JPH08198699A - Method for growing single crystal and apparatus for producing single crystal - Google Patents

Method for growing single crystal and apparatus for producing single crystal

Info

Publication number
JPH08198699A
JPH08198699A JP2086795A JP2086795A JPH08198699A JP H08198699 A JPH08198699 A JP H08198699A JP 2086795 A JP2086795 A JP 2086795A JP 2086795 A JP2086795 A JP 2086795A JP H08198699 A JPH08198699 A JP H08198699A
Authority
JP
Japan
Prior art keywords
crystal
crucible
single crystal
raw material
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2086795A
Other languages
Japanese (ja)
Inventor
Yuji Ohashi
勇司 大橋
Hiromasa Yamamoto
裕正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2086795A priority Critical patent/JPH08198699A/en
Publication of JPH08198699A publication Critical patent/JPH08198699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To obtain a single crystal which is small in transition density in the crystal and is long-sized by controlling the height of a heat retaining cylinder under specific conditions at the time of growing the single crystal by an LEC method. CONSTITUTION: The height of the heat retaining cylinder is adjusted in the following manner in the growth of the single crystal by the LEC method. Namely, the top end of the inside wall of the heat retaining cylinder 3 is so set as to be made higher than the conical plane (shown by a dotted line) regulated by the solid-liquid boundary between the raw material melt 5 in a crucible and a pulled up crystal and the top end of the crucible 10 at the time of starting the growth of the straight cylindrical part of the crystal 4 and to be made lower than the conical plane regulated by the solid-liquid boundary between the raw material melt in the crucible and the pulled up crystal and the top end of the crucible at the time of ending the growth of the straight cylindrical part of the crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単結晶成長方法及び単結
晶製造装置に関し、特に液体封止チョクラルスキー(LE
C)法により化合物半導体単結晶を製造するための方法及
び製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal growth method and a single crystal manufacturing apparatus, and more particularly to a liquid sealed Czochralski (LE).
The present invention relates to a method and a manufacturing apparatus for manufacturing a compound semiconductor single crystal by the method C).

【0002】[0002]

【従来の技術】GaAsやInPなどのIII−V族化合物半導体
の単結晶を製造する方法として、原料と封止剤とを入れ
たるつぼを加熱し、原料融液表面に種結晶を接触させて
回転させながら徐々に引き上げることにより単結晶を育
成する液体封止チョクラルスキー(LEC)法が知られてい
る。
2. Description of the Related Art As a method for producing a single crystal of a III-V group compound semiconductor such as GaAs or InP, a crucible containing a raw material and a sealant is heated to bring a seed crystal into contact with the surface of the raw material melt. A liquid-encapsulated Czochralski (LEC) method is known in which a single crystal is grown by gradually pulling it while rotating it.

【0003】液体封止チョクラルスキー(LEC)法におけ
る単結晶の成長において、単結晶化や双晶化及び転位等
の結晶欠陥の発生を抑制して単結晶を安定に形成するに
は、引上げ結晶と原料融液の固液界面の温度勾配やその
形状が重要なパラメーターとなる。引上げ結晶と原料融
液の固液界面形状は、下方に向かって凸形状になってい
る必要があり、固液界面が逆に上方に向かって凸形状と
なっている場合は多結晶の発生の原因となる。また、引
上げ結晶中の温度勾配が大き過ぎると結晶中の転位密度
が大きくなり、結晶の固液界面付近の温度勾配が小さ過
ぎると、GaAs、InP等の化合物半導体においては引上げ
結晶表面の分解や固液界面形状が悪化し易い。
In the growth of a single crystal in the liquid-encapsulated Czochralski (LEC) method, in order to suppress the occurrence of crystal defects such as single crystallization, twinning, and dislocation, and to stably form the single crystal, the pull-up method is used. The temperature gradient at the solid-liquid interface between the crystal and the raw material melt and its shape are important parameters. The solid-liquid interface shape between the pulled crystal and the raw material melt must be convex downward, and if the solid-liquid interface is convex upward upward, polycrystal formation does not occur. Cause. Further, if the temperature gradient in the pulled crystal is too large, the dislocation density in the crystal becomes large, and if the temperature gradient near the solid-liquid interface of the crystal is too small, decomposition of the pulled crystal surface in compound semiconductors such as GaAs and InP and The solid-liquid interface shape easily deteriorates.

