JP2003034853A - HEAT TREATMENT METHOD FOR Ni-BASED ALLOY - Google Patents

HEAT TREATMENT METHOD FOR Ni-BASED ALLOY

Info

Publication number
JP2003034853A
JP2003034853A JP2001223343A JP2001223343A JP2003034853A JP 2003034853 A JP2003034853 A JP 2003034853A JP 2001223343 A JP2001223343 A JP 2001223343A JP 2001223343 A JP2001223343 A JP 2001223343A JP 2003034853 A JP2003034853 A JP 2003034853A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
based alloy
phase
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001223343A
Other languages
Japanese (ja)
Inventor
Ikuo Okada
郁生 岡田
Koji Takahashi
孝二 高橋
Yoshihisa Kamimura
好古 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001223343A priority Critical patent/JP2003034853A/en
Publication of JP2003034853A publication Critical patent/JP2003034853A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve strength of a recrystallized part. SOLUTION: A heat treatment method for a Ni-based alloy employed for a high-temperature component such as a gas-turbine and a jet engine, is characterized by heat treating a base metal made from the Ni-based alloy in such a high temperature that γ' phase with diameters of 0.3-0.5 μm precipitates in the surface layer part of the base metal, before subjecting it to a normal heat treatment at a solution temperature of the γ' phase or a higher temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン、ジ
ェットエンジンなどの高温部品、特に動翼あるいは静翼
に使用されるNi基合金の熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for Ni-based alloys used for high temperature parts such as gas turbines and jet engines, especially for moving blades or stationary blades.

【0002】[0002]

【従来の技術】周知の如く、例えばガスタービンの動翼
等の高温部品には、Ni基合金が使用されている。こう
した動翼は高温下で応力をかけられながら長時間使用さ
れるので、運転中にクリープ損傷を受け、減肉やき裂部
が生じたりする。
2. Description of the Related Art As is well known, Ni-based alloys are used for high temperature parts such as rotor blades of gas turbines. Since such a moving blade is used for a long time while being stressed under high temperature, it suffers from creep damage during operation, resulting in wall thinning and cracking.

【0003】そこで、こうした減肉やき裂部の溶接ある
いはロー付け補修、更には母材(Ni基耐熱合金)のミ
クロ組織的回復を狙って、γ’相(NiAl金属間化
合物)の固溶温度若しくはそれ以上の加熱を行なってい
る。
Therefore, for the purpose of such thinning, welding or brazing of cracks, and repair of the microstructure of the base material (Ni-base heat-resistant alloy), solidification of the γ'phase (Ni 3 Al intermetallic compound) is aimed at. Heating at melting temperature or higher.

【0004】しかし、その加熱の際に、母材の表層部に
深さ〜0.2mm程度の再結晶層が発生する。この理由
は、動翼新製時に耐酸化コーティングの下地処理として
Al によるブラスト処理を行なうことにより表層
部に塑性歪が発生し、高温の熱処理で塑性歪の発生部が
再結晶するためである。この再結晶は、実作業上避ける
ことができない。
However, during the heating, the surface layer of the base metal
A recrystallized layer having a depth of about 0.2 mm is generated. The reason for this
Is used as a base treatment for the oxidation resistant coating when the rotor blade is newly manufactured.
Al TwoOThreeSurface by blasting with
Plastic strain occurs in the part, and the part where plastic strain occurs due to high temperature heat treatment
This is for recrystallization. Avoid this recrystallization in actual work
I can't.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述のよう
に発生した再結晶は、高温強度を低下させる(クリープ
破断強度、疲労強度等の低下)ので、再結晶部の強度上
昇が望まれていた。
By the way, since the recrystallization generated as described above lowers the high temperature strength (creep rupture strength, fatigue strength, etc.), it is desired to increase the strength of the recrystallized portion. .

【0006】本発明はこうした事情を考慮してなされた
ので、通常の段階的な熱処理の前に、Ni基合金製母材
の表層部に径0.3〜0.5μmのγ’相が析出するよ
うに高温熱処理を施すことにより、母材の表層部も健全
にγ’相が析出するようにして再結晶部の強度向上を図
り得るNi基合金の熱処理方法を提供することを目的と
する。
Since the present invention has been made in consideration of such circumstances, a γ'phase having a diameter of 0.3 to 0.5 μm is precipitated on the surface layer of the Ni-base alloy base material before the usual stepwise heat treatment. It is an object of the present invention to provide a heat treatment method for a Ni-based alloy capable of improving the strength of the recrystallized portion by performing the high temperature heat treatment so that the surface layer portion of the base material also precipitates γ ′ phase soundly. .

