JPH06240427A - Production of precipitation hardening superalloy - Google Patents

Production of precipitation hardening superalloy

Info

Publication number
JPH06240427A
JPH06240427A JP4878893A JP4878893A JPH06240427A JP H06240427 A JPH06240427 A JP H06240427A JP 4878893 A JP4878893 A JP 4878893A JP 4878893 A JP4878893 A JP 4878893A JP H06240427 A JPH06240427 A JP H06240427A
Authority
JP
Japan
Prior art keywords
cooling
treatment
precipitation
aging treatment
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4878893A
Other languages
Japanese (ja)
Inventor
Mikio Kusuhashi
幹雄 楠橋
Shinichi Nishitani
信一 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP4878893A priority Critical patent/JPH06240427A/en
Publication of JPH06240427A publication Critical patent/JPH06240427A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a large-size, thick-walled, precipitation hardening superalloy used, e.g., for gas turbine disk for power generation use without causing deterioration in strength at the time of heat treatment. CONSTITUTION:After solid solution heat treatment, the alloy is cooled down to the prescribed temp. at a cooling velocity equal to or lower than air cooling velocity. Intermediate aging is done in the course of the above cooling or is done by holding at the above temp. for prescribed time. Then rapid cooling is performed, followed by aging treatment. By this method, the occurrence of deterioration in strength can be prevented at the time of heat treatment for a large-size, thick-walled member, and a large-size, thick-walled precipitation hardening superalloy having uniform and sufficient strength can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発電用ガスタービン
ディスクなどに使用される析出硬化型超耐熱合金の製造
方法に関するものであり、特に大型・厚肉の析出硬化型
超耐熱合金の製造に好適な製造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a precipitation-hardening superheat-resistant alloy used for gas turbine disks for power generation, etc. This is a suitable manufacturing method.

【0002】[0002]

【従来の技術】Fe−Ni基合金などの析出硬化型超耐熱
合金の熱処理は、合金組成に応じて様々な条件が設定さ
れているが、基本的には固溶化処理と時効処理との組合
せによって行われている。これらの熱処理では、固溶化
処理によって、前段階までの製造過程で生じた析出相を
一度固溶させた上で、時効処理により硬化析出相をマト
リックス中に均一に分散析出させて強化を図るものであ
る。これに対して、固溶化処理と時効処理との間に、中
間時効処理を行って三段階で熱処理を施す場合がある。
この中間時効処理は、時効処理により析出させる硬化析
出相とは異なる安定相を析出させ、それを有効活用して
特性改善を図るものである。
Various conditions have been set for heat treatment of precipitation hardening type super heat resistant alloys such as Fe-Ni based alloys, but basically, a combination of solution treatment and aging treatment is used. Is done by. In these heat treatments, the precipitation phase generated in the manufacturing process up to the previous stage is once solid-solved by the solution treatment, and then the hardening precipitation phase is uniformly dispersed and precipitated in the matrix by the aging treatment for strengthening. Is. On the other hand, an intermediate aging treatment may be performed between the solution treatment and the aging treatment, and the heat treatment may be performed in three stages.
This intermediate aging treatment is intended to precipitate a stable phase different from the hardened precipitation phase to be precipitated by the aging treatment and effectively utilize it to improve the characteristics.

【0003】このような三段階の熱処理においては、固
溶化処理後の冷却は空冷またはこれよりも冷却速度の速
い冷却方法(油冷や水冷などの加速冷却)で行ってお
り、中間時効処理後および時効処理後の冷却は空冷で行
っている。その理由は、固溶化処理後の冷却が遅くなる
と冷却中に相析出が起こり、その後の中間時効処理や時
効処理における相析出挙動に悪影響を及ぼす可能性があ
ることから、小型・薄肉の材料には空冷を、また大型・
厚肉の材料には油冷または水冷といった加速冷却を施し
ている。
In such a three-stage heat treatment, cooling after the solution treatment is performed by air cooling or a cooling method having a faster cooling rate (accelerated cooling such as oil cooling or water cooling), and after the intermediate aging treatment and Cooling after the aging treatment is performed by air cooling. The reason is that if the cooling after the solution treatment is delayed, phase precipitation may occur during cooling, which may adversely affect the phase precipitation behavior in the subsequent intermediate aging treatment and aging treatment. Is air cooling, large size
The thick material is subjected to accelerated cooling such as oil cooling or water cooling.

