JPH08188853A - Ferritic stainless steel excellent in fused carbonate corrosion resistance - Google Patents

Ferritic stainless steel excellent in fused carbonate corrosion resistance

Info

Publication number
JPH08188853A
JPH08188853A JP7001281A JP128195A JPH08188853A JP H08188853 A JPH08188853 A JP H08188853A JP 7001281 A JP7001281 A JP 7001281A JP 128195 A JP128195 A JP 128195A JP H08188853 A JPH08188853 A JP H08188853A
Authority
JP
Japan
Prior art keywords
molten carbonate
corrosion resistance
stainless steel
corrosion
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7001281A
Other languages
Japanese (ja)
Other versions
JP3008798B2 (en
Inventor
Yoshitaka Nishiyama
佳孝 西山
Yoshio Taruya
芳男 樽谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7001281A priority Critical patent/JP3008798B2/en
Publication of JPH08188853A publication Critical patent/JPH08188853A/en
Application granted granted Critical
Publication of JP3008798B2 publication Critical patent/JP3008798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE: To produce an inexpensive ferritic stainless steel excellent in fused carbonate corrosion resistance. CONSTITUTION: This steel is a ferritic stainless steel excellent in fused carbonate corrosion resistance, which has a composition consisting of, by weight, <=0.08% C, 0.01-2% Si, <=1% Mn, B-22% Cr, <=2% Mo, 0.1-3% Ti, and the balance essentially Fe with inevitable impurities and further containing, if necessary, 0.1-2% Cu.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
等に用いられる耐溶融炭酸塩腐食性に優れたフェライト
系ステンレス鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel having excellent resistance to molten carbonate corrosion, which is used in molten carbonate fuel cells and the like.

【0002】[0002]

【従来の技術】21世紀における石油資源枯渇と大気汚
染等の環境問題より、次世代の電力供給源として、石炭
改質ガスを利用することができる燃料電池が脚光を浴び
始めている。燃料電池は起電力を発生する電解質によっ
てリン酸型、溶融炭酸塩型、固体電解質型などの種類が
あり、各々運転温度、発電効率が異なる。このうち、L
NGと石炭改質ガスを利用する溶融炭酸塩型燃料電池は
分散型電源やガスタービンとの複合発電による大規模集
中型電源として注目されている。現在100kW級スタ
ックの開発が終了し、1MW級のプラントに着手されて
いる。
2. Description of the Related Art Due to environmental problems such as exhaustion of petroleum resources and air pollution in the 21st century, fuel cells that can use coal reformed gas as a next-generation power supply source have come into the spotlight. There are various types of fuel cells, such as phosphoric acid type, molten carbonate type, and solid electrolyte type, depending on the electrolyte that generates electromotive force, and the operating temperature and power generation efficiency are different. Of these, L
A molten carbonate fuel cell using NG and coal reformed gas has been attracting attention as a large-scale centralized power source by a combined power generation with a distributed power source and a gas turbine. Currently, development of 100kW class stack has been completed, and 1MW class plant has been started.

【0003】しかしながら、このような大型化を実現
し、商用プラントとして実用化するためには装置の長時
間の安定性と信頼性、さらには低コスト化が重要とな
る。
However, in order to realize such an increase in size and put it into practical use as a commercial plant, it is important that the device be stable and reliable for a long time, and that the cost be reduced.

【0004】現状での一つの大きな問題として、電解質
である溶融炭酸塩による金属材料の腐食がある。特に、
600〜 700℃の高温の溶融炭酸塩に接するセパレータ材
や集電板は激しい腐食環境にさらされ、電池の寿命劣化
の要因となっている。
One of the major problems at present is the corrosion of metallic materials by molten carbonate which is an electrolyte. In particular,
Separator materials and collector plates that come in contact with molten carbonate at a high temperature of 600 to 700 ℃ are exposed to severe corrosive environments, which is a factor in the deterioration of battery life.

