JPH0819511B2 - Manufacturing method for large superalloy materials - Google Patents

Manufacturing method for large superalloy materials

Info

Publication number
JPH0819511B2
JPH0819511B2 JP3016084A JP1608491A JPH0819511B2 JP H0819511 B2 JPH0819511 B2 JP H0819511B2 JP 3016084 A JP3016084 A JP 3016084A JP 1608491 A JP1608491 A JP 1608491A JP H0819511 B2 JPH0819511 B2 JP H0819511B2
Authority
JP
Japan
Prior art keywords
temperature
superalloy
holding
pores
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3016084A
Other languages
Japanese (ja)
Other versions
JPH04236747A (en
Inventor
義孝 岩渕
義昭 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP3016084A priority Critical patent/JPH0819511B2/en
Publication of JPH04236747A publication Critical patent/JPH04236747A/en
Publication of JPH0819511B2 publication Critical patent/JPH0819511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超合金からなる鋳造
材を高温に保持して、特性を劣化させる金属間化合物や
偏析を拡散均質化させて、組織良好な超合金材を製造す
る、大型超合金材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention holds a cast material made of a superalloy at a high temperature to diffuse and homogenize intermetallic compounds and segregation that deteriorate the characteristics, thereby producing a superalloy material having a good structure. The present invention relates to a method for manufacturing a large-sized superalloy material.

【0002】[0002]

【従来の技術】周知のように、Fe −Ni 基およびNi
基などの超合金は、オーステナイト相に微細な金属間化
合物を析出させることによって強度を向上させた材料で
あり、高温および低温での強度に優れた性質を有してい
る。したがって、ガスタービンとして超高温で使用され
たり、超電導材として超低温で使用されるなどの用途に
利用されている。この超合金の製造過程では、一般に、
各種鋳造法によって鋳造した後に、鍛錬効果を有する鍛
造、圧延などの加工を行っている。
BACKGROUND OF THE INVENTION As is well known, Fe-Ni groups and Ni
A superalloy such as a base is a material whose strength is improved by precipitating a fine intermetallic compound in an austenite phase, and has excellent properties at high and low temperatures. Therefore, it is used as a gas turbine at an extremely high temperature or as a superconducting material at an extremely low temperature. In the manufacturing process of this superalloy, in general,
After casting by various casting methods, processing such as forging and rolling having a forging effect is performed.

【0003】前記鋳造工程では、凝固過程で、樹枝状偏
析が生じ、また、共晶系の金属間化合物が生成して諸特
性を劣化させる。これら生成物は、特に、大型材を鋳造
する際に顕著に現われることが知られている。そこで、
従来は、鍛錬工程前に、超合金の組成に応じて、鋳造材
を1100〜1300℃に加熱して、所定の時間(例え
ば数十時間)保持して拡散均質化する処理を行ってお
り、その後、徐冷して鍛錬工程に供している。
In the above-mentioned casting process, dendritic segregation occurs in the solidification process, and eutectic intermetallic compounds are produced to deteriorate various properties. It is known that these products are particularly prominent when casting large materials. Therefore,
Conventionally, before the forging step, according to the composition of the superalloy, the casting material is heated to 1100 to 1300 ° C., and is subjected to a treatment for holding it for a predetermined time (for example, several tens of hours) to perform diffusion homogenization, After that, it is gradually cooled and subjected to a forging process.

【0004】[0004]

【発明が解決しようとする課題】しかし、鋳造時に体積
分率の大きな金属間化合物が生成されていると、拡散均
質化に付随してポアが生成されやすく、加工性を低下さ
せる。この加工性の低下は、高強度の超合金において
は、後の加工時に大きな障害となるものであり、特に大
型部材では、前記したように共晶形金属間化合物などが
顕著に形成されるので、障害はさらに増大する。
However, when an intermetallic compound having a large volume fraction is produced during casting, pores are likely to be produced accompanying the homogenization of diffusion, which lowers the workability. This decrease in workability is a major obstacle during subsequent processing in high-strength superalloys, and particularly in large-sized members, since eutectic intermetallic compounds and the like are significantly formed as described above, The obstacles will increase further.