【0004】[0004]

【発明が解決しようとする課題】しかし、析出硬化型超
耐熱合金に上記したような三段階の熱処理を施す場合
に、とくに厚肉の部材においては強度低下が問題とな
る。これは、厚肉部材を固溶化処理後に加速冷却する
と、急冷によりひずみが生じ、その後の中間時効処理中
に硬化析出相とは異なる粗大な安定相が粒内に析出し
て、強度低下を招くためである。これに対し、厚肉部材
を固溶化処理後に、空冷してひずみの発生を抑制するこ
とが考えられるが、その冷却中に硬化析出相が成長粗大
化して、とくに厚肉の部材においては同様に強度低下を
招いてしまう。このように厚肉部材における強度低下
は、上記の熱処理では冷却速度を選定しても不可避のも
のである。この発明は上記事情を背景としてなされたも
のであり、前述の厚肉部材における強度低下やひずみの
発生を防止する製造方法を提供することを目的とする。
However, when the precipitation-hardening superheat-resistant alloy is subjected to the above-described three-step heat treatment, the decrease in strength poses a problem especially in thick-walled members. This is because when a thick member is accelerated and cooled after solution treatment, strain occurs due to rapid cooling, and during the subsequent intermediate aging treatment, a coarse stable phase different from the hardened precipitation phase precipitates in the grains, leading to a decrease in strength. This is because. On the other hand, it is conceivable to suppress the occurrence of strain by air-cooling after the solid solution treatment of the thick member, but the hardening precipitation phase grows and coarsens during the cooling, and especially in the case of a thick member. This leads to a decrease in strength. As described above, the reduction in strength of the thick member is unavoidable even if the cooling rate is selected in the above heat treatment. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manufacturing method for preventing the reduction in strength and the occurrence of strain in the thick member described above.

【0005】[0005]

【課題を解決するための手段】すなわち、上記課題を解
決するため、本願発明の析出硬化型超耐熱合金の製造方
法は、固溶化処理後、空冷またはそれよりも遅い冷却速
度で所定温度まで冷却するとともに、この温度で所定時
間保持して中間時効処理を行い、その後、急冷し、さら
に、時効処理を行うことを特徴とする。また、第2の発
明は、固溶化処理後、空冷またはそれよりも遅い冷却速
度で冷却し、その後、急冷し、さらに、時効処理を行う
ことを特徴とする。
In other words, in order to solve the above-mentioned problems, a method for producing a precipitation hardening type super heat resistant alloy according to the present invention is such that after solution treatment, it is air cooled or cooled to a predetermined temperature at a slower cooling rate. At the same time, the temperature is maintained for a predetermined time to perform an intermediate aging treatment, followed by quenching and further aging treatment. Further, the second invention is characterized in that after the solution treatment, it is cooled by air or at a slower cooling rate than that, followed by rapid cooling and further aging treatment.

【0006】上記方法における固溶化処理、中間時効処
理および時効処理の条件は、固溶化処理、中間時効処理
後の冷却速度を除いて、超耐熱合金の組成に従って適宜
選定される。これをFe−Ni基超耐熱合金であるインコ
ネル706合金(商標)を一例として示せば、925℃
〜980℃の固溶化処理、800〜850℃での保持時
間5時間以下の中間時効処理(成分、固溶化処理後の冷
却速度に応じて温度と時間を選定する)。さらに、72
0℃で8時間、620℃で8時間の時効処理を行うこと
になる。また、第2の発明のように、合金種、固溶化処
理後の冷却速度によっては、その冷却中に中間時効が進
行し、所定温度での保持が不要となる。
The conditions of the solution treatment, the intermediate aging treatment and the aging treatment in the above method are appropriately selected according to the composition of the super heat resistant alloy except for the cooling rate after the solution treatment and the intermediate aging treatment. If this is shown as an example of Inconel 706 alloy (trademark) which is a Fe-Ni based super heat resistant alloy, it is 925 ° C.
Solution treatment at ˜980 ° C., intermediate aging treatment at a temperature of 800 ° C. to 850 ° C. for 5 hours or less (the temperature and time are selected according to the components and the cooling rate after the solution treatment). In addition, 72
The aging treatment is performed at 0 ° C. for 8 hours and at 620 ° C. for 8 hours. Further, as in the second aspect of the invention, depending on the alloy species and the cooling rate after the solution treatment, the intermediate aging progresses during the cooling, and it is not necessary to maintain at a predetermined temperature.