【0005】従来セパレータ材には、SUS316L(Fe-17Cr-
12Ni-2.5Mo) やSUS310S(Fe-25Cr-20Ni) が用いられてき
たが、耐食性は充分でない。
Conventional separator material is SUS316L (Fe-17Cr-
12Ni-2.5Mo) and SUS310S (Fe-25Cr-20Ni) have been used, but their corrosion resistance is not sufficient.

【0006】溶融炭酸塩に対する耐食性の改善策とし
て、特公平4-37154 号公報には 1〜 2%のAlを添加する
こと、特開昭63-190143 号公報には 0.1〜 0.9%のAlと
Y を複合添加することが開示されており、また特開平1ー
252750号公報、特開平1-252757号公報にはSi量を 0.2%
以下に規制し、かつAlを添加したステンレス鋼及びNi
基合金が開示されている。
As a measure for improving the corrosion resistance to molten carbonate, Japanese Patent Publication No. 4-37154 discloses adding 1 to 2% of Al, and Japanese Patent Laid-Open Publication No. 63-190143 discloses adding 0.1 to 0.9% of Al.
It is disclosed that Y is added in combination.
In 252750 and Japanese Patent Laid-Open No. 1-252757, the Si content is 0.2%.
Stainless steel and Ni with Al added and regulated below
Base alloys are disclosed.

【0007】特開昭64-68449号公報ではFe、Cr、Ni量
を、特開平4-247852号公報ではCr、Ni量及びMn量を規定
したステンレス鋼が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 64-68449 discloses stainless steel in which the amounts of Fe, Cr, and Ni are specified, and Japanese Unexamined Patent Publication (Kokai) No. 4-247852 discloses the amounts of Cr, Ni, and Mn.

【0008】しかしながら、これらステンレス鋼及びN
i基合金は、SUS316L 等の従来材に比し、溶融炭酸塩に
対する耐食性の向上が見られるものの、長時間の耐用を
考えた場合十分とは言えない。
However, these stainless steels and N
Although the i-based alloy has improved corrosion resistance to molten carbonate as compared with conventional materials such as SUS316L, it cannot be said to be sufficient in consideration of long-term durability.

【0009】また、さらに上記の鋼はNiを含有するFe-C
r-Ni系ステンレス鋼が大半であり、コスト及び後述する
ようにNiの溶融炭酸塩腐食に及ぼす弊害を考慮した場合
満足できるものとは言えない。
Further, the above steel is Fe-C containing Ni.
Most of them are r-Ni type stainless steels, and they cannot be said to be satisfactory in consideration of cost and adverse effects of Ni on molten carbonate corrosion as described later.

【0010】[0010]

【発明が解決しようとする課題】このように溶融炭酸塩
型燃料電池に用いられる金属材料は、溶融炭酸塩中での
腐食機構が十分に解明されていないこともあり、決定的
な耐食性材料の開発が行われていないのが現状である。
As described above, the metal material used in the molten carbonate fuel cell is not a decisive corrosion resistant material because the corrosion mechanism in the molten carbonate is not fully understood. The current situation is that no development has been carried out.

【0011】本発明の目的は、安価であって、耐溶融炭
酸塩腐食性に優れたステンレス鋼を提供することにあ
る。
An object of the present invention is to provide a stainless steel which is inexpensive and has excellent resistance to molten carbonate corrosion.

【0012】[0012]

【課題を解決するための手段】本発明者らは、溶融炭酸
塩環境において優れた耐食性を有し、かつ安価なステン
レス鋼の材料開発を行うに際し、Fe-Cr 系ステンレス鋼
は、Niを基本的に含有していないため安価であるこ
と、鋼中Niはカソード側雰囲気において溶解するため
長時間の耐食性劣化要因となり得ること、から従来使用
されているFe-Cr-Ni系ステンレス鋼に替わる溶融炭酸塩
型燃料電池の構成部材として有望であるとの観点から、
Fe-Cr 系ステンレス鋼について検討を行った。
[Means for Solving the Problems] In developing the material of stainless steel which has excellent corrosion resistance in a molten carbonate environment and is inexpensive, the present inventors It is cheap because it is not contained in the steel, and Ni in the steel dissolves in the atmosphere on the cathode side, which can be a factor for deterioration of corrosion resistance for a long time. From the viewpoint that it is promising as a constituent member of a carbonate fuel cell,
Fe-Cr system stainless steel was examined.

