JPH08186051A - Production of multilayer ceramic device - Google Patents

Production of multilayer ceramic device

Info

Publication number
JPH08186051A
JPH08186051A JP33856594A JP33856594A JPH08186051A JP H08186051 A JPH08186051 A JP H08186051A JP 33856594 A JP33856594 A JP 33856594A JP 33856594 A JP33856594 A JP 33856594A JP H08186051 A JPH08186051 A JP H08186051A
Authority
JP
Japan
Prior art keywords
screen
pattern
ceramic
thickness
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33856594A
Other languages
Japanese (ja)
Inventor
Yukio Nishinomiya
幸雄 西宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP33856594A priority Critical patent/JPH08186051A/en
Publication of JPH08186051A publication Critical patent/JPH08186051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Plates And Materials Therefor (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE: To obtain a highly reliable laminate having uniform inner electrode structure by eliminating the difference of thickness between the central part and the end part of a ceramic green sheet when a multilayer laminate is formed by screen printing thereby obtaining a flat surface and printing the inner electrode stably. CONSTITUTION: Screen printing is carried out using a screen having mesh 3 smaller in the vicinity of a resist 2 for forming a screen pattern 1 than in the central part of the pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスクリーン印刷法を用い
て形成される積層セラミック部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated ceramic part formed by using a screen printing method.

【0002】[0002]

【従来の技術】従来、内部に金属導体層とセラミック絶
縁層とが交互に積層された構造をもつ積層セラミックコ
ンデンサーや積層インダクターなどの積層体の製造方法
として、ドクターブレード法によりセラミックのグリー
ンシートを得、このシートに導体層を印刷し、積層して
積層体を得るグリーンシート法が知られている。しか
し、近年のチップの小型化の要求が著しく、この要求を
満たすうえで、セラミック絶縁層の薄膜化と、より多く
の多層化が必要不可欠の条件となってきている。セラミ
ック絶縁層の膜厚を10μm以下にする場合、従来のド
クターブレード法を用いてグリーンシートを作製しよう
とすると、グリーンシートの強度がハンドリングに耐え
られなくて、グリーンシートを離型フィルムから剥離す
るのが困難となり、更にはグリーンシートを破壊してし
まうというような取扱い上の問題があり、設備上の問題
も含めて量産条件を確立することが困難であった。その
ため、膜厚10μm以下のグリーンシートからなる積層
体を製造する方法として、セラミックペーストの印刷乾
燥及び、導体ペーストの印刷乾燥を交互に繰り返し行い
ながら積層体を形成するスクリーン印刷法が一般に用い
られるようになった。
2. Description of the Related Art Conventionally, as a method for producing a laminated body such as a laminated ceramic capacitor or laminated inductor having a structure in which a metal conductor layer and a ceramic insulating layer are alternately laminated inside, a ceramic green sheet is prepared by a doctor blade method. There is known a green sheet method in which a conductor layer is printed on this sheet and laminated to obtain a laminate. However, there has been a great demand for miniaturization of chips in recent years, and in order to meet this demand, thinning of the ceramic insulating layer and more multilayers have become indispensable conditions. When the thickness of the ceramic insulating layer is 10 μm or less, when the conventional doctor blade method is used to manufacture the green sheet, the strength of the green sheet cannot withstand handling, and the green sheet is peeled from the release film. However, there is a problem in handling that the green sheet is destroyed, and it is difficult to establish mass production conditions including problems in equipment. Therefore, as a method for manufacturing a laminated body made of a green sheet having a film thickness of 10 μm or less, a screen printing method is commonly used in which the laminated body is formed by alternately repeating the print drying of the ceramic paste and the print drying of the conductor paste. Became.

【0003】ところで、スクリーン印刷法によって、セ
ラミックペーストを印刷乾燥して比較的大きな面積のセ
ラミック・グリーンシートを形成する場合、印刷された
グリーンシートの中央部より端部の厚みが大きくなり、
グリーンシート全面にわたって均一な厚みを得ることが
難しくなる。これは用いられるスクリーンのパターンを
形成している乳剤(レジスト)が印刷時にスキージによ
って伸びるため、セラミックペーストの吐出量がスクリ
ーンメッシュとレジストとのスキージに平行な境界近傍
程多く、したがってパターン端部程厚く印刷されること
になるからである。そして、このまま同じパターンでグ
リーンシートを積層して多層化を進めた場合、積層体中
央部と端部との厚み差が累積して、積層体の断面の形状
が厚み分布のために弓形となってしまう。このような状
況で、グリーンシート表面に内部電極ペーストを印刷・
乾燥し、積層を繰り返した場合、セラミックパターン端
部に印刷される内部電極パターンに位置ずれが発生し、
均一な内部電極構造を得ることができない。さらに積層
により累積された厚みの差を無視して内部電極構造を形
成しようとした場合、積層体に内部電極パターンの印刷
されない箇所が発生したり、最悪の場合、セラミックペ
ースト、内部電極ペーストを印刷する際のスクリーンが
印刷体の平坦度が悪いために破損する等、事実上積層体
作製ができなくなるという問題点がある。
By the way, when the ceramic paste is printed and dried by the screen printing method to form a ceramic green sheet having a relatively large area, the thickness of the end portion of the printed green sheet becomes larger than that of the central portion.
It becomes difficult to obtain a uniform thickness over the entire surface of the green sheet. This is because the emulsion (resist) that forms the pattern of the screen used is stretched by the squeegee during printing, so the discharge rate of the ceramic paste is larger near the boundary between the screen mesh and the resist parallel to the squeegee, and therefore the pattern edge part. This is because it will be printed thick. Then, when green sheets are stacked in the same pattern as they are to proceed with multi-layering, the difference in thickness between the central portion and the end portion of the laminated body is accumulated, and the sectional shape of the laminated body becomes arcuate due to the thickness distribution. Will end up. In this situation, print the internal electrode paste on the surface of the green sheet.
When dried and laminated repeatedly, the internal electrode pattern printed on the end of the ceramic pattern is misaligned,
It is not possible to obtain a uniform internal electrode structure. Furthermore, when trying to form the internal electrode structure by ignoring the accumulated thickness difference due to stacking, some parts of the stack may not be printed with the internal electrode pattern, or in the worst case, ceramic paste or internal electrode paste may be printed. When doing so, there is a problem in that the laminated body cannot be actually manufactured because the screen is damaged due to poor flatness of the printed body.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、スク
リーン印刷法により多層積層体を形成するにあたり、セ
ラミックペーストの印刷時に発生するグリーンシートの
パターン中央部と端部との厚み差を緩和し、この厚み差
が積層によって累積するのを防ぎ、均一な内部電極構造
を確保することで信頼性の高い積層セラミック部品を製
造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to alleviate a difference in thickness between a pattern central portion and an end portion of a green sheet, which occurs when a ceramic paste is printed in forming a multilayer laminate by a screen printing method. Another object of the present invention is to provide a method of manufacturing a highly reliable laminated ceramic component by preventing the thickness difference from accumulating due to lamination and ensuring a uniform internal electrode structure.

【0005】[0005]

【課題を解決するための手段と作用】本発明では、印刷
・積層時に発生する積層体の中央部とパターン端部との
厚み差を緩和するために、セラミック・グリーンシート
を形成する際に、スクリーンパターンの端部のレジスト
に隣接する部分のメッシュの開き目がスクリーンパター
ンの中央部のメッシュの開き目に比べて小さいスクリー
ンを用いてセラミックペーストを印刷する。このスクリ
ーンでセラミック・グリーンシートを形成した場合、メ
ッシュとレジストがスキージによってスキージ進行方向
に押されて伸びることから引き起こされるパターン端部
での過剰なセラミックペーストの吐出量を抑えることが
可能となり、繰返し印刷・積層する場合発生するセラミ
ック積層体の中央部と端部との厚み差を緩和することが
でき、均一な内部電極構造を確保することができる。
According to the present invention, in order to reduce the difference in thickness between the central portion of the laminate and the end portions of the pattern, which occurs at the time of printing and laminating, when forming the ceramic green sheet, The ceramic paste is printed using a screen in which the openings of the mesh at the end of the screen pattern adjacent to the resist are smaller than the openings of the mesh at the center of the screen pattern. When a ceramic green sheet is formed with this screen, it is possible to suppress the discharge amount of the excessive ceramic paste at the pattern end that is caused by the mesh and resist being pushed and stretched by the squeegee in the squeegee advancing direction. It is possible to reduce the difference in thickness between the central portion and the end portion of the ceramic laminated body that occurs when printing and laminating, and to ensure a uniform internal electrode structure.

【0006】[0006]

【実施例】以下に本発明の実施例を積層型セラミックコ
ンデンサの作製を例にとり、図面を参照しながら説明す
る。
Embodiments of the present invention will be described below with reference to the drawings, taking the production of a laminated ceramic capacitor as an example.

【0007】図2は従来法による積層型セラミックコン
デンサの製法の一部を説明する図で、図2(a)は、セ
ラミックペースト用のスクリーンパターン1、(b)は
そのスクリーンパターンのスキージに平行なレジスト2
付近でのメッシュの開き目を示している。また(c)に
はこのスクリーンパターンを用いてセラミック絶縁層4
を形成し、その上に内部電極5を形成して積層を繰り返
すことにより作製した積層体の断面図を示している。
2A and 2B are views for explaining a part of a method of manufacturing a multilayer ceramic capacitor according to a conventional method. FIG. 2A shows a screen pattern 1 for a ceramic paste, and FIG. 2B shows a screen pattern parallel to a squeegee of the screen pattern. Na resist 2
The mesh openings in the vicinity are shown. In addition, (c) uses this screen pattern to make the ceramic insulating layer 4
FIG. 3 is a cross-sectional view of a laminated body produced by forming a layer, forming an internal electrode 5 thereon, and repeating lamination.

【0008】図1は本発明の製法を説明する図で、図1
(a)はセラミックペースト用のスクリーンパターン
1、(b)はこのスクリーンパターンのレジスト2付近
でのメッシュの開き目を示し、(c)にはこのスクリー
ンパターンを用いて作製した積層体の断面図を示してい
る。
FIG. 1 is a diagram for explaining the manufacturing method of the present invention.
(A) shows a screen pattern 1 for a ceramic paste, (b) shows an opening of a mesh near the resist 2 of this screen pattern, and (c) is a cross-sectional view of a laminate produced by using this screen pattern. Is shown.

【0009】上記の2実施例の実験には、セラミック粉
末としてPb系複合プロブスカイト構造をもつ化合物を
使用し、高速ホモミキサ、またはビーズミル等の分散設
備に溶剤としてエチルセルソルブ、可塑剤としてブチル
フタリルグリコール酸ブチルを添加した溶媒に、有機樹
脂としてポリビニルブチラールと前記セラミック粉末を
投入し、セラミックペーストを作製した。また、内部電
極にはAg80重量パーセント、Pb20重量パーセン
トの配合比率の混合粉を用い、有機樹脂にエチルセルロ
ース、溶剤にはα−テルピネオールを用い、3本ロール
にて混練したペーストを使用した。
In the experiments of the above-mentioned two examples, a compound having a Pb-based composite perovskite structure was used as the ceramic powder, and ethyl cellosolve was used as a solvent and butylphthalic acid was used as a plasticizer in a dispersion facility such as a high speed homomixer or a bead mill. Polyvinyl butyral as the organic resin and the ceramic powder were put into a solvent containing butyl glycolate to prepare a ceramic paste. Further, a mixed powder having a mixing ratio of Ag 80 wt% and Pb 20 wt% was used for the internal electrodes, ethyl cellulose was used as the organic resin, and α-terpineol was used as the solvent, and a paste kneaded with three rolls was used.

【0010】セラミックペースト印刷用スクリーンに
は、2実施例ともに320mm角のフレームにステンレ
ス製の#200メッシュを張り、レジスト厚みは10μ
mとした。パターン形状は100mm×100mmの正
方形で、内部電極ペースト用スクリーンは上記スクリー
ンパターンの100mm×100mm内に入るように製
版したスクリーンを用いた。本発明法によるセラミック
ペースト印刷用スクリーンのスキージに平行なパターン
エッジのメッシュには5μmのニッケルメッキ処理を施
して、開き目は中央部が85μmに対し、エッジ部は7
5μmとした。また、従来法で積層体を作製した場合、
積層体の表面の端部の隆起は端部から中央部に向かって
400〜500μmにわたって発生していることが分か
っているので、メッキをかける幅は450μmとした。
In both of the two examples, the ceramic paste printing screen was coated with stainless steel # 200 mesh on a 320 mm square frame and had a resist thickness of 10 μm.
m. The pattern shape was a square of 100 mm × 100 mm, and the screen for internal electrode paste used was a screen made so as to be within 100 mm × 100 mm of the above screen pattern. The mesh of the pattern edge parallel to the squeegee of the ceramic paste printing screen according to the method of the present invention was subjected to nickel plating treatment of 5 μm so that the center of the opening was 85 μm and the edge was 7 μm.
It was 5 μm. In addition, when a laminate is manufactured by the conventional method,
Since it is known that the ridges at the ends of the surface of the laminated body are generated from the ends to the central part over 400 to 500 μm, the plating width is set to 450 μm.

【0011】印刷は、先ず最初にセラミックペーストを
1回印刷乾燥した場合に厚み10μmとなるように条件
設定を行った後、セラミックペーストの印刷を30回行
い、厚さが300μmの保護層としてのセラミック層を
作製した。次にコンデンサ部を形成する有効層を印刷・
作製した。即ち、先に作製した保護層上に内部電極ペー
スト用スクリーンを用いて厚みが1.5μmの内部電極
を形成した後、セラミックペーストを印刷乾燥し、10
μmのセラミック絶縁層を形成した。更に先に形成した
内部電極と対向するように内部電極を形成し、この繰り
返しを61回行い、60層のコンデンサとしての有効層
を作製した。最後に、セラミックペーストを30回印刷
乾燥を繰り返して保護層を形成し、積層型セラミックコ
ンデンサの積層体を得た。
The printing is carried out by first setting the conditions so that the thickness of the ceramic paste is 10 μm when the ceramic paste is printed and dried once, and then the ceramic paste is printed 30 times to form a protective layer having a thickness of 300 μm. A ceramic layer was prepared. Next, print the effective layer that forms the capacitor
It was made. That is, an internal electrode having a thickness of 1.5 μm was formed on the protective layer prepared above by using an internal electrode paste screen, and then the ceramic paste was printed and dried to obtain 10
A ceramic insulating layer of μm was formed. Further, an internal electrode was formed so as to face the internal electrode formed earlier, and this process was repeated 61 times to produce 60 layers of effective layers as a capacitor. Finally, the ceramic paste was repeatedly printed and dried 30 times to form a protective layer, and a laminated body of a laminated ceramic capacitor was obtained.

【0012】図2(b)に示す従来のメッシュ形状のス
クリーンでセラミックペーストを印刷した場合、スキー
ジによるスクリーンの伸びに伴い、スキージに平行する
パターン端部のレジストの端面が、もともとは印刷面に
垂直であったものが、印刷面側がパターン外側に傾き、
その結果、スキージに平行するパターン端部でセラミッ
クペーストの吐出量がパターン中央部に比べて多くな
り、厚み差が生じてしまう。更に多数重ね塗りする場
合、厚み差が累積され、結果として表1に示す厚み差を
生じる。そのため、内部電極の印刷を行う際に、印刷体
の平坦度が厚み差の分だけ悪化しているので、積層ずれ
がパターン端部近傍で発生する。
When the ceramic paste is printed on the conventional mesh-shaped screen shown in FIG. 2B, the end surface of the resist at the pattern end portion parallel to the squeegee is originally printed on the printed surface as the screen is stretched by the squeegee. What was vertical, the printing surface side tilted to the outside of the pattern,
As a result, the discharge amount of the ceramic paste becomes larger at the end portion of the pattern parallel to the squeegee than at the central portion of the pattern, resulting in a difference in thickness. When multiple coatings are further applied, the thickness difference is accumulated, resulting in the thickness difference shown in Table 1. Therefore, when the internal electrodes are printed, the flatness of the printed body is deteriorated by the thickness difference, so that a stacking deviation occurs near the end of the pattern.

【0013】図1(b)に示す本発明によるレジスト付
近のメッシュの開き目の構成のスクリーンで印刷する場
合、スキージによりスクリーンの伸びが生じた時、レジ
ストの端面が傾いてもメッシュの開き目は小さく設計し
てあるので、従来のように吐出量が多くなることがな
く、厚み差、及び内部電極の積層ずれの発生を防ぐこと
ができる。表1に今回の実験の場合に発生した積層体中
央部の厚みとパターン端部近傍の厚み、及び内部電極の
ずれを従来方法と比較した形で示す。
When printing with a screen having a mesh opening near the resist according to the present invention shown in FIG. 1 (b), when the screen is stretched by a squeegee, even if the end face of the resist is inclined, the mesh opening is formed. Since it is designed to be small, the ejection amount does not increase unlike the conventional case, and it is possible to prevent the thickness difference and the stacking deviation of the internal electrodes from occurring. Table 1 shows the thickness of the central portion of the laminated body, the thickness in the vicinity of the end portions of the pattern, and the displacement of the internal electrodes, which were generated in the case of this experiment, in comparison with the conventional method.

【0014】[0014]

【表1】 [Table 1]

【0015】ここで、図1(c)および図2(c)に示
すように、t1は積層体の正常な厚み(中央部の厚み)
であり、t2は端部の隆起部分を含めた厚みであり、従
ってt2−t1は隆起の大きさを示す。lは内部電極の積
層ずれを示す量である。
Here, as shown in FIGS. 1 (c) and 2 (c), t 1 is the normal thickness of the laminate (the thickness of the central portion).
And t 2 is the thickness including the raised portion at the end, and therefore t 2 −t 1 indicates the magnitude of the raised portion. l is an amount indicating the stacking deviation of the internal electrodes.

【0016】表1からわかる通り、従来方法では約0.
5mmの厚み差t1−t2が発生するのに対し、本発明で
は約0.1mm程度の厚み差の発生に抑えることができ
る。更に、その厚み差から生じる内部電極の積層ずれも
1/2以下になった。また、この積層体を切断し、チッ
プとし、400℃で有機分を除去後、900℃で焼成し
た後に、端部に外部電極を形成して積層コンデンサとし
た。この積層コンデンサの耐湿試験(温度85℃、湿度
90%、定格電圧×1)を行った結果を表1に加えて示
している。内部電極の積層ずれの小さい本発明の方が耐
湿性に効果があることを示している。
As can be seen from Table 1, in the conventional method, about 0.
While the thickness difference t 1 -t 2 of 5 mm occurs, the thickness difference of about 0.1 mm can be suppressed in the present invention. Further, the stacking deviation of the internal electrodes caused by the thickness difference was reduced to 1/2 or less. Further, this laminated body was cut into chips, organic components were removed at 400 ° C., and after firing at 900 ° C., external electrodes were formed at the ends to obtain laminated capacitors. The results of a humidity resistance test (temperature 85 ° C., humidity 90%, rated voltage × 1) of this multilayer capacitor are shown in addition to Table 1. It is shown that the present invention in which the stacking deviation of the internal electrodes is smaller is more effective in the moisture resistance.

【0017】また、従来方法による積層体の場合、厚み
差から発生する内部電極の積層ずれや印刷不能の事態を
考慮して、積層体の端部から10mm程度内側に内部電
極を印刷する有効面積部をとっていたが、本発明により
パターン端部との厚み差が小さくなったため、パターン
端部近傍への内部電極の印刷が可能となり、積層体のコ
ンデンサを形成しない損失部が従来に比べ約1/3にな
ったという効果もあった。また、本発明では、積層セラ
ミックコンデンサの積層体だけでなく、スクリーン印刷
法を用いる全ての印刷体、印刷積層体への応用が可能で
あるということはいうまでもない。
Further, in the case of the laminated body according to the conventional method, the effective area for printing the internal electrodes about 10 mm inward from the end portion of the laminated body is taken into consideration in consideration of the misalignment of the internal electrodes caused by the thickness difference and the situation in which printing is impossible. However, since the thickness difference from the pattern end is reduced by the present invention, the internal electrodes can be printed in the vicinity of the pattern end, and the loss part that does not form the capacitor of the laminated body is about 10% smaller than the conventional one. There was also the effect that it became 1/3. It goes without saying that the present invention can be applied not only to the laminated body of the laminated ceramic capacitor but also to all printed bodies and printed laminated bodies using the screen printing method.

【0018】[0018]

【発明の効果】以上述べたように、本発明では、厚膜形
成に適したスクリーン印刷法による積層セラミックコン
デンサの積層体作製に際し、積層体中央部と端部の厚み
差の小さな積層体を作製する製造方法の提供が可能とな
った。
As described above, according to the present invention, a laminated body having a small thickness difference between the central portion and the end portion of the laminated body is produced when producing a laminated body of a laminated ceramic capacitor by a screen printing method suitable for forming a thick film. It has become possible to provide a manufacturing method that

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により、積層体を作製する場合の
説明図。図1(a)はセラミックペースト用スクリーン
パターンを示す図。(b)はパターン端部レジストに隣
接するメッシュの開き目を示す図。(c)は積層体の断
面図。
FIG. 1 is an explanatory view when a laminate is produced by the method of the present invention. FIG. 1A is a diagram showing a ceramic paste screen pattern. (B) is a figure which shows the opening of the mesh adjacent to a pattern edge resist. (C) is sectional drawing of a laminated body.

【図2】従来方法により、積層体を作製する場合の説明
図。図2(a)はセラミックペースト用スクリーンパタ
ーンを示す図。(b)はパターン端部レジストに隣接す
るメッシュの開き目を示す図。(c)は積層体の断面
図。
FIG. 2 is an explanatory diagram of a case where a laminated body is manufactured by a conventional method. FIG. 2A is a diagram showing a ceramic paste screen pattern. (B) is a figure which shows the opening of the mesh adjacent to a pattern edge resist. (C) is sectional drawing of a laminated body.

【符号の説明】[Explanation of symbols]

1 スクリーンパターン 2 レジスト(乳剤) 3 (スクリーン)メッシュ 4 セラミック絶縁層 5 内部電極 t1 中央部の厚み t2 端部の厚み l 内部電極の積層ずれ1 Screen Pattern 2 Resist (Emulsion) 3 (Screen) Mesh 4 Ceramic Insulation Layer 5 Internal Electrode t 1 Central Thickness t 2 Edge Thickness l Internal Electrode Lamination Misalignment

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末および非金属粉末のいずれかを
主成分とするペーストを用いてスクリーン印刷法により
積層セラミック部品を製造する方法において、スクリー
ンのパターンを形成するレジストに隣接する近傍のメッ
シュの開き目がパターン中央部のメッシュの開き目に比
べて小さいものを用いることを特徴とする積層セラミッ
ク部品の製造方法。
1. A method for producing a laminated ceramic component by a screen printing method using a paste containing either a metal powder or a non-metal powder as a main component, wherein a mesh in the vicinity of a resist forming a screen pattern is formed. A method for manufacturing a monolithic ceramic component, characterized in that an opening whose mesh is smaller than that of a mesh in the center of the pattern is used.
JP33856594A 1994-12-27 1994-12-27 Production of multilayer ceramic device Pending JPH08186051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33856594A JPH08186051A (en) 1994-12-27 1994-12-27 Production of multilayer ceramic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33856594A JPH08186051A (en) 1994-12-27 1994-12-27 Production of multilayer ceramic device

Publications (1)

Publication Number Publication Date
JPH08186051A true JPH08186051A (en) 1996-07-16

Family

ID=18319377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33856594A Pending JPH08186051A (en) 1994-12-27 1994-12-27 Production of multilayer ceramic device

Country Status (1)

Country Link
JP (1) JPH08186051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197582A (en) * 2012-03-19 2013-09-30 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197582A (en) * 2012-03-19 2013-09-30 Samsung Electro-Mechanics Co Ltd Multilayer ceramic electronic component and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100645710B1 (en) Multi layer ceramic capacitor
JPH1012475A (en) Layer-built ceramic electronic component
KR100676035B1 (en) Multi layer ceramic capacitor
JP3241054B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH05190375A (en) Manufacture of copper multilayer ceramics substrate and copper paste used therefor
JPH08186051A (en) Production of multilayer ceramic device
JP2000269074A (en) Multilayer ceramic capacitor and manufacture thereof
JPH0745473A (en) Manufacture of multilayer ceramic capacitor
JPH06244050A (en) Manufacture of laminated ceramic capacitor and laminated green body therefor
JP3148387B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3934983B2 (en) Multilayer electronic component and manufacturing method thereof
JPH07263272A (en) Manufacture of laminated electronic component
JP2008198655A (en) Multilayer ceramic electronic component and its manufacturing process
JP3744368B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH10112417A (en) Laminated electronic component and its manufacture
JP2001217140A (en) Laminated electronic component and manufacturing method thereof
JP3131522B2 (en) Manufacturing method of laminate
JP3521774B2 (en) Manufacturing method of multilayer ceramic capacitor
KR20010030501A (en) Electroconductive paste, laminated ceramic capacitor, and method for manufacturing the same
JPH09260199A (en) Multilayer capacitor
JP4450176B2 (en) Dielectric paste for level difference elimination constituting laminated electronic parts and margins
JPH07201633A (en) Multilayer ceramic capacitor and its production
JPH0774048A (en) Manufacture of laminated body
JP2010040628A (en) Laminated type ceramic electronic component manufacturing method
JPH0786081A (en) Manufacture of multilayered ceramic capacitor