【0005】上記ポアを抑制するために、拡散均質化
を、従来よりも低い温度で行うことも考えられるが、有
効な拡散均質効果を得るためには、長時間をかけて処理
を行う必要があり、能率が悪く、工業性に欠ける問題が
ある。したがって、従来は、上記課題(ポアの存在)を
抱えたままで、処理を行っているのが現状である。
In order to suppress the above-mentioned pores, it is conceivable to carry out diffusion homogenization at a lower temperature than in the past, but in order to obtain an effective diffusion homogenization effect, it is necessary to perform treatment for a long time. Yes, there is a problem of inefficiency and lack of industriality. Therefore, conventionally, the current situation is that the processing is performed with the above problem (the existence of pores) being held.

【0006】しかし、従来、上記処理によって製造され
ている超合金材は、比較的小型のものであるので、加工
性の低下は、加工工程における工夫などで対処可能であ
るが、本願出願人が応用を図っているような大型な部材
では、加工の困難性が著しくて、加工時の工夫・対処で
は、解決は困難である。
However, since the superalloy material produced by the above treatment is relatively small in size, it is possible to deal with the deterioration of the workability by devising the working process. With large-sized members that are being applied, processing is extremely difficult, and it is difficult to solve it by devising and dealing with it during processing.

【0007】この発明は、上記事情を背景としてなされ
たものであり、超合金鋳造材を、ポアの発生を有効に防
止した状態で、能率よく拡散均質化して、組織清浄な超
合金材を製造する製造方法を提供するものである。
The present invention has been made in view of the above circumstances. The superalloy cast material is efficiently diffused and homogenized while effectively preventing the generation of pores to produce a superalloy material having a clean structure. To provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本願発明は、超合金鋳造材を、組成に応じて110
0〜1300℃の温度に保持して、拡散均質化熱処理を
施して超合金材を製造する製造方法において、上記温度
範囲内にある最終温度よりも150〜200℃低い開始
温度で上記鋳造材を保持し、さらに、最終温度よりも2
0〜60℃低い中間温度で鋳造材を保持した後、最終温
度で保持して拡散均質化することを特徴とする。
In order to solve the above-mentioned problems, the present invention provides a superalloy cast material with a composition of 110 depending on the composition.
In a production method for producing a superalloy material by holding a temperature of 0 to 1300 ° C and subjecting it to a diffusion homogenization heat treatment, the casting material is produced at a starting temperature 150 to 200 ° C lower than the final temperature within the above temperature range. Hold, and 2 more than final temperature
The casting material is held at a low intermediate temperature of 0 to 60 ° C. and then held at the final temperature for diffusion homogenization.

【0009】[0009]

【0010】ここで本願発明が応用される超合金は、合
金成分を多量に添加して超耐熱性、耐食性、極低温性等
を向上させたものであり、基本成分としてFe,Niま
たはCoを含有するFe基、Fe−Ni基、Ni基また
はCo基合金が示される。なお、この超合金鋳造材の鋳
造方法も特に限定されるものではない。
Here, the superalloy to which the present invention is applied is one in which a large amount of alloying components are added to improve superheat resistance, corrosion resistance, cryogenicity, etc., and Fe, Ni or Co is added as a basic component. The Fe-based, Fe-Ni-based, Ni-based or Co-based alloys contained are shown. The method for casting the superalloy cast material is not particularly limited.

【0011】なお、従来、超合金鋳造材を拡散均質化す
る際には、その組成に従って、1100〜1300℃の
範囲内で選択された最適な温度で処理を行っている。本
発明における最終温度は、この最適温度を目標とするも
のではあるが、これに制約されるものではなく、最適温
度より高い温度または低い温度を最終温度とすることも
できる。
Conventionally, when a superalloy cast material is subjected to diffusion homogenization, it is treated at an optimum temperature selected within a range of 1100 to 1300 ° C. according to its composition. The final temperature in the present invention is targeted at this optimum temperature, but is not limited thereto, and a temperature higher or lower than the optimum temperature may be set as the final temperature.