【0013】安価な Fe-Cr系ステンレス鋼の化学成分を
広範囲に変えた材料について、生成するスケールの構造
に着目し、系統的な調査、研究を重ねた結果、以下のよ
うな知見を得るに至った。
[0013] As a result of systematic investigations and researches focusing on the structure of the scales of the materials produced by changing the chemical composition of inexpensive Fe-Cr stainless steel in a wide range, the following findings were obtained. I arrived.

【0014】A)材料表面に生成するスケールが、Cr系
主体の酸化物の場合は、電解質であるLi2CO3と容易に反
応し、LiCrO2を形成するため耐食性が劣るばかりか電解
質の損失を招くこと。
A) When the scale formed on the material surface is an oxide mainly composed of Cr, it easily reacts with Li 2 CO 3 which is an electrolyte to form LiCrO 2 , so that not only the corrosion resistance is deteriorated but also the loss of the electrolyte. To invite.

【0015】B)Cr系酸化物を生成する合金にTiを適正
量添加することにより、Cr系酸化物の内、外層側に酸化
物が形成される。内側は TiO2 内部酸化層として Cr2O3
/地金界面に存在しており、スケール密着性を高めるこ
と。
B) By adding an appropriate amount of Ti to an alloy that produces a Cr-based oxide, an oxide is formed on the outer layer side of the Cr-based oxide. Inside is TiO 2 as an internal oxide layer Cr 2 O 3
/ It exists at the bare metal interface and enhances scale adhesion.

【0016】C)外側は Fe-Cr系酸化物とTi系酸化物か
ら成る外層スケールが形成される。
C) An outer layer scale made of Fe-Cr oxide and Ti oxide is formed on the outside.

【0017】これら酸化物は溶融炭酸塩に対する溶解度
が小さく、溶融炭酸塩腐食に優れた耐食性を示すこと。
These oxides have low solubility in molten carbonate and exhibit excellent corrosion resistance against molten carbonate corrosion.

【0018】D)外層スケール中のTi系酸化物が増え、
スケールの最外表面を被うTi系酸化物が増えると、溶融
炭酸塩の浸延性が抑制されること。ここに浸延性とは、
溶融炭酸塩が合金表面に付着したとき、その溶融炭酸塩
が表面を浸食しつつ周辺域に広がる現象を言う。
D) The Ti-based oxide in the outer layer scale increases,
When the Ti-based oxide covering the outermost surface of the scale increases, the ductility of molten carbonate is suppressed. Here, the ductility is
When molten carbonate adheres to the alloy surface, it refers to the phenomenon that the molten carbonate spreads to the peripheral area while eroding the surface.

【0019】E)Tiに加え、さらにCuを添加すると耐食
性が一層向上すること。
E) Corrosion resistance is further improved by adding Cu in addition to Ti.

【0020】本発明は、これらの知見に基づき完成させ
たものであり、その要旨とするところは、「重量%で、
C:0.08%以下、Si:0.01〜 2%、Mn: 1%以下、Cr:
8〜22%、Mo: 2%以下、Ti: 0.1〜 3%を含み、更に
必要によりCu: 0.1〜 2%を含み、残部実質的にFeおよ
び不可避的不純物からなることを特徴とする耐溶融炭酸
塩腐食性に優れたフェライト系ステンレス鋼」にある。
The present invention has been completed on the basis of these findings, and the gist of the invention is "in weight%,
C: 0.08% or less, Si: 0.01 to 2%, Mn: 1% or less, Cr:
8 to 22%, Mo: 2% or less, Ti: 0.1 to 3%, optionally Cu: 0.1 to 2%, and the balance substantially consisting of Fe and inevitable impurities. Ferritic stainless steel with excellent carbonate corrosion ”.