【0007】なお、固溶化処理後の冷却は、上記したよ
うに空冷またはこれよりも冷却速度の遅い徐冷により行
われる。空冷には空気中放冷の他に、送風冷却を含むも
のであり、また徐冷も炉冷などの方法により行われる。
中間時効処理後の冷却は、送風冷却や水冷、油冷などの
加速冷却によって行う。本願発明は、析出硬化型超耐熱
合金を対象とするが、上記したFe−Ni基超耐熱合金の
他に、例えば、Ni基、Fe基、Co基超耐熱合金なども
当然に対象となる。そして、本願発明は、大型・厚肉部
材に特に好適なものであるが、本願発明の対象がこれに
限定されるものではなく、薄肉部材への適用も可能であ
り、大型厚肉部材と同様の効果を得ることができる。
The cooling after the solution treatment is carried out by air cooling or slow cooling whose cooling rate is slower than that described above. Air cooling includes air cooling as well as blast cooling, and slow cooling is also performed by a method such as furnace cooling.
The cooling after the intermediate aging treatment is performed by blast cooling, accelerated cooling such as water cooling or oil cooling. The present invention is intended for precipitation hardening type super heat resistant alloys, but naturally other than the above Fe-Ni base super heat resistant alloys, for example, Ni base, Fe bases, Co base super heat resistant alloys and the like can also be targeted. The invention of the present application is particularly suitable for large-sized / thick-walled members, but the object of the present invention is not limited to this, and can be applied to thin-walled members, similar to large-sized thick-walled members. The effect of can be obtained.

【0008】[0008]

【作用】固溶化処理後、加速冷却することにより析出す
る粗大安定相は、以下の如きメカニズムにより強度低下
の原因となる。すなわち、比較的厚肉の部材を固溶化処
理後、加速冷却した場合、熱応力が発生し、高応力部で
粒内すべりが起こる。このような状態で中間時効処理を
施すと、このすべり面上に安定相が優先的に析出粗大化
することとなる。一般に中間時効処理で析出する安定相
には硬化析出相を形成する元素(以下、硬化元素とい
う)も含まれており、粒内でこの安定相が大量析出する
と固溶している硬化元素量を低減し、最後の時効処理で
析出する硬化析出相の量を著しく減らす結果となり、こ
れが強度低下の原因となっている。
The coarse stable phase precipitated by the accelerated cooling after the solution treatment causes the strength reduction due to the following mechanism. That is, when a relatively thick member is subjected to solution treatment and then accelerated cooling, thermal stress occurs and intragranular slip occurs in the high stress portion. When the intermediate aging treatment is applied in such a state, the stable phase preferentially precipitates and coarsens on the slip surface. Generally, the stable phase that precipitates during the intermediate aging treatment also contains the element that forms the hardening precipitation phase (hereinafter referred to as the hardening element). As a result, the amount of the hardened precipitation phase that precipitates in the final aging treatment is significantly reduced, which causes the strength to decrease.