【0012】[0012]

【0013】[0013]

【作用】すなわち、本発明によれば、開始温度の保持に
よって、共晶系金属間化合物を不安定化させ、若干の拡
散均質化がなされる。また、新たな相が析出して、体積
膨張する。この体積膨張によって、ポアを充填するの
で、後の保持でもポアの生成を抑制する。また、開始温
度の保持によって樹枝状偏析を拡散させる作用も得られ
る。この開始温度は、前記範囲の下限未満では、所望以
外の相が析出してしまい、特性に悪影響を与える。ま
た、共晶系金属間化合物が安定して、拡散均質化が期待
できない。また、上限を超えると、ポアが活発に生成さ
れる。したがって、開始温度を発明の範囲内に定めた。
In other words, according to the present invention, by maintaining the starting temperature, the eutectic intermetallic compound is destabilized, and some diffusion homogenization is performed. In addition, a new phase precipitates and the volume expands. Since the pores are filled by this volume expansion, the generation of pores is suppressed even in the later holding. In addition, the effect of diffusing the dendritic segregation can be obtained by maintaining the starting temperature. If the starting temperature is less than the lower limit of the above range, a phase other than the desired phase will be precipitated, and the characteristics will be adversely affected. Further, the eutectic intermetallic compound is stable, and diffusion homogenization cannot be expected. Moreover, when the upper limit is exceeded, pores are actively generated. Therefore, the starting temperature was set within the scope of the invention.

【0014】上記開始温度での保持に続いて、中間の保
持を行うことにより、上記作用が、さらに向上し、ポア
の発生が有効に抑えられた状態で、特に樹枝状偏析の拡
散が有効に行われる。この中間保持を前記した温度範囲
の下限未満で行えば、作用の向上は僅かで、作業が煩雑
になる。また、温度範囲の上限を超えるとポアの生成が
活発になる。したがって前記範囲の温度で保持すること
が必要であり、中間温度での保持を行わないまま最終温
度での保持を行うとポアの生成抑制効果は十分に得られ
ない。なお、この中間保持の実行により、全体の処理時
を短縮することができる。
Following the above holding at the starting temperature, an intermediate holding is performed.
By performing the lifting, the effect is further improved, pore
In particular, the dendritic segregation is effectively diffused in a state in which the occurrence of dendritic segregation is effectively suppressed . If this intermediate holding is carried out below the lower limit of the above-mentioned temperature range, the improvement of the action is slight and the work becomes complicated. Further, when the temperature exceeds the upper limit of the temperature range, pore formation becomes active. Therefore, keep the temperature within the above range.
Is required and the final temperature without holding at the intermediate temperature
If it is held at a certain degree, the effect of suppressing the generation of pores will be sufficiently obtained.
Absent. The execution of this intermediate holding can reduce the overall processing time .

【0015】次いで、最終保持によって、ポアの生成が
抑制された状態で、共晶系金属間化合物が溶解し、拡散
する。この最終保持では、ポアの生成が有効に抑制され
ているので、従来最適とされていた保持温度よりも高い
温度で保持することもでき、保持時間を短縮して能率を
向上させる効果がある。
Then, by the final holding, the eutectic intermetallic compound is dissolved and diffused in a state where the formation of pores is suppressed. In this final holding, since the generation of pores is effectively suppressed, it is possible to hold at a temperature higher than the optimum holding temperature in the past, and there is an effect of shortening the holding time and improving efficiency.

【0016】[0016]

【実施例】以下に、この発明の実施例を、比較例と比較
しつつ、説明する。先ず、表1に示す組成を有するFe
ーNi 基超合金(インコネル706合金:商標名)を、
真空高周波溶解炉で溶解し、これを電極として、エレク
トロスラグ再溶解法によって、径1mの鋼塊(超合金鋳
造材)を溶製した。この鋼塊の1/4R位置から、試料
を採取した。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. First, Fe having the composition shown in Table 1
-Ni based super alloy (Inconel 706 alloy: trade name)
It was melted in a vacuum high-frequency melting furnace, and using this as an electrode, a steel ingot (superalloy cast material) having a diameter of 1 m was melted by an electroslag remelting method. A sample was taken from the 1 / 4R position of this steel ingot.

【0017】[0017]

【表1】 [Table 1]

【0018】次いで、各試料を加熱炉内に収納し、表2
に示す条件で拡散均質化処理を行った。なお、表中、
施例は、開始温度(980℃)で、保持した後、中間温
度(1125℃)で保持を行い、さらに最終温度(11
75℃)で保持したものである。 また、比較例Aは、
一定の温度で保持した従来法であり、比較例Bは、低温
で保持したものであり、比較例C、Dは低温で保持した
後、高温で保持したものである。
Next, each sample was placed in a heating furnace, and Table 2
The diffusion homogenization treatment was performed under the conditions shown in. It should be noted that, in the table, the real
In the example, the starting temperature (980 ° C.) was maintained, and then the intermediate temperature was reached.
Temperature (1125 ° C), and the final temperature (11
It was kept at 75 ° C. In addition, Comparative Example A is
The conventional method was held at a constant temperature, Comparative Example B was held at a low temperature, and Comparative Examples C and D were held at a low temperature.
After that, it was held at a high temperature.