【0021】[0021]

【作用】以下、本発明における成分組成を限定した理由
及び作用について説明する。
The function and the function of limiting the component composition in the present invention will be described below.

【0022】C:鋼中のCは、0.08%を超えて多量にな
ると溶接部の耐食性能、溶接部及び母材の靭性に悪影響
を及ぼすため上限を0.08%とする。
C: If the content of C in steel exceeds 0.08% and becomes large, it adversely affects the corrosion resistance of the weld and the toughness of the weld and the base metal, so the upper limit is made 0.08%.

【0023】Si:Siは溶解時の有効な脱酸元素であ
る。さらに溶融炭酸塩雰囲気においては、 Cr2O3/地金
界面に SiO2 を形成し、腐食を抑制する。しかしなが
ら、その含有量が 0.01%未満ではその効果がなく、一
方 2%を超えると常温での靭性及び成形性を著しく低下
させるので上限を 2%とした。
Si: Si is an effective deoxidizing element during melting. Further, in a molten carbonate atmosphere, SiO 2 is formed at the Cr 2 O 3 / metal interface to suppress corrosion. However, if its content is less than 0.01%, it has no effect. On the other hand, if it exceeds 2%, the toughness and formability at room temperature are significantly reduced, so the upper limit was made 2%.

【0024】Mn:MnはSiと同様、有益な脱酸成分であ
るが、その含有量が多いと鋼中SとMnS を形成し、耐食
性の劣化を招くので上限を 1%とする。
Like Si, Mn: Mn is a useful deoxidizing component, but if its content is large, it forms S and MnS in steel and causes deterioration of corrosion resistance, so the upper limit is made 1%.

【0025】Cr:Crは本発明において重要な元素の一
つである。カソード側環境において、耐溶融炭酸塩腐食
性を向上させる作用がありその効果は 8%以上で発揮さ
れる。しかしながらCr含有量が多くなり過ぎると、表層
はCr系主体の単一酸化スケールとなり、電解質である L
i2CO3 と反応し、LiCrO2を形成し、電解質中に溶出しや
すく、皮膜の安定性を劣化させ、また電解質の損失を招
くことから、Crを22%以下に制限する。好ましくは、9
〜20%である。
Cr: Cr is one of the important elements in the present invention. In the cathode side environment, it has the effect of improving the molten carbonate corrosion resistance, and its effect is exhibited at 8% or more. However, if the Cr content is too high, the surface layer becomes a single oxide scale mainly composed of Cr, and the L
It reacts with i 2 CO 3 to form LiCrO 2, which easily elutes in the electrolyte, deteriorates the stability of the film, and causes electrolyte loss, so Cr is limited to 22% or less. Preferably 9
~ 20%.

【0026】Mo:Moは固溶強化元素として特に 600℃
以上での強度を高める効果がある。
Mo: Mo is a solid solution strengthening element, especially at 600 ° C.
There is an effect of increasing the strength.

【0027】しかしながら、多量添加は溶融炭酸塩腐食
に対し悪影響を及ぼすこと、さらに加工性の劣化を招く
ことから上限を 2%とする。
However, addition of a large amount has an adverse effect on molten carbonate corrosion and further deteriorates workability, so the upper limit is made 2%.