【0007】[0007]

【課題を解決するための手段】本発明は、ガスタービ
ン、ジェットエンジンなどの高温部品に使用されるNi
基合金を熱処理する方法において、Ni基合金製母材を
γ’相の固溶温度もしくはそれ以上の温度で通常の熱処
理を施す前に、母材の表層部に径0.3〜0.5μmの
γ’相が析出するような高温熱処理を施すことを特徴と
するNi基合金の熱処理方法である。
SUMMARY OF THE INVENTION The present invention is a Ni used in high temperature parts such as gas turbines and jet engines.
In the method of heat-treating a base alloy, before the Ni-base alloy base material is subjected to normal heat treatment at a solid solution temperature of the γ'phase or higher, the surface layer of the base material has a diameter of 0.3 to 0.5 μm. Is a high-temperature heat treatment for precipitating the γ'phase of the above.

【0008】[0008]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。本発明者等は、母材表層部における再結晶部
の強度低下について種々研究を重ねたところ、強度低下
の一因として、再結晶中のγ’相が0.1μm以下(通
常約0.3〜0.5μm)に微細析出し、脆くなること
を究明した。また、微細析出するのは、再結晶部に転位
等孔子欠陥が大量に導入され、これを起点にγ’相の核
が生成し、成長するためである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The inventors of the present invention have conducted various studies on the reduction in strength of the recrystallized portion in the surface layer portion of the base material. As a cause of the reduction in strength, the γ ′ phase during recrystallization is 0.1 μm or less (usually about 0.3 μm). It was determined that fine precipitates were formed in a thickness of up to 0.5 μm, and the resulting material became brittle. Further, the reason for fine precipitation is that a large amount of dislocation-like spore defects are introduced into the recrystallized portion, and nuclei of the γ ′ phase are generated and grow from this as a starting point.

【0009】そこで、本発明では、通常の段階的な熱処
理(例えば、1120℃×2時間+843℃×24時
間)の前に、Ni基合金製母材の表層部に径0.3〜
0.5μmの健全なγ’相が析出するように高温熱処理
を施すことにより、母材の表層部も健全にγ’相が析出
するようにして再結晶部の強度向上を図ろうとした。
Therefore, in the present invention, before the usual stepwise heat treatment (for example, 1120 ° C. × 2 hours + 843 ° C. × 24 hours), the surface layer portion of the Ni-base alloy base material has a diameter of 0.3 to
It was attempted to improve the strength of the recrystallized portion by performing high-temperature heat treatment so that a sound γ ′ phase of 0.5 μm was precipitated so that the γ ′ phase was also soundly precipitated in the surface layer portion of the base material.

【0010】本発明において、所定の径のγ’相が析出
するような高温熱処理としては、温度1180℃〜12
60℃、2〜10時間で熱処理することが好ましい。こ
こで、温度が1180℃未満ではγ’相が固溶せず、温
度が1260℃を越えるとγ’相に融解が生じる。従っ
て、γ’相が固溶するとともに初期融解を生じない温度
範囲として上記範囲を設定した。
In the present invention, a high temperature heat treatment for precipitating a γ'phase having a predetermined diameter is performed at a temperature of 1180 ° C to 12 ° C.
It is preferable to perform heat treatment at 60 ° C. for 2 to 10 hours. Here, if the temperature is lower than 1180 ° C, the γ'phase does not form a solid solution, and if the temperature exceeds 1260 ° C, melting occurs in the γ'phase. Therefore, the above range was set as a temperature range in which the γ'phase is solid-dissolved and initial melting does not occur.

【0011】本発明において、通常の熱処理としては、
例えば温度1110〜1130℃、1〜5時間での熱処
理、急冷工程と、ひきつづき行う温度840〜860
℃、16〜24時間での熱処理、急冷工程との段階的な
熱処理が挙げられる(実施例1、2に対応)。これは、
温度や熱処理時間が上記範囲を外れると、減肉やき裂部
の溶接あるいはロー付けの補修が十分に行われないから
である。また、通常の熱処理としては、例えば温度12
00〜1230℃、1〜5時間での熱処理、急冷工程
と、ひきつづき行う温度1070〜1090℃、2〜6
時間での熱処理、急冷工程と、さらに行う温度840〜
880℃、16〜24時間での熱処理、急冷工程との段
階的な熱処理が挙げられる(実施例3、4に対応)。な
お、上記急冷とは、例えば3000℃/h程度を意味す
る。
In the present invention, the usual heat treatment includes
For example, heat treatment at a temperature of 1101 to 1130 ° C. for 1 to 5 hours, a quenching step, and a temperature of 840 to 860 continuously performed.
Examples include heat treatment at 16 ° C. for 16 to 24 hours and stepwise heat treatment with a quenching step (corresponding to Examples 1 and 2). this is,
This is because, if the temperature or heat treatment time is out of the above range, the thickness reduction, the welding of the crack portion or the brazing repair cannot be sufficiently performed. Moreover, as the normal heat treatment, for example, a temperature of 12
Heat treatment at 10 to 1230 ° C. for 1 to 5 hours, a quenching step, and temperature to be continuously performed 1070 to 1090 ° C., 2 to 6
Time heat treatment, quenching process, and further temperature 840-
Examples include heat treatment at 880 ° C. for 16 to 24 hours and stepwise heat treatment with a quenching step (corresponding to Examples 3 and 4). The rapid cooling means, for example, about 3000 ° C./h.