【0009】したがって、このような強度低下を招かな
いためには、中間時効処理前に粒内すべりを起こさない
ように、本願発明の構成に従って固溶化処理後の冷却を
空冷または徐冷で行って熱応力の発生を防止することが
効果的である。ただし、従来から、固溶化処理後の冷却
を空冷または徐冷で行った場合には、その冷却中に硬化
析出相の析出・成長粗大化が起こり、他の強度低下をも
たらすと考えられており、上記の方法により一方の原因
による強度低下を防止できても、他の原因に基づく強度
低下を招くことが懸念される。
Therefore, in order not to cause such a decrease in strength, cooling after the solution treatment is performed by air cooling or slow cooling according to the constitution of the present invention so as to prevent intragranular slip before the intermediate aging treatment. It is effective to prevent the generation of thermal stress. However, it has been conventionally considered that when cooling after the solution treatment is performed by air cooling or slow cooling, precipitation / growth coarsening of the hardening precipitation phase occurs during the cooling, which causes other strength reduction. Even though the above method can prevent the strength reduction due to one of the causes, there is a concern that the strength reduction due to the other cause may be caused.

【0010】ここで、本願発明者らは、硬化析出相の挙
動を詳細に調査した結果、固溶化処理後の冷却中に析出
した硬化析出相は中間時効処理中に再固溶するため、時
効処理前の硬化析出相の状態を支配するのは主として中
間時効処理後の冷却速度であることを見いだした。これ
は中間時効処理温度が一般に硬化析出相の析出温度(す
なわち、時効処理温度)より高いことから生じる現象で
ある。 したがって、一つの方法としては、固溶化処理
後の冷却を空冷または徐冷として中間時効処理後の冷却
を加速処理とすることにより硬化析出相の粗大化に起因
する強度低下を防ぐことが可能になると考えられる。
Here, as a result of detailed investigation of the behavior of the hardening precipitation phase, the inventors of the present invention have found that the hardening precipitation phase precipitated during cooling after the solution treatment re-dissolves during the intermediate aging treatment. It was found that the cooling rate after the intermediate aging treatment mainly controls the state of the hardening precipitation phase before the treatment. This is a phenomenon caused by the fact that the intermediate aging temperature is generally higher than the precipitation temperature of the hardening precipitation phase (that is, the aging temperature). Therefore, as one method, it is possible to prevent the decrease in strength due to the coarsening of the hardening precipitation phase by performing cooling after the intermediate aging treatment by accelerating the cooling after the solution treatment by air cooling or slow cooling. It is considered to be.

【0011】ところが、非常に厚肉の部材では、固溶化
処理後の空冷または徐冷中に硬化析出相の析出、粗大化
が進行してしまい、中間時効処理においても十分に固溶
しないで、強度の低下を招くことがある。そこで、本願
発明は上記の考え方をさらに進めて固溶化処理後の空冷
を中間時効処理温度で止め、この温度に保持するか、こ
の温度域を徐冷することにより安定相を粒界に析出させ
た後加速冷却することにより、非常に厚肉の部材でも冷
却中に硬化析出相の析出、粗大化が進行しないように工
夫したものである。これにより、硬化析出相の粗大化に
よる強度低下を確実に防止することができる。
However, in a member having a very thick wall, precipitation and coarsening of the hardening precipitation phase proceed during air cooling or slow cooling after the solution treatment, and the solid solution does not form a sufficient solid solution even in the intermediate aging treatment, and the strength of the member is increased. It may cause a decrease. Therefore, the present invention further advances the above idea and stops the air cooling after the solution treatment at the intermediate aging treatment temperature and keeps this temperature or gradually cools this temperature range to precipitate a stable phase at the grain boundary. By accelerating and then cooling, even a very thick member is devised so that precipitation and hardening of the hardening precipitation phase do not proceed during cooling. As a result, it is possible to reliably prevent a decrease in strength due to the coarsening of the hardening precipitation phase.

【0012】[0012]

【実施例】本発明の実施例として、Fe−Ni基析出硬化
型超耐熱合金であるインコネル706合金(商標、以下
同じ)に適用した例を以下に示す。インコネル706合
金は、クリープ強度要求のある場合には、845℃×3
時間で加熱した後空冷するという中間時効処理(安定化
処理ともいう)を固溶化処理と時効処理との間で施すべ
きことが規格(AMS規格)に定められている。そこで
表1に示す組成を有するインコネル706合金を用い
て、厚肉部材として300mm×500mm×500m
mのブロックを用意し、固溶化処理(980℃×3時
間)、中間時効処理(845℃×3時間)および時効処
理(720℃×8時間加熱、冷却速度50℃/時間で冷
却、620℃×8時間加熱後、空冷)という三段階の熱
処理を施した。また、他の用例として、固溶化処理後の
冷却をさらに遅い冷却速度で行って冷却中に中間時効を
行い、所定温度における保持を行なうことなく冷却して
上記時効処理を行う実施例2を行った。
EXAMPLE As an example of the present invention, an example applied to Inconel 706 alloy (trademark, the same applies hereinafter), which is a Fe-Ni based precipitation hardening type super heat resistant alloy, is shown below. Inconel 706 alloy is 845 ° C x 3 when creep strength is required.
The standard (AMS standard) stipulates that an intermediate aging treatment (also referred to as stabilization treatment) of heating for a period of time and then air cooling should be performed between the solution treatment and the aging treatment. Therefore, using Inconel 706 alloy having the composition shown in Table 1, 300 mm × 500 mm × 500 m as a thick member
m block is prepared, solution treatment (980 ° C. × 3 hours), intermediate aging treatment (845 ° C. × 3 hours) and aging treatment (720 ° C. × 8 hours heating, cooling at a cooling rate of 50 ° C./hour, 620 ° C. After heating for 8 hours, air-cooling was performed in three steps. Further, as another example, Example 2 in which cooling after the solution treatment is performed at a slower cooling rate to perform intermediate aging during cooling, and the aging treatment is performed by cooling without holding at a predetermined temperature is performed. It was

【0013】このうち、実施例1、2は、図1のヒート
パターンに示すように固溶化処理後の冷却を炉冷で行
い、中間時効処理後の冷却を水冷で行った。一方、比較
例では、図2に示すように、固溶化処理後の冷却を水冷
または空冷(放冷)で行い、常温まで冷却した後、中間
時効処理後の冷却も水冷または空冷(放冷)で行った。
得られた各試験材について室温で表層部および肉厚中心
部の機械的性質を測定し、その結果を表2に示した。さ
らに、各試験材の肉厚中心部について600、650、
700℃におけるクリープ破断試験を行い、その結果を
表3に示した。
Among them, in Examples 1 and 2, the cooling after the solution treatment was performed by furnace cooling and the cooling after the intermediate aging treatment was performed by water cooling as shown in the heat pattern of FIG. On the other hand, in Comparative Example, as shown in FIG. 2, cooling after solution treatment is performed by water cooling or air cooling (cooling), and after cooling to room temperature, cooling after intermediate aging treatment is also water cooling or air cooling (cooling). I went there.
The mechanical properties of the surface layer portion and the thickness center portion of each of the obtained test materials were measured at room temperature, and the results are shown in Table 2. Further, 600, 650 for the thickness center of each test material,
A creep rupture test was performed at 700 ° C., and the results are shown in Table 3.

【0014】表2から明らかなように、実施例の試験材
1、2は、優れた強度を有しているのに対し、比較例の
試験材3、4では著しい強度低下が認められる。これは
前述の粗大安定相(インコネル706合金ではη相)の
粒内析出によるものである。一方、固溶化処理、中間時
効処理ともに空冷した試験材6では水冷材ほど著しい強
度低下はないものの、やはり低強度となっている。これ
は硬化析出相であるγ’相の析出・成長粗大化が起こっ
たことによる。中間時効処理後の冷却を水冷とした試験
材5は、比較例の中では最も高強度であるが、実施例よ
りは低く、固溶化処理後空冷の影響が残っている。ま
た、表3から明らかなように、実施例の試験材は、比較
例の試験材に比べてクリープ破断時間が非常に長く、ク
リープ特性にも優れている。
As is clear from Table 2, the test materials 1 and 2 of the examples have excellent strength, whereas the test materials 3 and 4 of the comparative example show a marked decrease in strength. This is due to intragranular precipitation of the above-mentioned coarse stable phase (η phase in Inconel 706 alloy). On the other hand, the test material 6 which has been air-cooled in both the solution treatment and the intermediate aging treatment does not show a significant decrease in strength as compared with the water-cooled material, but has a low strength. This is because precipitation and growth coarsening of the γ'phase, which is a hardening precipitation phase, occurred. The test material 5 in which the cooling after the intermediate aging treatment was water cooling has the highest strength among the comparative examples, but it is lower than the examples, and the effect of air cooling after the solution treatment remains. Further, as is clear from Table 3, the test materials of the examples have a very long creep rupture time and excellent creep characteristics as compared with the test materials of the comparative examples.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】以上説明したように、本願発明の析出硬
化型超耐熱合金の製造方法によれば、固溶化処理後、空
冷またはそれよりも遅い冷却速度で所定温度まで冷却
し、その間に中間時効を行わせるか、この温度で所定時
間保持して中間時効処理を行い、その後、急冷し、さら
に、時効処理を行うので、大型厚肉の部材で問題となっ
ていた熱処理時の強度低下を防止して、均一で十分な強
度を有する析出硬化型超耐熱合金を製造することができ
る。また、小型薄肉の部材でも同様の効果を得ることが
できる。
As described above, according to the method for producing a precipitation hardening type super heat resistant alloy of the present invention, after solution treatment, it is cooled to a predetermined temperature by air cooling or a cooling rate slower than that, and in the meantime. Aging is performed, or this temperature is maintained for a predetermined time for intermediate aging treatment, followed by rapid cooling and then aging treatment, so the strength reduction during heat treatment, which was a problem with large thick parts, is reduced. It is possible to prevent and produce a precipitation-hardening superheat-resistant alloy that is uniform and has sufficient strength. Further, the same effect can be obtained with a small and thin member.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例の熱処理ヒートパター
ン図である。
FIG. 1 is a heat treatment heat pattern diagram of an example of the present invention.

【図2】図2は、比較例の熱処理ヒートパターン図であ
る。
FIG. 2 is a heat treatment heat pattern diagram of a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 析出硬化型超耐熱合金の製造方法におい
て、固溶化処理後、空冷またはそれよりも遅い冷却速度
で所定温度まで冷却するとともに、この温度で所定時間
保持して中間時効処理を行い、その後、急冷し、さら
に、時効処理を行うことを特徴とする析出硬化型超耐熱
合金の製造方法
1. In a method for producing a precipitation hardening type super heat-resistant alloy, after solution treatment, cooling is performed to a predetermined temperature by air cooling or a cooling rate slower than that, and the intermediate aging treatment is performed by maintaining this temperature for a predetermined time. Then, the method for producing a precipitation-hardening superheat-resistant alloy is characterized by performing quenching and then aging treatment.
【請求項2】 析出硬化型超耐熱合金の製造方法におい
て、固溶化処理後、空冷またはそれよりも遅い冷却速度
で所定温度まで冷却し、その後、急冷し、さらに、時効
処理を行うことを特徴とする析出硬化型超耐熱合金の製
造方法
2. A method for producing a precipitation-hardening superheat-resistant alloy, characterized in that after solution treatment, it is cooled to a predetermined temperature by air cooling or a cooling rate slower than that, then rapidly cooled, and then an aging treatment is performed. For producing precipitation hardening type super heat resistant alloy
JP4878893A 1993-02-16 1993-02-16 Production of precipitation hardening superalloy Pending JPH06240427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4878893A JPH06240427A (en) 1993-02-16 1993-02-16 Production of precipitation hardening superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4878893A JPH06240427A (en) 1993-02-16 1993-02-16 Production of precipitation hardening superalloy

Publications (1)

Publication Number Publication Date
JPH06240427A true JPH06240427A (en) 1994-08-30

Family

ID=12812978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4878893A Pending JPH06240427A (en) 1993-02-16 1993-02-16 Production of precipitation hardening superalloy

Country Status (1)