【0028】Ti:Tiは本発明において最も重要な元素
である。 0.1%以上含有させるとCr2O3 スケールの外層
側にTi系酸化物が生成され、Fe系酸化物(Fe3O4あるいは
LiFeO2) とともに混在した形態となる。これら酸化物は
溶融炭酸塩中への溶解度が小さく鋼の耐食性を向上させ
る。また、 0.1%以上のTiの含有により、Cr2O3 の内層
側の地金界面にTiO2内部酸化物が形成される。この内部
酸化物は地金側への酸素の拡散を抑制するとともに Cr2
O3/地金界面の密着性を著しく向上させる効果がある。
さらに、Ti含有量を増加させると、二層スケール外層の
Ti系酸化物の生成量が増え、Ti含有量が 0.5%程度を越
えると溶融炭酸塩の鋼表面への浸延性を阻止する効果が
顕著となり、腐食を抑制するとともに電解質である溶融
炭酸塩の損失を抑制する。しかしながらTi含有量が 3%
を越えてもそれ以上の溶融炭酸塩腐食に対する効果が認
められないばかりか、鋼表面の疵が顕著となり、また加
工性の低下が著しくなるので上限を 3%とする。好まし
くは 0.5〜 2.5%である。
Ti: Ti is the most important element in the present invention. If 0.1% or more is contained, Ti-based oxide is generated on the outer layer side of the Cr 2 O 3 scale, and Fe-based oxide (Fe 3 O 4 or
It becomes a mixed form with LiFeO 2 ). These oxides have low solubility in molten carbonate and improve the corrosion resistance of steel. Further, when the content of Ti is 0.1% or more, a TiO 2 internal oxide is formed at the bare metal interface on the inner layer side of Cr 2 O 3 . Cr 2 together with the internal oxide to suppress diffusion of oxygen to the bare metal side
It has the effect of significantly improving the adhesion at the O 3 / metal interface.
Furthermore, when the Ti content is increased,
When the amount of Ti-based oxides produced increases and the Ti content exceeds 0.5%, the effect of preventing the spreadability of molten carbonate on the steel surface becomes remarkable, which suppresses corrosion and prevents the formation of molten carbonate as an electrolyte. Control loss. However, Ti content is 3%
Even if it exceeds the above, not only further effect on molten carbonate corrosion is not recognized, but also the flaws on the steel surface become noticeable and the workability deteriorates significantly, so the upper limit is made 3%. It is preferably 0.5 to 2.5%.

【0029】以上のように化学成分を制限することで溶
融炭酸塩中で優れた耐食性を有するステンレス鋼を得る
ことができるが、さらに下記に示す元素を適正量添加す
ることによりその効果を一層高める。
By limiting the chemical components as described above, it is possible to obtain a stainless steel having excellent corrosion resistance in molten carbonate, but the effect is further enhanced by adding the appropriate amount of the following elements. .

【0030】Cu:Cuは電気化学的に貴な元素であり耐
食性を向上させるので必要により含有させるのが好まし
い。特に溶融炭酸塩雰囲気においてはTiとの複合添加に
より耐食性向上が顕著となる。この効果は 0.1%以上の
添加で発揮される。しかしながら、多量添加は鋼中で金
属間化合物を形成し逆に耐食性を劣化させるので上限を
2%とする。好ましくは 0.3〜 1.5%である。
Cu: Cu is an electrochemically noble element and improves corrosion resistance, so it is preferable to contain Cu if necessary. Particularly in a molten carbonate atmosphere, the addition of Ti in combination makes the corrosion resistance noticeably improved. This effect is exhibited when 0.1% or more is added. However, addition of a large amount forms an intermetallic compound in the steel and conversely deteriorates corrosion resistance.
2% It is preferably 0.3 to 1.5%.

【0031】[0031]

【実施例】次に、実施例により本発明を具体的に説明す
る。
EXAMPLES Next, the present invention will be described in detail with reference to examples.

【0032】表1に示す化学組成(重量%、残部はFe)
の本発明鋼(No.1 〜12) 及び比較鋼(No.13〜20) を、高
周波電気炉(真空溶解)で溶製した。溶製した25kg鋼塊
に鍛造、熱間圧延を施し、板厚 5mmの熱延鋼板とした。
Chemical composition shown in Table 1 (% by weight, balance Fe)
Inventive steels (No. 1 to 12) and comparative steels (No. 13 to 20) were melted in a high frequency electric furnace (vacuum melting). The molten 25 kg steel ingot was forged and hot rolled to obtain a hot rolled steel sheet with a thickness of 5 mm.