【0012】本発明において、高温熱処理後、50〜6
00℃/h程度のゆっくりした速度で徐冷することが好
ましい。この理由は、速度が50℃/h未満では時間が
かかり過ぎ、速度が600℃/hを越えると再結晶相に
おけるγ’相の核が十分に大きくならないからである。
In the present invention, after the high temperature heat treatment, 50 to 6
It is preferable to slowly cool at a slow rate of about 00 ° C./h. The reason for this is that if the speed is less than 50 ° C./h, it takes too long, and if the speed exceeds 600 ° C./h, the nuclei of the γ ′ phase in the recrystallized phase do not become sufficiently large.

【0013】本発明において、母材の表層部に径0.3
〜0.5μmのγ’相が析出するように高温熱処理を施
すのは、通常、適度な強度をもつ健全な母材における
γ’相の径が0.3〜0.5μmの範囲にあるからであ
る。
In the present invention, the diameter of the surface layer of the base material is 0.3.
The high temperature heat treatment is performed so that the γ'phase of ~ 0.5 μm is precipitated, because the diameter of the γ'phase in a sound base metal having appropriate strength is usually in the range of 0.3 to 0.5 μm. Is.

【0014】[0014]

【実施例】以下、本発明の各実施例に係るNi基合金の
熱処理方法について説明する。但し、下記実施例で述べ
る各部材の材質、数値等は一例を示すもので、本発明の
権利範囲を特定するものではない。
EXAMPLES The heat treatment methods for Ni-based alloys according to the examples of the present invention will be described below. However, the materials, numerical values, etc. of the respective members described in the following examples are merely examples, and do not specify the scope of rights of the present invention.

【0015】(実施例1)実施例1では、Ni基合金が
IN738LC(インターナショナルニッケルカンパニ
ー社製の商品名),即ちNi−16Cr−8.5Co−
1.7Mo−2.8W−1.7Ta−1Nb−3.5T
i−3.5Alである場合について試験した。図1を参
照する。
(Example 1) In Example 1, the Ni-based alloy was IN738LC (trade name of International Nickel Company), that is, Ni-16Cr-8.5Co-.
1.7Mo-2.8W-1.7Ta-1Nb-3.5T
The case of i-3.5Al was tested. Please refer to FIG.

【0016】まず、母材としてのNi基合金に例えば1
200℃で〜8時間、熱処理を施した後、例えば600
℃/hでNi基合金を徐冷した(第1の熱処理工程A)
(室温まで連続して冷却してもよい)。つづいて、通常
の熱処理工程(第2の熱処理工程B、第3の熱処理工程
C)を行った。即ち、第2の熱処理工程Bでは、112
0℃で2時間熱処理した後、例えば3000℃/hでN
i基合金急冷を行った(室温まで連続して冷却してもよ
い)。第3の熱処理工程Cでは、843℃で24時間熱
処理した後、例えば3000℃/hでNi基合金急冷を
行った。
First, for example, a Ni-based alloy as a base material is
After heat treatment at 200 ° C for ~ 8 hours, for example 600
The Ni-based alloy was gradually cooled at ℃ / h (first heat treatment step A)
(It may be cooled to room temperature continuously). Then, the usual heat treatment process (2nd heat treatment process B, 3rd heat treatment process C) was performed. That is, in the second heat treatment step B, 112
After heat treatment at 0 ° C for 2 hours, N at 3000 ° C / h, for example
The i-based alloy was rapidly cooled (may be continuously cooled to room temperature). In the third heat treatment step C, after heat treatment at 843 ° C. for 24 hours, Ni-based alloy quenching was performed at, for example, 3000 ° C./h.

【0017】このように、実施例1では、通常の熱処理
工程の前に、該熱処理よりも高温(1200℃)で熱処
理を行うことにより、Ni基合金の表層部にも健全な径
0.3〜0.5μmのγ’相が析出させることができ
る。また、高温での熱処理後徐冷を行うため、γ’相の
核を大きくすることができる。従って、表層部の再結晶
層が従来のように脆く無く、再結晶層の強度を向上する
ことができる。
As described above, in Example 1, by performing the heat treatment at a temperature (1200 ° C.) higher than that of the heat treatment before the normal heat treatment step, the surface diameter of the Ni-based alloy has a healthy diameter of 0.3. A .gamma. 'Phase of .about.0.5 .mu.m can be precipitated. Further, since the anneal is performed after the heat treatment at a high temperature, the nuclei of the γ'phase can be enlarged. Therefore, the recrystallized layer in the surface layer portion is not brittle as in the conventional case, and the strength of the recrystallized layer can be improved.

【0018】事実、従来の場合、図5に示すように、母
材としてのNi基合金1の表層部に再結晶層が形成さ
れ、再結晶層中のγ’相2が0.1μm以下に微細析出
された。これに対し、実施例1による場合、図6に示す
ように、Ni基合金1の表層部に再結晶層が形成され、
再結晶層中のγ’相2が0.3〜0.5μmと従来の場
合と比べて大きな径で析出された。
In fact, in the conventional case, as shown in FIG. 5, a recrystallized layer is formed on the surface layer portion of the Ni-based alloy 1 as a base material, and the γ'phase 2 in the recrystallized layer is 0.1 μm or less. Finely deposited. On the other hand, in the case of Example 1, as shown in FIG. 6, a recrystallized layer is formed on the surface layer portion of the Ni-based alloy 1,
The γ ′ phase 2 in the recrystallized layer was 0.3 to 0.5 μm and was deposited with a larger diameter than in the conventional case.

【0019】なお、実施例1の第1の熱処理工程におい
て、1200℃で熱処理を行なったが、温度範囲は11
80℃〜1210℃であればよい。この理由は、118
0℃未満ではγ’相が固溶せず、1210℃を越えると
合金成分の偏析に起因してγ相に融解が生じるからであ
る。
In the first heat treatment step of Example 1, heat treatment was performed at 1200 ° C., but the temperature range was 11
It may be 80 ° C to 1210 ° C. The reason for this is 118
This is because the γ'phase does not form a solid solution below 0 ° C, and the melting occurs in the γ phase due to segregation of alloy components above 1210 ° C.

【0020】また、実施例1では、徐冷を600℃で行
なった場合について述べたが、これに限らず、50〜6
00℃/hの範囲であればよい。この理由は、この速度
範囲で冷却すると再結晶相におけるγ’相の核が大きく
なるからである。
Further, in the first embodiment, the case where the gradual cooling is performed at 600 ° C. has been described, but the present invention is not limited to this, and 50 to 6 is possible.
It may be in the range of 00 ° C / h. The reason for this is that the nuclei of the γ'phase in the recrystallized phase become large when cooled in this speed range.

【0021】(実施例2)実施例2では、Ni基合金が
MGA1400CC(三菱重工業(株)社製の商品
名),即ちNi−14Cr−10Co−1.7Mo−
4.6W−4.8Ta−2.4Ti−4Alである場合
について試験した。図2を参照する。
(Example 2) In Example 2, the Ni-based alloy was MGA1400CC (trade name of Mitsubishi Heavy Industries, Ltd.), that is, Ni-14Cr-10Co-1.7Mo-.
The case of 4.6W-4.8Ta-2.4Ti-4Al was tested. Please refer to FIG.

【0022】まず、母材としてのNi基合金に例えば1
200℃で〜8時間、熱処理を施した後、例えば600
℃/hでNi基合金を徐冷した(第1の熱処理工程A)
(室温まで連続して冷却してもよい)。つづいて、通常
の熱処理工程(第2の熱処理工程B、第3の熱処理工程
C)を行った。即ち、第2の熱処理工程Bでは、112
0℃で2時間熱処理した後、3000℃/hでNi基合
金を急冷した(室温まで連続して冷却してもよい)。第
3の熱処理工程Cでは、853℃で24時間熱処理した
後、3000℃/hでNi基合金を急冷した。実施例2
によれば、実施例1と同様な効果が得られる。
First, for example, a Ni-based alloy as a base material is
After heat treatment at 200 ° C for ~ 8 hours, for example 600
The Ni-based alloy was gradually cooled at ℃ / h (first heat treatment step A)
(It may be cooled to room temperature continuously). Then, the usual heat treatment process (2nd heat treatment process B, 3rd heat treatment process C) was performed. That is, in the second heat treatment step B, 112
After heat treatment at 0 ° C. for 2 hours, the Ni-based alloy was rapidly cooled at 3000 ° C./h (may be continuously cooled to room temperature). In the third heat treatment step C, after heat treatment at 853 ° C. for 24 hours, the Ni-based alloy was rapidly cooled at 3000 ° C./h. Example 2
According to this, the same effect as that of the first embodiment can be obtained.

【0023】なお、実施例2の第1の熱処理工程におい
て、高温熱処理を1200℃で行なった場合について述
べたが、これに限らず、温度範囲は1200℃〜125
0℃であればよい。その理由は、1200℃未満では
γ’相が固溶せず、1250℃を越えるとγ相に融解が
生じるからである。また、高温熱処理後の徐冷速度も実
施例1の場合と同様である。
Although the high temperature heat treatment is performed at 1200 ° C. in the first heat treatment step of the second embodiment, the temperature range is not limited to 1200 ° C. to 125 ° C.
It may be 0 ° C. The reason is that the γ'phase does not form a solid solution below 1200 ° C and the γ phase melts above 1250 ° C. The slow cooling rate after the high temperature heat treatment is also the same as in the case of Example 1.

【0024】(実施例3)実施例3では、Ni基合金が
MGA1400DS’(三菱重工業(株)社製の商品
名、実施例2の合金とは鋳造法が異なる),即ちNi−
14Cr−10Co−1.7Mo−4.6W−4.8T
a−2.4Ti−4Alである場合について試験した。
図3を参照する。
(Example 3) In Example 3, the Ni-based alloy was MGA1400DS '(trade name of Mitsubishi Heavy Industries, Ltd., the casting method is different from that of the alloy of Example 2), that is, Ni-.
14Cr-10Co-1.7Mo-4.6W-4.8T
The case of a-2.4Ti-4Al was tested.
Please refer to FIG.

【0025】まず、母材としてのNi基合金に例えば1
230℃で〜8時間、熱処理を施した後、例えば600
℃/hでNi基合金を徐冷した(第1の熱処理工程A)
(室温まで連続して冷却してもよい)。つづいて、通常
の熱処理工程(第2の熱処理工程B、第3の熱処理工程
C、第4の熱処理工程D)を順次行った。即ち、第2の
熱処理工程Bでは、1210℃で2時間熱処理した後、
3000℃/hでNi基合金急冷を行った(室温まで連
続して冷却してもよい)。第3の熱処理工程Cでは、1
080℃で4時間熱処理した後、3000℃/hでNi
基合金を急冷した。第4の熱処理工程Dでは、850℃
で24時間熱処理した後、3000℃/hでNi基合金
を急冷した。実施例3によれば、実施例1と同様な効果
が得られる。
First, for example, a Ni-based alloy as a base material is
After heat treatment at 230 ° C for ~ 8 hours, for example 600
The Ni-based alloy was gradually cooled at ℃ / h (first heat treatment step A)
(It may be cooled to room temperature continuously). Subsequently, normal heat treatment steps (second heat treatment step B, third heat treatment step C, fourth heat treatment step D) were sequentially performed. That is, in the second heat treatment step B, after heat treatment at 1210 ° C. for 2 hours,
Ni-based alloy was rapidly cooled at 3000 ° C./h (it may be continuously cooled to room temperature). In the third heat treatment step C, 1
After heat treatment at 080 ℃ for 4 hours, Ni at 3000 ℃ / h
The base alloy was quenched. 850 ° C. in the fourth heat treatment step D
After heat-treating for 24 hours, the Ni-based alloy was rapidly cooled at 3000 ° C./h. According to the third embodiment, the same effect as that of the first embodiment can be obtained.

【0026】なお、実施例3の第1の熱処理工程におい
て、高温熱処理を1230℃で行なった場合について述
べたが、これに限らず、温度範囲は1230℃〜125
0℃であればよい。その理由は、1230℃未満では
γ’相が固溶せず、1250℃を越えるとγ相に融解が
生じるからである。また、高温熱処理後の徐冷速度も実
施例1の場合と同様である。
In the first heat treatment step of Example 3, the high temperature heat treatment was performed at 1230 ° C., but the temperature range is not limited to 1230 ° C. to 125 ° C.
It may be 0 ° C. The reason is that the γ'phase does not form a solid solution below 1230 ° C and the γ phase melts above 1250 ° C. The slow cooling rate after the high temperature heat treatment is also the same as in the case of Example 1.

【0027】(実施例4)実施例4では、Ni基合金が
CM247LC(キャノンマスケゴン社製の商品名),
即ちNi−8.4Cr−10Co−0.5Mo−9.5
W−3Ta−0.8Ti−5.5Al−1.4Hfであ
る場合について試験した。図4を参照する。
(Example 4) In Example 4, the Ni-based alloy was CM247LC (trade name of Canon Muskegon),
That is, Ni-8.4Cr-10Co-0.5Mo-9.5.
The case of W-3Ta-0.8Ti-5.5Al-1.4Hf was tested. Please refer to FIG.

【0028】まず、母材としてのNi基合金に例えば1
250℃で〜8時間(h)、熱処理を施した後、例えば
600℃/hでNi基合金を徐冷した(第1の熱処理工
程A)(室温まで連続して冷却してもよい)。つづい
て、熱処理工程(第2の熱処理工程B、第3の熱処理工
程C、第4の熱処理工程D)を順次行った。即ち、第2
の熱処理工程Bでは、例えば1230℃で2時間熱処理
した後、3000℃/hでNi基合金を急冷した(室温
まで連続して冷却してもよい)。第3の熱処理工程Cで
は、1080℃で4時間熱処理した後、3000℃/h
でNi基合金を急冷した。第4の熱処理工程Dでは、8
70℃で20時間熱処理した後、3000℃/hでNi
基合金を急冷した。
First, for example, a Ni-based alloy as a base material is
After heat treatment was performed at 250 ° C. for ˜8 hours (h), the Ni-based alloy was gradually cooled at, for example, 600 ° C./h (first heat treatment step A) (may be continuously cooled to room temperature). Subsequently, heat treatment steps (second heat treatment step B, third heat treatment step C, and fourth heat treatment step D) were sequentially performed. That is, the second
In the heat treatment step B, the Ni-base alloy was rapidly cooled at 3000 ° C./h (for example, continuously cooled to room temperature) after being heat-treated at 1230 ° C. for 2 hours. In the third heat treatment step C, after heat treatment at 1080 ° C. for 4 hours, 3000 ° C./h
Then, the Ni-based alloy was rapidly cooled. In the fourth heat treatment step D, 8
After heat treatment at 70 ℃ for 20 hours, Ni at 3000 ℃ / h
The base alloy was quenched.

【0029】実施例4によれば、実施例1と同様な効果
が得られる。
According to the fourth embodiment, the same effect as that of the first embodiment can be obtained.

【0030】なお、実施例4の第1の熱処理工程におい
て、高温熱処理を1250℃で行なった場合について述
べたが、これに限らず、温度範囲は1230℃〜126
0℃であればよい。その理由は、1230℃未満では
γ’相が固溶せず、1260℃を越えるとγ相に融解が
生じるからである。また、高温熱処理後の徐冷速度も実
施例1の場合と同様である。
The case where the high temperature heat treatment is performed at 1250 ° C. in the first heat treatment step of Example 4 has been described, but the present invention is not limited to this, and the temperature range is 1230 ° C. to 126 ° C.
It may be 0 ° C. The reason is that the γ'phase does not form a solid solution below 1230 ° C and the γ phase melts above 1260 ° C. The slow cooling rate after the high temperature heat treatment is also the same as in the case of Example 1.

【0031】[0031]

【発明の効果】以上詳述したように本発明によれば、通
常の段階的な熱処理の前に、Ni基合金製母材の表層部
に径0.3〜0.5μmのγ’相が析出するような高温
熱処理を施すことにより、母材の表層部も健全にγ’相
が析出するようにして再結晶部の強度向上を図り得るN
i基合金の熱処理方法を提供できる。
As described above in detail, according to the present invention, the γ ′ phase having a diameter of 0.3 to 0.5 μm is formed on the surface layer portion of the Ni-based alloy base material before the usual stepwise heat treatment. By subjecting the base material to a high temperature heat treatment so as to cause precipitation, the γ ′ phase can be soundly precipitated even in the surface layer portion of the base material, and the strength of the recrystallized portion can be improved N
A heat treatment method for an i-based alloy can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係るNi基合金の熱処理方
法における温度と時間との関係を示す特性図。
FIG. 1 is a characteristic diagram showing a relationship between temperature and time in a heat treatment method for a Ni-based alloy according to Example 1 of the present invention.

【図2】本発明の実施例2に係るNi基合金の熱処理方
法における温度と時間との関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between temperature and time in a heat treatment method for a Ni-based alloy according to Example 2 of the present invention.

【図3】本発明の実施例3に係るNi基合金の熱処理方
法における温度と時間との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between temperature and time in the heat treatment method for a Ni-based alloy according to Example 3 of the present invention.

【図4】本発明の実施例4に係るNi基合金の熱処理方
法における温度と時間との関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between temperature and time in a heat treatment method for a Ni-based alloy according to Example 4 of the present invention.

【図5】従来の熱処理方法によって得られたNi基合金
の表面を顕微鏡(×5000倍)で撮影した写真の一部
を模式的に示す図。
FIG. 5 is a diagram schematically showing a part of a photograph of the surface of a Ni-based alloy obtained by a conventional heat treatment method taken with a microscope (× 5000).

【図6】本発明の熱処理方法によって得られたNi基合
金の表面を顕微鏡(×5000倍)で撮影した写真の一
部を模式的に示す図。
FIG. 6 is a diagram schematically showing a part of a photograph of the surface of a Ni-based alloy obtained by the heat treatment method of the present invention taken with a microscope (× 5000 times).

【符号の説明】[Explanation of symbols]

1…Ni基合金(母材)、 2…γ’相。 1 ... Ni-based alloy (base material), 2 ... γ'phase.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 682 C22F 1/00 682 691 691B 691C 692 692 (72)発明者 上村 好古 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3G002 EA04 EA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 682 C22F 1/00 682 692 691 691B 691C 692 692 (72) Inventor Uemura Yoshiko Takasago, Hyogo Prefecture 2-1-1 Nihama, Arai-cho Mitsubishi Heavy Industries, Ltd. Takasago Plant F-term (reference) 3G002 EA04 EA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン、ジェットエンジンなどの
高温部品に使用されるNi基合金を熱処理する方法にお
いて、 Ni基合金製母材をγ’相の固溶温度もしくはそれ以上
の温度で通常の熱処理を施す前に、母材の表層部に径
0.3〜0.5μmのγ’相が析出するような高温熱処
理を施すことを特徴とするNi基合金の熱処理方法。
1. A method for heat-treating a Ni-base alloy used in high-temperature parts such as a gas turbine and a jet engine, in which a Ni-base alloy base material is subjected to normal heat treatment at a solid solution temperature of a γ'phase or higher. Before the heat treatment, a heat treatment method for a Ni-based alloy is performed by performing high temperature heat treatment such that a γ ′ phase having a diameter of 0.3 to 0.5 μm is precipitated on the surface layer portion of the base material.
【請求項2】 所定の径のγ’相が析出するような高温
熱処理とは、温度1180℃〜1260℃、2〜10時
間で熱処理することであることを特徴とする請求項1記
載のNi基合金の熱処理方法。
2. The Ni according to claim 1, wherein the high temperature heat treatment for precipitating a γ ′ phase having a predetermined diameter is a heat treatment at a temperature of 1180 ° C. to 1260 ° C. for 2 to 10 hours. Heat treatment method for base alloy.
【請求項3】 通常の熱処理とは、温度1110〜11
30℃、1〜5時間での熱処理、急冷工程と、ひきつづ
き行う温度840〜860℃、16〜24時間での熱処
理、急冷工程との段階的な熱処理であることを特徴とす
る請求項1記載のNi基合金の熱処理方法。
3. A normal heat treatment means a temperature of 1110-11.
2. A stepwise heat treatment comprising heat treatment at 30 [deg.] C. for 1 to 5 hours, a quenching step, and heat treatment at a temperature of 840 to 860 [deg.] C. for 16 to 24 hours, followed by quenching. Method for heat treatment of Ni-based alloy of
【請求項4】 通常の熱処理とは、温度1200〜12
30℃、1〜5時間での熱処理、急冷工程と、ひきつづ
き行う温度1070〜1090℃、2〜6時間での熱処
理、急冷工程と、さらに行う温度840〜860℃、1
6〜24時間での熱処理、急冷工程との段階的な熱処理
であることを特徴とする請求項1記載のNi基合金の熱
処理方法。
4. The ordinary heat treatment means a temperature of 1200-12.
Heat treatment at 30 ° C. for 1 to 5 hours, a rapid cooling step, temperature 1070 to 1090 ° C. continuously performed, heat treatment at 2 to 6 hours, a rapid cooling step, and further performed temperature 840 to 860 ° C.
The heat treatment method for a Ni-based alloy according to claim 1, which is a stepwise heat treatment including a heat treatment for 6 to 24 hours and a quenching step.
【請求項5】 高温熱処理後、50〜600℃/hで徐
冷することを特徴とする請求項1若しくは請求項2記載
のNi基合金の熱処理方法。
5. The heat treatment method for a Ni-based alloy according to claim 1, wherein the high temperature heat treatment is followed by slow cooling at 50 to 600 ° C./h.
JP2001223343A 2001-07-24 2001-07-24 HEAT TREATMENT METHOD FOR Ni-BASED ALLOY Pending JP2003034853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001223343A JP2003034853A (en) 2001-07-24 2001-07-24 HEAT TREATMENT METHOD FOR Ni-BASED ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001223343A JP2003034853A (en) 2001-07-24 2001-07-24 HEAT TREATMENT METHOD FOR Ni-BASED ALLOY

Publications (1)

Publication Number Publication Date
JP2003034853A true JP2003034853A (en) 2003-02-07

Family

ID=19056697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001223343A Pending JP2003034853A (en) 2001-07-24 2001-07-24 HEAT TREATMENT METHOD FOR Ni-BASED ALLOY

Country Status (1)

Country Link
JP (1) JP2003034853A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038100A (en) * 2008-08-07 2010-02-18 Toshiba Corp Method for thermally treating gas turbine component, method for repairing gas turbine component, and gas turbine component
CN102500638A (en) * 2011-11-24 2012-06-20 北京工业大学 Method for producing high-cube-texture high-tungsten-content NI (nickel)-W (tungsten) alloy substrate bands
KR101189440B1 (en) * 2010-10-20 2012-10-12 한국기계연구원 Gas turbine combustor for an easy repair welding and method of manufacturing the same
JP2013027920A (en) * 2011-06-21 2013-02-07 Hitachi Ltd Heat resistant alloy member, method for manufacturing the same, and method for repairing the same
JP2014047389A (en) * 2012-08-31 2014-03-17 Hitachi Ltd Rotor blade for gas turbine for power generation, and heat treatment method
JP2014148702A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Ni-GROUP HEAT-RESISTANT ALLOY MEMBER
JP2014189830A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Fatigue life recovery heat-treatment method
KR20150143998A (en) * 2014-06-16 2015-12-24 창원대학교 산학협력단 Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
KR101626913B1 (en) * 2014-12-03 2016-06-02 창원대학교 산학협력단 Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
WO2018066644A1 (en) * 2016-10-07 2018-04-12 三菱日立パワーシステムズ株式会社 Method for producing turbine vane
CN112226710A (en) * 2020-10-16 2021-01-15 中国航发四川燃气涡轮研究院 Heat treatment method and device for reducing residual stress in GH4096 alloy thin-wall disc ring piece

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038100A (en) * 2008-08-07 2010-02-18 Toshiba Corp Method for thermally treating gas turbine component, method for repairing gas turbine component, and gas turbine component
KR101189440B1 (en) * 2010-10-20 2012-10-12 한국기계연구원 Gas turbine combustor for an easy repair welding and method of manufacturing the same
JP2013027920A (en) * 2011-06-21 2013-02-07 Hitachi Ltd Heat resistant alloy member, method for manufacturing the same, and method for repairing the same
CN102500638A (en) * 2011-11-24 2012-06-20 北京工业大学 Method for producing high-cube-texture high-tungsten-content NI (nickel)-W (tungsten) alloy substrate bands
JP2014047389A (en) * 2012-08-31 2014-03-17 Hitachi Ltd Rotor blade for gas turbine for power generation, and heat treatment method
JP2014148702A (en) * 2013-01-31 2014-08-21 Nippon Steel & Sumitomo Metal Ni-GROUP HEAT-RESISTANT ALLOY MEMBER
JP2014189830A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Fatigue life recovery heat-treatment method
KR20150143998A (en) * 2014-06-16 2015-12-24 창원대학교 산학협력단 Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
KR101593309B1 (en) * 2014-06-16 2016-02-18 창원대학교 산학협력단 Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
KR101626913B1 (en) * 2014-12-03 2016-06-02 창원대학교 산학협력단 Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
WO2018066644A1 (en) * 2016-10-07 2018-04-12 三菱日立パワーシステムズ株式会社 Method for producing turbine vane
KR20190027371A (en) 2016-10-07 2019-03-14 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Method for manufacturing a turbine blade
DE112017005096T5 (en) 2016-10-07 2019-08-01 Mitsubishi Hitachi Power Systems, Ltd. Method for producing a turbine blade
CN112226710A (en) * 2020-10-16 2021-01-15 中国航发四川燃气涡轮研究院 Heat treatment method and device for reducing residual stress in GH4096 alloy thin-wall disc ring piece
CN112226710B (en) * 2020-10-16 2021-12-03 中国航发四川燃气涡轮研究院 Heat treatment method and device for reducing residual stress in GH4096 alloy thin-wall disc ring piece

Similar Documents

Publication Publication Date Title
US11047016B2 (en) Techniques for controlling precipitate phase domain size in an alloy
JP6057363B1 (en) Method for producing Ni-base superalloy
JP5179009B2 (en) Repair method for gas turbine blade tip without recoating of repair blade tip
JP5398123B2 (en) Nickel alloy
JP5073905B2 (en) Nickel-base superalloy and turbine parts manufactured from the superalloy
JP5985754B2 (en) Ni-base alloy product and manufacturing method thereof
EP1605074A1 (en) Thermal recovery treatment for a service-degraded component of a gas turbine
US5312497A (en) Method of making superalloy turbine disks having graded coarse and fine grains
JP4382269B2 (en) Method for producing Ni-base alloy having excellent resistance to high-temperature sulfidation corrosion
JP2011080146A (en) Method of heat treating ni-based superalloy article and article made thereby
JP2016513183A (en) Pre-weld heat treatment for nickel-base superalloys
JPH10195564A (en) High strengh nickel superalloy article having machined surface
CN111471897B (en) Preparation and forming process of high-strength nickel-based high-temperature alloy
JP2021172852A (en) Ni-BASED ALLOY REPAIRING MEMBER AND MANUFACTURING METHOD OF THE REPAIRING MEMBER
JP7134606B2 (en) Grain refinement in IN706 by Laves phase precipitation
JP2003034853A (en) HEAT TREATMENT METHOD FOR Ni-BASED ALLOY
JP6120200B2 (en) Ni-base superalloy and turbine disk using the same
US11773724B2 (en) Wrought root blade manufacture methods
JP2011064077A (en) Gas turbine part and method of repairing the same
JPH11246924A (en) Ni-base single crystal superalloy, its production, and gas turbine parts
US5415712A (en) Method of forging in 706 components
CN113528992B (en) Heat treatment method for optimizing mechanical properties of GH3536 nickel-based high-temperature alloy manufactured by additive manufacturing
JP3900847B2 (en) Processing method of ferritic heat resistant steel
JPH06240427A (en) Production of precipitation hardening superalloy
JP2015507701A (en) A method for predicting burn cracks in components formed by a strong process.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412