【0019】[0019]

【表2】 [Table 2]

【0020】前記熱処理後に、各試料を炉内で徐冷して
超合金材を得た。得られた超合金材の拡散均質化効果を
調べるために、各超合金材組織における共晶系金属間化
合物の拡散状態ならびにポア生成について観察した。具
体的には、光学顕微鏡観察を行い、点算法によって面積
率を測定した。その結果は表3に示すとおりである。
After the heat treatment, each sample was gradually cooled in a furnace to obtain a superalloy material. In order to investigate the diffusion homogenization effect of the obtained superalloy material, the diffusion state and pore formation of the eutectic intermetallic compound in each superalloy material structure were observed. Specifically, observation with an optical microscope was performed, and the area ratio was measured by the dot calculation method. The results are shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3に示すように、従来の方法によって、
拡散均質化処理を施した超合金材(比較例A)では、ポ
アの増加が認められた。また、低温で処理を施した超合
金材(比較例B)では、拡散効果は殆ど認められなかっ
た。さらに、比較例Cは実施例Aに比べて長時間の処理
を行ったものの、ポアの発生効果で実施例Aよりも劣っ
ており、また比較例Dは、ポアの抑制効果が不十分であ
った。これに対し、本願発明によって処理した超合金材
(実施例)は、共晶系金属間化合物が良好に拡散して
おり、また、ポアの発生も極めて僅かであった。
As shown in Table 3, according to the conventional method,
In the superalloy material subjected to the diffusion homogenization treatment (Comparative Example A), an increase in pores was observed. Further, in the superalloy material treated at a low temperature (Comparative Example B), almost no diffusion effect was recognized. Further, Comparative Example C has a longer treatment time than Example A.
However, it was inferior to that in Example A due to the effect of generating pores.
In Comparative Example D, the pore suppressing effect is insufficient.
It was. On the other hand, in the superalloy material treated according to the present invention (Example A ), the eutectic intermetallic compound was well diffused, and the generation of pores was extremely small.

【0023】上記各超合金材(比較例Bを除く)を鍛造
したところ、比較例A,C,Dの超合金材では、加工性
が悪く、鍛造後の組織も良質ではなかった。これに対
し、実施例の超合金材は、鍛造加工も容易であり、鍛
造後の組織も健全であった。
When each of the above superalloy materials (excluding Comparative Example B) was forged , the superalloy materials of Comparative Examples A, C and D had poor workability and the texture after forging was not good. On the other hand, the superalloy material of Example A was easy to forge and the structure after forging was sound.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
拡散均質化を、最終温度よりも低い温度で開始して、
間温度および最終温度で3段階に加熱保持するものとし
たので、ポアの発生を有効に抑制して、共晶系金属間化
合物や偏析などを能率よく拡散均質化することができ
る。したがって、加工性の低下を防止することができ、
次工程である鍛錬などの加工を容易に行うことができ、
十分な鍛錬効果が得られることと相まって、健全な組織
を有する超合金材を能率よく製造することができる。ま
た、ポア生成による障害が大きいと考えられる大型材の
課題を確実に解消できるので、大型超合金材の応用を拡
大させる効果もある。
As described above, according to the present invention,
The diffusion homogenization, starting at a lower temperature than the final temperature, medium
Since heating and holding are carried out in three steps at the intermediate temperature and the final temperature, the generation of pores can be effectively suppressed, and the eutectic intermetallic compound and segregation can be efficiently diffused and homogenized. Therefore, it is possible to prevent deterioration of workability,
You can easily perform the next step, such as forging,
Coupled with the fact that a sufficient forging effect is obtained, a superalloy material having a sound structure can be efficiently produced. Further, since the problem of the large-sized material, which is considered to have a large obstacle due to the generation of pores, can be reliably solved, there is an effect of expanding the application of the large-sized superalloy material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 比較例C,Dのヒートパターンを示すグラフ
である。
FIG. 1 is a graph showing heat patterns of Comparative Examples C and D.