【0033】[0033]

【表1】 [Table 1]

【0034】このようにして得られた熱延板を焼鈍酸洗
した後、1mm まで冷間圧延をし、970 〜1050℃(SUS310
S,SUS316Lは1150℃) で軟化焼鈍及び酸洗を行った。得
られた冷延板より厚さ1mm 、幅20mm、長さ80mmの試験片
を切り出し耐食性試験に供した。
The hot-rolled sheet thus obtained was annealed and pickled, and then cold-rolled to 1 mm to obtain 970-1050 ° C (SUS310
S, SUS316L was soft-annealed and pickled at 1150 ℃. A test piece having a thickness of 1 mm, a width of 20 mm and a length of 80 mm was cut out from the obtained cold-rolled sheet and subjected to a corrosion resistance test.

【0035】耐食性の試験は、試験片にLi2CO3:K2CO3=6
2:38(モル比)の混合塩を塗布し、650℃でガス組成C
O2:空気=30:70の雰囲気ガス中にて所定の時間保持し
た。
The corrosion resistance test was carried out by applying Li 2 CO 3 : K 2 CO 3 = 6 to the test piece.
Apply a mixed salt of 2:38 (molar ratio) and gas composition C at 650 ℃
It was kept for a predetermined time in an atmosphere gas of O 2 : air = 30: 70.

【0036】耐食性の評価は、加熱前試験片重量から脱
スケール後の試験片重量を差引いた重量減少量にて行っ
た。
The corrosion resistance was evaluated by the weight reduction amount obtained by subtracting the weight of the test piece after descaling from the weight of the test piece before heating.

【0037】また、溶融炭酸塩の浸延性を調べるため、
試験片をワイヤで吊るし、混合塩中に半浸漬の状態で所
定の時間保持した。試験は温度及び雰囲気とも耐食性試
験と同様の条件にて実施した。塩の広がりは試験後の試
験片の気液界面から未浸漬部へ上昇する塩の状態を目視
観察にて評価し、未浸漬部への塩の上昇が小さいほど浸
延性が抑制され、長時間の溶融炭酸塩の腐食及び電解質
の損失に対して優れると判断した。
Further, in order to investigate the ductility of molten carbonate,
The test piece was hung with a wire and held in the mixed salt for a predetermined period of time while being semi-immersed. The test was performed under the same conditions as the corrosion resistance test in both temperature and atmosphere. The spread of salt is evaluated by visual observation of the state of the salt rising from the gas-liquid interface of the test piece to the non-immersed part after the test, and the smaller the rise of salt to the non-immersed part is, the more the ductility is suppressed, and the longer the time is. It was judged to be excellent in corrosion of molten carbonate and loss of electrolyte.

【0038】図1は、溶融炭酸塩を試験片に塗布後、 6
50℃で 200時間保持した各供試材の重量減少とTi含有量
の関係を示したものである。
FIG. 1 shows that after the molten carbonate was applied to the test piece,
This figure shows the relationship between the weight reduction and Ti content of each test material held at 50 ° C for 200 hours.

【0039】本発明鋼No.1〜6 のようにTiを 0.1%以上
添加することにより腐食減量は低減され、耐食性に優れ
ていることが分かる。また、Cuを複合添加したNo.7〜9
はより腐食減量が小さくなる傾向にある。
It can be seen that the corrosion weight loss is reduced and the corrosion resistance is excellent by adding 0.1% or more of Ti as in the case of steel Nos. 1 to 6 of the present invention. In addition, No. 7 ~ 9 with the composite addition of Cu
Has a tendency to have a smaller corrosion weight loss.

【0040】これに対して、市販SUS316L (No.14 )及
び比較鋼 No.19は腐食減量が非常に大きい。比較鋼 No.
17は Cu を添加しており若干腐食減量が小さくなるもの
の、Tiを 0.1%以上添加した本発明鋼に比べ耐食性は満
足なものでない。また、比較鋼No.20 はTi添加にもかか
わらずMoが多量に添加されており腐食減量が大きい。
On the other hand, the commercially available SUS316L (No. 14) and the comparative steel No. 19 have a very large corrosion weight loss. Comparative steel No.
No. 17 has a small amount of corrosion loss due to the addition of Cu, but its corrosion resistance is not satisfactory as compared with the steel of the present invention containing 0.1% or more of Ti. In addition, Comparative Steel No. 20 has a large amount of Mo added despite the addition of Ti, and thus has a large corrosion weight loss.

