insulating film 4 Other single crystal 6 Bonding surface 7 Bonding

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一のシリコン単結晶体の接合すべき一面と
他のシリコン単結晶体の接合すべき一面とを該両面の一
方又は双方に形成された絶縁膜を介して密着させ、これ
らのシリコン単結晶体間に高電圧を印加して該絶縁膜に
絶縁破壊を生ぜしめることにより両シリコン単結晶体の
該両面相互を接合することを特徴とするシリコン―シリ
コン接合方法。
1. A single surface of one silicon single crystal body to be bonded and another surface of another silicon single crystal body to be bonded are brought into close contact with each other through an insulating film formed on one or both of the both surfaces. A silicon-silicon bonding method characterized in that a high voltage is applied between silicon single crystal bodies to cause a dielectric breakdown in the insulating film to bond the both surfaces of both silicon single crystal bodies.
【請求項2】絶縁膜がシリコン単結晶体の表面を熱酸化
したシリコン酸化膜である請求項1記載のシリコン―シ
リコン接合方法。
2. The silicon-silicon bonding method according to claim 1, wherein the insulating film is a silicon oxide film obtained by thermally oxidizing the surface of a silicon single crystal.
【請求項3】絶縁破壊後、シリコン単結晶体間に小電流
を所定時間通じさせる請求項1又は2記載のシリコン―
シリコン接合方法。
3. The silicon according to claim 1, wherein a small current is passed between the silicon single crystal bodies for a predetermined time after the dielectric breakdown.
Silicon bonding method.
【請求項4】大気圧よりも減圧の雰囲気中で行う請求項
1乃至3記載のシリコン―シリコン接合方法。
4. The silicon-silicon bonding method according to claim 1, wherein the silicon-silicon bonding method is performed in an atmosphere at a pressure lower than atmospheric pressure.
JP2464495A 1995-01-19 1995-01-19 Joining of silicon to silicon Withdrawn JPH08199118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2464495A JPH08199118A (en) 1995-01-19 1995-01-19 Joining of silicon to silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2464495A JPH08199118A (en) 1995-01-19 1995-01-19 Joining of silicon to silicon

Publications (1)

Publication Number Publication Date
JPH08199118A true JPH08199118A (en) 1996-08-06

Family

ID=12143856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2464495A Withdrawn JPH08199118A (en) 1995-01-19 1995-01-19 Joining of silicon to silicon

Country Status (1)

Country Link
JP (1) JPH08199118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049450A (en) * 2009-08-28 2011-03-10 Nikon Corp Alignment device, substrate bonding device, and method of manufacturing multilayer semiconductor device
JP2012231063A (en) * 2011-04-27 2012-11-22 Nikon Corp Substrate bonding apparatus, substrate bonding method, and overlapped substrate
TWI741988B (en) * 2015-07-31 2021-10-11 日商新力股份有限公司 Stacked lens structure, method of manufacturing the same, and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049450A (en) * 2009-08-28 2011-03-10 Nikon Corp Alignment device, substrate bonding device, and method of manufacturing multilayer semiconductor device
JP2012231063A (en) * 2011-04-27 2012-11-22 Nikon Corp Substrate bonding apparatus, substrate bonding method, and overlapped substrate
TWI741988B (en) * 2015-07-31 2021-10-11 日商新力股份有限公司 Stacked lens structure, method of manufacturing the same, and electronic apparatus
US11342371B2 (en) 2015-07-31 2022-05-24 Sony Corporation Stacked lens structure, method of manufacturing the same, and electronic apparatus

Similar Documents

Publication Publication Date Title
US7140102B2 (en) Electrode sandwich separation
US7807509B2 (en) Anodically bonded ultra-high-vacuum cell
JP2638649B2 (en) Electrostatic chuck
TW201038508A (en) Ceramic-metal junction and method of fabricating same
US6720237B2 (en) Method for manufacturing a semiconductor film
IL90122A (en) Optically flat surfaces on processed silicon wafers
WO2007091639A1 (en) Method for manufacturing soi substrate
JP2001189378A (en) Wafer-chucking heating apparatus
Dragoi et al. Adhesive wafer bonding for MEMS applications
KR20150013556A (en) Process for bonding in an atmosphere of a gas having a negative joule-thomson coefficient
JPH0897110A (en) Bonding device
JPH0513558A (en) Wafer heating device and its manufacture
US20020134503A1 (en) Silicon wafers bonded to insulator substrates by low viscosity epoxy wicking
JPH08199118A (en) Joining of silicon to silicon
JPH10116887A (en) Method and apparatus for cooling workpiece
JPH0256918A (en) Direct joint of semiconductor wafer
JP2846994B2 (en) Semiconductor wafer bonding method
Wei et al. Role of bonding temperature and voltage in silicon-to-glass anodic bonding
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JPH1187799A (en) Magnetoresistive element and manufacture thereof
JPH04300136A (en) Electrostatic chuck and its manufacture
JP3824681B2 (en) Anodic bonding equipment
JP2576163B2 (en) Plate bonding method
US20040234736A1 (en) Control of stress in metal films by controlling the temperature during film deposition
JP2602003B2 (en) Silicon crystal joining method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402