Country Link
JP (1) JPH06240427A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774530A1 (en) * 1995-11-17 1997-05-21 Asea Brown Boveri Ag Process for producing a heat resistant part from an iron-nickel superalloy
FR2768156A1 (en) * 1997-09-05 1999-03-12 Korea Atomic Energy Res Tempering a nickel based alloy to improve corrosion resistance
US6997994B2 (en) 2001-09-18 2006-02-14 Honda Giken Kogyo Kabushiki Kaisha Ni based alloy, method for producing the same, and forging die
JP2008088525A (en) * 2006-10-04 2008-04-17 Toshiba Corp Turbine rotor and steam turbine
CN110760830A (en) * 2019-11-25 2020-02-07 和县卜集振兴标准件厂 Passivation process for 304 stainless steel nut
CN115927987A (en) * 2022-12-29 2023-04-07 北京钢研高纳科技股份有限公司 Heat treatment method of high-temperature alloy disc shaft type forge piece and disc shaft type forge piece manufactured by same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774530A1 (en) * 1995-11-17 1997-05-21 Asea Brown Boveri Ag Process for producing a heat resistant part from an iron-nickel superalloy
FR2768156A1 (en) * 1997-09-05 1999-03-12 Korea Atomic Energy Res Tempering a nickel based alloy to improve corrosion resistance
US6997994B2 (en) 2001-09-18 2006-02-14 Honda Giken Kogyo Kabushiki Kaisha Ni based alloy, method for producing the same, and forging die
JP2008088525A (en) * 2006-10-04 2008-04-17 Toshiba Corp Turbine rotor and steam turbine
CN110760830A (en) * 2019-11-25 2020-02-07 和县卜集振兴标准件厂 Passivation process for 304 stainless steel nut
CN115927987A (en) * 2022-12-29 2023-04-07 北京钢研高纳科技股份有限公司 Heat treatment method of high-temperature alloy disc shaft type forge piece and disc shaft type forge piece manufactured by same

Similar Documents

Publication Publication Date Title
US11047016B2 (en) Techniques for controlling precipitate phase domain size in an alloy
RU2361009C2 (en) Alloys on basis of nickel and methods of thermal treatment of alloys on basis of nickel
JP5299610B2 (en) Method for producing Ni-Cr-Fe ternary alloy material
JP2974684B2 (en) Heat treatment method for improving fatigue properties and improved superalloy
JP2000212709A (en) Thermal-mechanical method for producing superalloy improving strength and thermal stability
JP2007146296A (en) Article made of superalloy and method for producing superalloy workpiece
US3677830A (en) Processing of the precipitation hardening nickel-base superalloys
JP5951499B2 (en) Method of manufacturing Inconel 718 type nickel superalloy
JPH11246924A (en) Ni-base single crystal superalloy, its production, and gas turbine parts
JP4106113B2 (en) Heat treatment method for heat-resistant iron-nickel superalloy material body and heat-treated material body
JPH06240427A (en) Production of precipitation hardening superalloy
JPH09170054A (en) In706 type iron/nickel super alloy
JP2000063969A (en) Nickel base superalloy, its production and gas turbine part
JPH09170016A (en) Production of high-temperature-stable object made of in706 type iron/nickel super alloy
JP2003034853A (en) HEAT TREATMENT METHOD FOR Ni-BASED ALLOY
CN117385152A (en) Homogenizing treatment method for W, mo-element-containing superalloy ingot casting group furnace
JP2013133505A (en) Heat treatment method of nickel base single crystal superalloy and nickel base single crystal superalloy
JP3926877B2 (en) Heat treatment method for nickel-base superalloy
JPH05295497A (en) Manufacture of precipitation hardening super heat-resistant alloy
KR101626913B1 (en) Method of thermo-mechanical treatment of heat-resistant alloy containing tungsten for enhancement of creep resistance and heat-resistant alloy the same
CN110699531A (en) Method for mechanical heat treatment of high-temperature alloy
WO2023243146A1 (en) Ni-based alloy member manufacturing method
JP2002322548A (en) METHOD FOR PRODUCING Nb-CONTAINING Ni-BASED HEAT RESISTANT SUPERALLOY AND METHOD FOR IMPROVING NOTCH RUPTURE RESISTANCE THEREOF
JPH08209315A (en) Production of precipitation reinforcement type heat resistant alloy
JP7009928B2 (en) Fe—Ni based alloy