【0041】以上からTi添加は溶融炭酸塩の腐食に対し
て有効であり、Cu添加は単独では効果が少なくTiと複合
添加することでその効果が発揮されると言える。
From the above, it can be said that the addition of Ti is effective against the corrosion of molten carbonate, and the addition of Cu has little effect by itself, and the effect can be exhibited by adding it in combination with Ti.

【0042】表2は、本発明鋼及び比較鋼の耐食性試験
による腐食減量と、 650℃× 200時間半浸漬試験での溶
融炭酸塩の未浸漬部への上昇の状態を評価した結果であ
る。
Table 2 shows the results of evaluating the corrosion weight loss of the steels of the present invention and the comparative steels by the corrosion resistance test and the state of rise of the molten carbonate to the non-immersed part in the 650 ° C. × 200 hours half immersion test.

【0043】[0043]

【表2】 [Table 2]

【0044】本発明鋼は溶融炭酸塩の浸延性が小さく、
特にTiが 0.5%を越えると未浸漬部への上昇がほとんど
見られず、Ti添加が塩の浸延性を阻止する効果が大きい
ことが分かる。このように溶融炭酸塩の浸延性が小さい
ことは耐食性のみならず、電解質の損失を抑制すること
から電池寿命の大幅な向上が期待できる。
The steel of the present invention has a low ductility of molten carbonate,
In particular, when Ti exceeds 0.5%, almost no increase in the non-immersed part is observed, and it can be seen that the addition of Ti has a large effect of preventing the salt infiltration. Thus, the low ductility of the molten carbonate not only prevents corrosion, but also suppresses the loss of the electrolyte, which can be expected to significantly improve the battery life.

【0045】[0045]

【発明の効果】上述のように本発明鋼は従来の溶融炭酸
塩型燃料電池用金属材料として使用されているSUS310S
鋼やSUS316L 鋼に比し、耐溶融炭酸塩腐食性に優れたス
テンレス鋼である。また、溶融炭酸塩の浸延性が小さく
電解質の損失が抑制される。
As described above, the steel of the present invention is SUS310S used as a metal material for conventional molten carbonate fuel cells.
Compared to steel and SUS316L steel, it is a stainless steel that has excellent resistance to molten carbonate corrosion. In addition, the ductility of molten carbonate is small and the loss of electrolyte is suppressed.

【0046】更に、本発明鋼は Fe-Crからなるフェライ
ト系ステンレス鋼であることから従来使用されているFe
-Cr-Ni系ステンレス鋼より安価となる。本発明鋼は、溶
融炭酸塩型燃料電池の集電板やセパレータ板として使用
した場合、電池の寿命を大幅に向上させることが可能と
なる。
Further, since the steel of the present invention is a ferritic stainless steel composed of Fe-Cr, it has been conventionally used Fe.
-It is cheaper than Cr-Ni stainless steel. When the steel of the present invention is used as a collector plate or a separator plate of a molten carbonate fuel cell, the life of the cell can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶融炭酸塩を試験片に塗布後、 650℃で 200時
間保持した後の腐食減量と鋼中Ti量との関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the corrosion weight loss and the Ti content in steel after the molten carbonate was applied to a test piece and held at 650 ° C. for 200 hours.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C :0.08%以下、Si:0.01〜 2
%、Mn: 1%以下、Cr: 8〜22%、Mo: 2%以下、Ti:
0.1〜 3%を含み、残部実質的にFeおよび不可避的不純
物からなることを特徴とする耐溶融炭酸塩腐食性に優れ
たフェライト系ステンレス鋼。
1. By weight%, C: 0.08% or less, Si: 0.01 to 2
%, Mn: 1% or less, Cr: 8 to 22%, Mo: 2% or less, Ti:
A ferritic stainless steel with excellent resistance to molten carbonate corrosion, characterized by containing 0.1 to 3% and the balance consisting essentially of Fe and inevitable impurities.
【請求項2】重量%で、C :0.08%以下、Si:0.01〜 2
%、Mn: 1%以下、Cr: 8〜22%、Mo: 2%以下、Ti:
0.1〜 3%を含有し、更にCu: 0.1〜 2%を含み、残部
実質的にFeおよび不可避的不純物からなることを特徴と
する耐溶融炭酸塩腐食性に優れたフェライト系ステンレ
ス鋼。
2. By weight%, C: 0.08% or less, Si: 0.01 to 2
%, Mn: 1% or less, Cr: 8 to 22%, Mo: 2% or less, Ti:
A ferritic stainless steel having excellent resistance to molten carbonate corrosion, containing 0.1 to 3% and further containing Cu: 0.1 to 2%, and the balance being substantially Fe and unavoidable impurities.
JP7001281A 1995-01-09 1995-01-09 Ferritic stainless steel for molten carbonate fuel cells Expired - Fee Related JP3008798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7001281A JP3008798B2 (en) 1995-01-09 1995-01-09 Ferritic stainless steel for molten carbonate fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7001281A JP3008798B2 (en) 1995-01-09 1995-01-09 Ferritic stainless steel for molten carbonate fuel cells