【図2】 実施例Aのヒートパターンを示すグラフであ
る。
FIG. 2 is a graph showing a heat pattern of Example A.

【図3】比較例A、Bのヒートパターンを示すグラフで
ある。
FIG. 3 is a graph showing heat patterns of Comparative Examples A and B.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超合金鋳造材を、組成に応じて1100
〜1300℃の温度に保持して、拡散均質化熱処理を施
して超合金材を製造する製造方法において、上記温度範
囲内にある最終温度よりも150〜200℃低い開始温
度で上記鋳造材を保持し、さらに、最終温度よりも20
〜60℃低い中間温度で鋳造材を保持した後、最終温度
で保持して拡散均質化することを特徴とする大型超合金
材の製造方法
1. A superalloy cast material is made of 1100 depending on its composition.
In a manufacturing method of manufacturing a superalloy material by holding the material at a temperature of -1300 ° C and subjecting it to diffusion homogenization heat treatment, the casting material is held at a starting temperature 150 to 200 ° C lower than the final temperature within the temperature range. And more than 20 at the final temperature
A method for producing a large-sized superalloy material, characterized by holding the cast material at an intermediate temperature lower by -60 ° C and then holding it at the final temperature for diffusion homogenization.
JP3016084A 1991-01-14 1991-01-14 Manufacturing method for large superalloy materials Expired - Lifetime JPH0819511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016084A JPH0819511B2 (en) 1991-01-14 1991-01-14 Manufacturing method for large superalloy materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016084A JPH0819511B2 (en) 1991-01-14 1991-01-14 Manufacturing method for large superalloy materials

Publications (2)

Publication Number Publication Date
JPH04236747A JPH04236747A (en) 1992-08-25
JPH0819511B2 true JPH0819511B2 (en) 1996-02-28

Family

ID=11906682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016084A Expired - Lifetime JPH0819511B2 (en) 1991-01-14 1991-01-14 Manufacturing method for large superalloy materials

Country Status (1)

Country Link
JP (1) JPH0819511B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019184A (en) * 1989-04-14 1991-05-28 Inco Alloys International, Inc. Corrosion-resistant nickel-chromium-molybdenum alloys

Also Published As

Publication number Publication date
JPH04236747A (en) 1992-08-25

Similar Documents

Publication Publication Date Title
CN107250416B (en) The manufacturing method of Ni base superalloy
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
RU2361009C2 (en) Alloys on basis of nickel and methods of thermal treatment of alloys on basis of nickel
CN107427897B (en) The manufacturing method of Ni base superalloy
JP5299610B2 (en) Method for producing Ni-Cr-Fe ternary alloy material
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
JP4264926B2 (en) Method for producing precipitation-strengthened Co-Ni heat resistant alloy
JP5994951B2 (en) Method for producing Fe-Ni base superalloy
JP4382269B2 (en) Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2013220472A (en) Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT
JP2017179592A (en) MANUFACTURING METHOD OF Ni-BASED HEAT-RESISTANT SUPERALLOY
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP2007084903A (en) Ni3(Si, Ti)-BASED FOIL, AND ITS PRODUCTION METHOD
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
JP3861712B2 (en) Cu-based alloy and method for producing high-strength and high-thermal conductivity forging using the same
JP2003034853A (en) HEAT TREATMENT METHOD FOR Ni-BASED ALLOY
JPH0819511B2 (en) Manufacturing method for large superalloy materials
JP2015059239A (en) INTERMEDIATE MATERIAL FOR BLOOMING OF Ni-BASED HEAT-RESISTANT SUPERALLOY, METHOD OF PRODUCING THE INTERMEDIATE MATERIAL AND METHOD OF PRODUCING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
JP2003306736A (en) Niobium silicide based composite material and production method thereof
CN113430472B (en) Pulse current solution treatment technology for nickel-based wrought superalloy
JP2001152277A (en) Co BASE ALLOY AND PRODUCING METHOD THEREFOR
JP3049567B2 (en) Manufacturing method of Ni-base heat-resistant alloy material
JP2023184086A (en) PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER
JPH06192805A (en) Production of ti-al alloy material excellent in workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 15