【0004】[0004]

【発明が解決しようとする課題】LEC法において単結晶
を長尺化しようとすると、炉、結晶、融液内部の温度分
布が複雑となり、これらのパラメータ−の制御が非常に
困難となり、良質の長尺の単結晶が得られないという問
題点がある。そこで、本発明は上記問題点を解決するた
めになされたもので、LEC法により結晶中の転位密度が
小さく、かつ長尺の単結晶を製造するのに適した単結晶
の成長方法および単結晶製造装置を提供することにあ
る。
When trying to elongate a single crystal in the LEC method, the temperature distribution inside the furnace, the crystal and the melt becomes complicated, and it becomes very difficult to control these parameters, so that a high quality is obtained. There is a problem that a long single crystal cannot be obtained. Therefore, the present invention has been made to solve the above problems, the dislocation density in the crystal is small by the LEC method, and a single crystal growth method and a single crystal suitable for producing a long single crystal To provide a manufacturing apparatus.

【0005】[0005]

【課題を解決するための手段及び及び作用】本発明者ら
は上記目的を達成するために保温筒の高さに着目し検討
した。単結晶製造装置の保温能力を満たし、また結晶内
温度勾配が大きくなり過ぎず良好な下凸状の引上げ結晶
と原料融液の固液界面形状を保つためには、保温筒の高
さが必要であるが、その一方結晶内温度勾配が小さくな
り過ぎずかつ良好な下凸状の引上げ結晶と原料融液の固
液界面形状を保つためには、特に結晶の成長界面付近と
高圧容器内壁との間の輻射伝熱を保温筒が阻害しないよ
うにする必要がある。その結果、単結晶製造装置の保温
能力を満たし、また結晶中の温度勾配が大きくなり過ぎ
ず、良好な下凸状の引上げ結晶と原料融液の固液界面形
状が得られる適切な保温筒の高さを見出した。
MEANS FOR SOLVING THE PROBLEMS AND ACTIONS The present inventors have studied by paying attention to the height of the heat insulating cylinder in order to achieve the above object. In order to satisfy the heat retention capacity of the single crystal production equipment and to maintain a good downward convex convex crystal and the solid-liquid interface shape of the raw material melt without the temperature gradient in the crystal becoming too large, the height of the heat retention cylinder is required. However, on the other hand, in order to keep the temperature gradient in the crystal not too small and to maintain a good solid-liquid interface shape between the pulling crystal and the raw material melt, the vicinity of the growth interface of the crystal and the inner wall of the high-pressure vessel It is necessary to prevent the heat insulation tube from interfering with the radiant heat transfer between the two. As a result, the heat-retaining capacity of the single crystal production apparatus is satisfied, and the temperature gradient in the crystal does not become too large. Found the height.

【0006】すなわち、本発明は原料と封止剤を入れた
るつぼを高圧容器内に設置し、該高圧容器内において保
温筒によって外部を囲まれたヒーターにより加熱して前
記原料及び前記封止剤を溶解し、この原料融液表面に種
結晶を接触させ回転させながらこれを徐々に引き上げる
ことにより単結晶を育成するにあたり、前記保温筒の内
壁の上端を、結晶直胴部育成の開始時においては、るつ
ぼ内原料融液と引上げ結晶との固液境界と、るつぼ上端
とで規定される円錐面よりも高く、結晶直胴部育成終了
時においては、るつぼ内原料融液と引上げ結晶の固液境
界と、るつぼ上端とで規定される円錐面よりも低くなる
ようにすることを特徴とする単結晶成長方法、及び原料
融液と封止剤を収容するるつぼと、前記るつぼを支持す
る下軸と、前記るつぼの周囲に配置された加熱ヒータ
と、前記融液から単結晶を引き上げるために下端に種結
晶が取り付けられ回転昇降可能な上軸と、前記ヒータの
周囲に配置された保温筒とを備える単結晶製造装置にお
いて、前記保温筒の外壁の高さが内壁の高さより高いこ
とを特徴とする単結晶製造装置である。更には、この保
温筒の上端が多段状となっていることを特徴とする単結
晶製造装置である。
That is, according to the present invention, a crucible containing a raw material and a sealant is installed in a high-pressure container, and the raw material and the sealant are heated by a heater surrounded by a heat insulating cylinder in the high-pressure container. To grow a single crystal by gradually pulling it while contacting and rotating a seed crystal on the surface of the raw material melt, the upper end of the inner wall of the heat-retaining cylinder, at the start of crystal straight body portion growth. Is higher than the conical surface defined by the solid-liquid boundary between the raw material melt in the crucible and the pulled crystal, and the conical surface defined by the upper end of the crucible. A single crystal growth method characterized in that it is lower than a conical surface defined by a liquid boundary and an upper end of the crucible, and a crucible for containing a raw material melt and a sealant, and a lower portion for supporting the crucible. Axis and above A heater provided around the heater, an upper shaft having a seed crystal attached to a lower end thereof for pulling a single crystal out of the melt and capable of rotating up and down, and a heat-retaining tube arranged around the heater. In the crystal manufacturing apparatus, the height of the outer wall of the heat insulating cylinder is higher than the height of the inner wall of the heat insulating cylinder. Furthermore, in the single crystal manufacturing apparatus, the upper end of the heat insulating cylinder is multi-staged.

【0007】[0007]

【実施例】LEC法により単結晶の成長を行う装置の概略
図を図1に示す。原料と封止剤の入ったるつぼ10が配置
された引上げ炉内部は20気圧のような高圧に加圧される
ため、炉を構成する容器2はステンレス等の金属製水冷
高圧ジャケット構造のものが使用される。そして、容器
2は、基台部2A、胴体部2B、蓋台部2Cから構成されてい
る。また、炉内部には原料及び封止剤を融解するための
ヒーター14が設けられ、このヒーター14によりるつぼ10
が育成結晶の融点以上に加熱される。一方、炉を構成す
る容器は高温から保護しなければならないため、ヒータ
ー14の周囲には保温筒3が配置され、かつ容器周囲には
冷却水が流されている。るつぼ10の上方からは、下端に
種結晶6を有する引上げ軸7が回転可能かつ上下動可能
に垂下されている。この引上げ軸7には引上げ軸の変位
量を検知する変位センサー8、結晶の直径の制御に用い
られるロードセルなどの重量センサー9が取り付けられ
ている。るつぼ10は回転可能で上下動可能なるつぼ軸11
により支持され、るつぼ軸11にはるつぼ軸11の変位量を
測定する変位センサー12が取り付けられている。炉内部
の雰囲気はガス供給装置16、ガス排気装置17及び圧力セ
ンサ18により制御できる。
EXAMPLE FIG. 1 shows a schematic view of an apparatus for growing a single crystal by the LEC method. Since the inside of the pulling furnace in which the crucible 10 containing the raw material and the sealant is placed is pressurized to a high pressure such as 20 atm, the vessel 2 constituting the furnace should have a water-cooled high pressure jacket structure made of metal such as stainless steel. used. The container 2 is composed of a base portion 2A, a body portion 2B and a lid base portion 2C. Further, a heater 14 for melting the raw material and the sealant is provided inside the furnace, and the heater 14 allows the crucible 10 to be melted.
Is heated above the melting point of the grown crystal. On the other hand, since the container constituting the furnace must be protected from high temperatures, the heat insulating cylinder 3 is arranged around the heater 14 and cooling water is flown around the container. From above the crucible 10, a pulling shaft 7 having a seed crystal 6 at its lower end is rotatably and vertically movable. A displacement sensor 8 for detecting the amount of displacement of the pulling shaft and a weight sensor 9 such as a load cell used for controlling the diameter of the crystal are attached to the pulling shaft 7. Crucible 10 is a crucible shaft 11 that can rotate and move up and down.
The crucible shaft 11 is supported by a displacement sensor 12 for measuring the amount of displacement of the crucible shaft 11. The atmosphere inside the furnace can be controlled by the gas supply device 16, the gas exhaust device 17, and the pressure sensor 18.

【0008】まず、化合物半導体単結晶の原料と封止剤
をいれたるつぼ10を炉内にセットし、炉内の空気を真空
ポンプ(図中では省略)で排気した後、不活性ガスを炉
内に導入し、数十気圧の圧力をかける。その後、ヒータ
ー14に給電してるつぼ10を加熱し、るつぼ内の封止剤13
と原料を融解させる。それから、炉内温度を所定の温度
分布(結晶と融液の固液界面形状が下方に向かって凸形
状となるような温度環境)となるようにヒーター14の電
力を制御しながら種結晶を原料融液5に接触させ、生成
する単結晶とるつぼとを互いに逆方向あるいは同方向に
回転させながら徐々に結晶の引上げを行う。
First, a crucible 10 containing a raw material of a compound semiconductor single crystal and a sealant is set in a furnace, and the air in the furnace is exhausted by a vacuum pump (not shown in the figure), and then an inert gas is supplied to the furnace. It is introduced inside and pressure of several tens of atmosphere is applied. After that, power is supplied to the heater 14 to heat the crucible 10, and the sealing agent 13 in the crucible 13 is heated.
And melt the raw material. Then, the seed crystal is used as a raw material while controlling the electric power of the heater 14 so that the furnace temperature has a predetermined temperature distribution (a temperature environment in which the solid-liquid interface shape between the crystal and the melt is convex downward). The single crystal and the crucible to be formed are brought into contact with the melt 5 and the crucible is gradually pulled up while rotating in the opposite direction or the same direction.

【0009】育成単結晶は、単結晶の径が小さくその
径が増大していく過程(結晶肩部育成)、単結晶の径が
ある大きさに達し結晶径は一定に保たれる過程(結晶直
胴部育成)、最後に結晶径が減少していく過程(結晶テ
ール部育成)を経る。それぞれの段階に応じて、るつぼ
の回転数や結晶の回転数などは制御される。本発明で
は、結晶肩部育成後結晶直胴部育成開始時において、図
2(a)に示すように保温筒3の内壁の高さを引上げ結晶
4と原料融液5の固液境界とるつぼ10上端とで規定され
る円錐面よりも高く、かつ、結晶直胴部育成終了時にお
いては図2(b)に示すように保温筒3の内壁の高さを引
上げ結晶4と原料融液5の固液境界とるつぼ10上端とで
規定される円錐面よりも低くなるように単結晶の育成を
行う。保温筒3の内壁の高さが、結晶直胴部育成開始時
において、引上げ結晶4と原料融液5の固液境界とるつ
ぼ10上端とで規定される円錐面よりも低いと、結晶内の
温度勾配が過大になり転位密度が増加する。また、保温
性が悪く、ヒータ電力が大きくなる。保温筒3の内壁の
高さが、結晶直胴部育成終了時において、引上げ結晶4
と原料融液5の固液境界とるつぼ10上端とで規定される
円錐面よりも高いと、結晶内の温度勾配が小さくなり、
固液界面形状が悪化する。また育成単結晶の熱分解が激
しくなり好ましくない。尚、引上げ結晶4と原料融液5
の固液境界とるつぼ上端で規定される円錐面とは、図4
に示したような、引上げ結晶4と原料融液5と封止剤13
の固液境界の3重点とるつぼ上端とを結んだ線で規定さ
れる円錐面である。
The grown single crystal is a process in which the diameter of the single crystal is small and increases (crystal shoulder growth), and a process in which the diameter of the single crystal reaches a certain size and the crystal diameter is kept constant (crystal The straight body portion is grown), and finally the crystal diameter is reduced (the crystal tail portion is grown). The number of rotations of the crucible and the number of rotations of the crystal are controlled according to each stage. In the present invention, at the start of growing the crystal straight body after growing the crystal shoulder, as shown in FIG. 2 (a), the height of the inner wall of the heat insulating cylinder 3 is raised to form a solid-liquid boundary between the crystal 4 and the raw material melt 5. 10 is higher than the conical surface defined by the upper end, and at the end of growing the crystal straight body part, as shown in FIG. 2 (b), the height of the inner wall of the heat retaining tube 3 is increased to increase the crystal 4 and the raw material melt 5. The single crystal is grown so that it becomes lower than the conical surface defined by the solid-liquid boundary and the upper end of the crucible 10. If the height of the inner wall of the heat-retaining cylinder 3 is lower than the conical surface defined by the solid-liquid boundary between the pulled crystal 4 and the raw material melt 5 and the upper end of the crucible 10 at the start of growing the crystal straight body, The temperature gradient becomes excessive and the dislocation density increases. In addition, the heat retention is poor and the heater power becomes large. The height of the inner wall of the heat insulating cylinder 3 is set so that the crystal 4 pulled up at the end of the growth of the crystal straight body part
If it is higher than the conical surface defined by the solid-liquid boundary of the raw material melt 5 and the upper end of the crucible 10, the temperature gradient in the crystal becomes small,
The solid-liquid interface shape deteriorates. Further, the thermal decomposition of the grown single crystal becomes severe, which is not preferable. The pulled crystal 4 and the raw material melt 5
The conical surface defined by the solid-liquid boundary and the upper end of the crucible is
The pulled crystal 4, the raw material melt 5, and the sealant 13 as shown in FIG.
Is a conical surface defined by the line connecting the three points of the solid-liquid boundary and the upper end of the crucible.

【0010】保温筒は、グラファイト、グラファイトフ
ェルト製の円柱状でその上端は水平になっている(図3
(c))。保温筒の上端は、水平でも構わないが、外壁が
高く内壁低くなるような傾斜がついていた方が、結晶の
成長界面付近と高圧容器内壁との輻射伝熱を保温筒が阻
害することがないため、保温筒の保温性が最大になり好
ましい。この傾斜は、図3(a)のような直線状である方
が好ましいが、加工コスト等難しい場合は図3(b)のよ
うな多段状になっていても構わない。
The heat insulating cylinder is a cylinder made of graphite or graphite felt, and its upper end is horizontal (Fig. 3).
(c)). The upper end of the heat retaining cylinder may be horizontal, but if the slope is such that the outer wall is higher and the inner wall is lower, the heat retaining cylinder does not interfere with radiative heat transfer between the crystal growth interface and the inner wall of the high pressure vessel. Therefore, the heat retaining property of the heat retaining cylinder is maximized, which is preferable. This inclination is preferably linear as shown in FIG. 3 (a), but may be multi-stepped as shown in FIG. 3 (b) when processing costs are difficult.

【0011】単結晶製造装置を用いて、GaAs単結晶の成
長を行った。300mmの径を有するpBN製のるつぼ10内に25
kgの高純度GaAs原料と封止剤13としてB2O3 2.5kgを投入
しセットした後、炉内の空気を真空ポンプ(図中では省
略)で排気し、20atmのArガス雰囲気下とした。その
後、ヒーター14に給電してるつぼ10を加熱し、るつぼ内
の封止剤13と原料を融解させる。それから、炉内温度を
所定の温度分布(結晶と融液の固液界面形状が下方に向
かって凸形状となるような温度環境)となるようにヒー
ター14の電力を制御しながら種結晶を融液に接触させ、
結晶引上軸7を時計回りに6rpmで回転させるとともにる
つぼ軸11を反時計回りに20rpmで回転させ、毎時6〜10mm
の引上速度でもって直径110mmで成長方位<100>のGaAs単
結晶を育成した。
A GaAs single crystal was grown using a single crystal manufacturing apparatus. 25 in a pBN crucible 10 with a diameter of 300 mm
2.5 kg of high-purity GaAs raw material and 2.5 kg of B 2 O 3 as the sealant 13 were set and set, and then the air in the furnace was evacuated by a vacuum pump (not shown in the figure), and the atmosphere was 20 atm of Ar gas. . Then, the crucible 10 is heated by supplying power to the heater 14 to melt the sealant 13 and the raw material in the crucible. Then, the seed crystal is melted while controlling the electric power of the heater 14 so that the furnace temperature has a predetermined temperature distribution (a temperature environment in which the solid-liquid interface shape between the crystal and the melt is convex downward). Contact the liquid,
The crystal pulling shaft 7 is rotated clockwise at 6 rpm, and the crucible shaft 11 is rotated counterclockwise at 20 rpm.
A GaAs single crystal with a diameter of 110 mm and a growth orientation of <100> was grown at a pulling rate of.

【0012】保温筒の内壁の高さが次のようになる条件
で結晶育成を行った。 結晶直胴部育成開始時は固液境界とるつぼ上端とで規
定される円錐面よりも高くし、結晶直胴部育成終了時は
固液境界とるつぼ上端とで規定される円錐面よりも低く
する(結晶育成回数;8回)。 結晶直胴部育成開始時は固液境界とるつぼ上端とで規
定される円錐面よりも高くし、結晶直胴部育成終了時は
固液境界とるつぼ上端とで規定される円錐面よりも高く
する(結晶育成回数;5回)。 結晶直胴部育成開始時の固液境界とるつぼ上端とで規
定される円錐面よりも低くし、結晶直胴部育成終了時は
固液境界とるつぼ上端とで規定される円錐面よりも低く
する(結晶育成回数;5回)。 ここで、結晶直胴部育成開始時は、結晶の肩部形成にお
いて単結晶の直径が110mmとなった時点、結晶直胴部育
成終了時は、原料融液の量が少なくなり温度を上昇させ
て結晶テール部育成開始時(単結晶直径;110mm)であ
る。
Crystals were grown under the condition that the height of the inner wall of the heat insulating cylinder was as follows. At the start of growing the crystal straight body part, it should be higher than the conical surface defined by the solid-liquid boundary and the upper end of the crucible, and at the end of growing the crystal straight body part, lower than the conical surface defined by the solid-liquid boundary and the upper end of the crucible. Yes (number of crystal growth times: 8 times). At the start of growing the crystal straight body, it should be higher than the conical surface defined by the solid-liquid boundary and the upper end of the crucible, and at the end of growing the crystal straight body, higher than the conical surface defined by the upper end of the crucible and the crucible. Yes (number of crystal growth: 5 times). Lower than the conical surface defined by the solid-liquid boundary and the upper end of the crucible at the start of the crystal straight body growth, and lower than the conical surface defined by the solid-liquid boundary and the upper end of the crucible at the end of the crystal straight body growth. Yes (number of crystal growth: 5 times). Here, at the start of growing the crystal straight body part, when the diameter of the single crystal becomes 110 mm in forming the shoulder part of the crystal, at the end of growing the crystal straight body part, the amount of the raw material melt decreases and the temperature is increased. At the start of growing the crystal tail (single crystal diameter; 110 mm).

【0013】その結果、の条件では、得られた全ての
結晶は多結晶化しておらず、直胴部の長さが350〜450mm
の単結晶が得られた。また、これらの結晶の転位密度を
測定したところいずれも1×104〜7×104/cm2であった。
一方、の条件では、得られた全ての結晶は分解が激し
く、また、多結晶が発生しており、単結晶部の長さは10
0〜150mmであった。更に、の条件では、直胴部の長さ
が350〜450mmの単結晶が得られたが転位密度が1×105
2×105/cm2との条件より高くなった。
As a result, under the condition of, all the obtained crystals were not polycrystallized, and the length of the straight body part was 350 to 450 mm.
A single crystal of was obtained. The dislocation densities of these crystals were measured and found to be 1 × 10 4 to 7 × 10 4 / cm 2 .
On the other hand, under the conditions of 1, all the obtained crystals decomposed violently, and polycrystals were generated, and the length of the single crystal part was 10
It was 0 to 150 mm. Furthermore, under the conditions of, a single crystal having a straight body length of 350 to 450 mm was obtained, but the dislocation density was 1 × 10 5 to
It was higher than the condition of 2 × 10 5 / cm 2 .

【0014】このように保温筒の内壁の高さを、結晶直
胴部育成開始時は固液境界とるつぼ上端とで規定される
円錐面よりも高くし、結晶直胴部育成終了時は固液境界
とるつぼ上端とで規定される円錐面よりも低くするよう
な条件で結晶育成を行うことにより、結晶の分解も生じ
ず、転位密度が従来と変わらない長尺の単結晶を成長さ
せることが可能となる。
As described above, the height of the inner wall of the heat retaining tube is set higher than the conical surface defined by the solid-liquid boundary and the upper end of the crucible at the start of growing the crystal straight body portion, and at the end of growing the crystal straight body portion. By growing the crystal under the condition that it is lower than the conical surface defined by the liquid boundary and the upper end of the crucible, it is possible to grow a long single crystal whose dislocation density is the same as before without crystal decomposition. Is possible.

【0015】なお、上記実施例においては、GaAs単結晶
の製造について述べたが、本発明は、GaAs単結晶に限ら
ず、InPやInAsやGaSbなどの他の化合物半導体単結晶の
製造にも適用可能である。
Although the production of GaAs single crystal has been described in the above embodiments, the present invention is not limited to GaAs single crystal and is also applicable to the production of other compound semiconductor single crystals such as InP, InAs and GaSb. It is possible.

【0016】[0016]

【発明の効果】以上説明したように単結晶製造装置1の
保温筒の高さを結晶直胴部育成開始時は固液境界とるつ
ぼ上端とで規定される円錐面よりも高くし、結晶直胴部
育成終了時は固液境界とるつぼ上端とで規定される円錐
面よりも低くなるように規定すれば、結晶内温度勾配は
適度な大きさに、固液界面形状は理想的な下凸状に保た
れ、転位密度が1×105/cm2未満でかつ長尺の単結晶が得
られる。
As described above, the height of the heat-retaining cylinder of the single crystal manufacturing apparatus 1 is set higher than the conical surface defined by the solid-liquid boundary and the upper end of the crucible at the start of growing the crystal straight body, and At the end of growing the body, if the temperature is set to be lower than the conical surface defined by the solid-liquid boundary and the upper end of the crucible, the temperature gradient in the crystal will be an appropriate size and the solid-liquid interface shape will be ideally convex downward. A long single crystal having a dislocation density of less than 1 × 10 5 / cm 2 is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るLEC法の単結晶製造装置の一例の
概略図である。
FIG. 1 is a schematic view of an example of an LEC method single crystal production apparatus according to the present invention.

【図2】保温筒の内壁の高さの範囲を示す概略図であ
る。(a)は結晶直胴部育成開始時、(b)は結晶直胴部育
成終了時を示したものである。
FIG. 2 is a schematic diagram showing a range of height of an inner wall of a heat insulating cylinder. (a) shows the start of growing the crystal straight body part, and (b) shows the end of growing the crystal straight body part.

【図3】(a)、(b)は、本発明の保温筒の上端の例を示
した図であり、(a)はその上端が直線状に傾斜している
もの、(b)はその上端が多段状に傾斜しているものを示
したものである。(c)は、従来の保温筒の上端の例を示
した図であり、その上端は水平となっている。
3 (a) and 3 (b) are diagrams showing an example of the upper end of the heat insulating cylinder of the present invention, FIG. 3 (a) having a linearly inclined upper end, and FIG. It is shown that the upper end is inclined in multiple steps. (c) is the figure which showed the example of the upper end of the conventional heat insulation cylinder, and the upper end is horizontal.

【図4】引上げ結晶4と原料融液5との固液境界とるつ
ぼ上端で規定される円錐面について示した図である。
FIG. 4 is a diagram showing a conical surface defined by a solid-liquid boundary between a pulled crystal 4 and a raw material melt 5 and an upper end of the crucible.

【符号の説明】[Explanation of symbols]

1;単結晶製造装置 2;容器 2A;基台部 2B;胴体部 2C;蓋台部 3;保温筒 4;引上げ結晶 5;原料融液 6;種結晶 7;引上げ軸 8;変位センサー 9;重量センサー 10;るつぼ 11;るつぼ軸 12;変位センサー 13;封止剤 14;ヒーター 15;監視カメラ 16;ガス供給装置 17;ガス排気装置 18;圧力センサー 1; Single crystal manufacturing apparatus 2; Container 2A; Base part 2B; Body part 2C; Lid base part 3; Insulation part 4; Pulling crystal 5; Raw material melt 6; Seed crystal 7; Pulling axis 8; Displacement sensor 9; Weight sensor 10; crucible 11; crucible shaft 12; displacement sensor 13; sealant 14; heater 15; surveillance camera 16; gas supply device 17; gas exhaust device 18; pressure sensor 18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料と封止剤を入れたるつぼを高圧容器
内に設置し、該高圧容器内において保温筒によって外部
を囲まれたヒーターにより加熱して前記原料及び前記封
止剤を溶解し、この原料融液表面に種結晶を接触させ回
転させながらこれを徐々に引き上げることにより単結晶
を育成する方法において、前記保温筒の内壁の上端を、
結晶直胴部育成の開始時においては、るつぼ内原料融液
と引上げ結晶との固液境界と、るつぼ上端とで規定され
る円錐面よりも高く、結晶直胴部育成終了時において
は、るつぼ内原料融液と引上げ結晶との固液境界と、る
つぼ上端とで規定される円錐面よりも低くなるようにす
ることを特徴とする単結晶成長方法。
1. A crucible containing a raw material and a sealant is placed in a high-pressure container, and the raw material and the sealant are melted by heating with a heater surrounded by a heat-retaining cylinder in the high-pressure container. In the method of growing a single crystal by gradually pulling this while contacting a seed crystal to the surface of the raw material melt and rotating it, the upper end of the inner wall of the heat retaining tube is
At the start of crystal straight body part growth, higher than the conical surface defined by the solid-liquid boundary between the raw material melt in the crucible and the pulled crystal, and the top of the crucible, and at the end of crystal straight body part growth, the crucible A single crystal growth method, characterized in that it is lower than the conical surface defined by the solid-liquid boundary between the internal raw material melt and the pulled crystal and the upper end of the crucible.
【請求項2】 原料融液と封止剤を収容するるつぼと、
前記るつぼを支持する下軸と、前記るつぼの周囲に配置
された加熱ヒータと、前記融液から単結晶を引き上げる
ために下端に種結晶が取り付けられ回転昇降可能な上軸
と、前記ヒータの周囲に配置された保温筒とを備える単
結晶製造装置において、前記保温筒の外壁の高さが内壁
の高さより高いことを特徴とする単結晶製造装置。
2. A crucible for containing a raw material melt and a sealant,
A lower shaft supporting the crucible, a heater arranged around the crucible, an upper shaft having a seed crystal attached to the lower end for pulling a single crystal from the melt and capable of rotating up and down, and a periphery of the heater 1. A single crystal manufacturing apparatus comprising: a heat insulating cylinder arranged in the heat insulating cylinder, wherein the height of the outer wall of the heat insulating cylinder is higher than the height of the inner wall of the heat insulating cylinder.
【請求項3】 請求項2記載の保温筒の上端が多段状と
なっていることを特徴とする単結晶製造装置。
3. An apparatus for producing a single crystal, wherein an upper end of the heat insulating cylinder according to claim 2 has a multistage shape.
JP2086795A 1995-01-17 1995-01-17 Method for growing single crystal and apparatus for producing single crystal Pending JPH08198699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086795A JPH08198699A (en) 1995-01-17 1995-01-17 Method for growing single crystal and apparatus for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086795A JPH08198699A (en) 1995-01-17 1995-01-17 Method for growing single crystal and apparatus for producing single crystal

Publications (1)

Publication Number Publication Date
JPH08198699A true JPH08198699A (en) 1996-08-06

Family

ID=12039114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086795A Pending JPH08198699A (en) 1995-01-17 1995-01-17 Method for growing single crystal and apparatus for producing single crystal

Country Status (1)

Country Link
JP (1) JPH08198699A (en)

Similar Documents

Publication Publication Date Title
US4645560A (en) Liquid encapsulation method for growing single semiconductor crystals
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
US3173765A (en) Method of making crystalline silicon semiconductor material
US5492079A (en) Process for producing rods or blocks of semiconductor material and an apparatus for carrying out the process
JP4416040B2 (en) Compound semiconductor crystal
JP2008239480A5 (en)
US5667585A (en) Method for the preparation of wire-formed silicon crystal
JPH06340490A (en) Apparatus for production of silicon single crystal
US3055741A (en) Method for producing silicon
CN213203273U (en) Double-layer crucible for continuously pulling crystal
JPH08198699A (en) Method for growing single crystal and apparatus for producing single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP2531875B2 (en) Method for producing compound semiconductor single crystal
CN111101194A (en) Crystal growth method of monocrystalline silicon crystal bar
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH07206589A (en) Method for producing compound semiconductor single crystal
JP3569954B2 (en) Semiconductor crystal growth method
JP4117813B2 (en) Method for producing compound semiconductor single crystal
KR20240015067A (en) Single crystal manufacturing equipment
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH06340493A (en) Apparatus for growing single crystal and growing method
Kuroda et al. Czochralski growth of square silicon single crystals
JPH03193689A (en) Production of compound semiconductor crystal
JPH05319973A (en) Single crystal production unit