Publications (2)

Publication Number Publication Date
JPH08188853A true JPH08188853A (en) 1996-07-23
JP3008798B2 JP3008798B2 (en) 2000-02-14

Family

ID=11497075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7001281A Expired - Fee Related JP3008798B2 (en) 1995-01-09 1995-01-09 Ferritic stainless steel for molten carbonate fuel cells

Country Status (1)

Country Link
JP (1) JP3008798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091215A1 (en) * 2000-05-20 2001-11-29 Forschungszentrum Jülich GmbH Material used at high temperatures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091215A1 (en) * 2000-05-20 2001-11-29 Forschungszentrum Jülich GmbH Material used at high temperatures
US6936217B2 (en) 2000-05-20 2005-08-30 Forschungszentrum Jülich GmbH High-temperature material

Also Published As

Publication number Publication date
JP3008798B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US7531053B2 (en) Fuel cell produced using a metallic material and its method of making
JP2004520479A (en) High temperature material
JP3534285B2 (en) Solid electrolyte fuel cell separator steel
JP2010236012A (en) High temperature conductive member
JP3321888B2 (en) Metal materials for solid oxide fuel cells
US20030124019A1 (en) Ferritic stainless steel having high temperature creep resistance
JP3097690B1 (en) Polymer electrolyte fuel cell
JP3097689B1 (en) Polymer electrolyte fuel cell
JP3269479B2 (en) Ferritic stainless steel for polymer electrolyte fuel cell separator
JP2003187828A (en) Ferritic stainless steel for solid oxide type fuel cell member
JPH10280103A (en) Steel for solid electrolytic type fuel battery separator
JPH06146006A (en) Ferrite stainless steel material and its manufacture
JP3433435B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JP3008798B2 (en) Ferritic stainless steel for molten carbonate fuel cells
JP4299506B2 (en) Austenitic stainless steel for equipment that exchanges heat at 500-1000 ° C
JP4214921B2 (en) Fe-Cr alloy for fuel cell
JP3161269B2 (en) Stainless steel with excellent resistance to molten carbonate corrosion
JPH06293941A (en) Metallic material for solid electrolyte type fuel cell
JP4259225B2 (en) Metal material for fuel cell and solid oxide fuel cell
JP2932211B2 (en) Corrosion resistant stainless steel for molten carbonate fuel cells
JP2000265248A (en) Ferritic stainless steel for solid high polymer type fuel battery separator
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
US20230119504A1 (en) Ferritic stainless steel for solid oxide fuel cell
JPH06146011A (en) Austenite stainless steel material and its manufacture
JP2005264298A (en) Metallic material for fuel cell and solid oxide type fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees