JPH08180865A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH08180865A
JPH08180865A JP6318264A JP31826494A JPH08180865A JP H08180865 A JPH08180865 A JP H08180865A JP 6318264 A JP6318264 A JP 6318264A JP 31826494 A JP31826494 A JP 31826494A JP H08180865 A JPH08180865 A JP H08180865A
Authority
JP
Japan
Prior art keywords
carbon material
battery
secondary battery
negative electrode
alkylating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6318264A
Other languages
Japanese (ja)
Other versions
JP3052761B2 (en
Inventor
Sukeyuki Murai
祐之 村井
Yoko Nakagawa
洋子 中川
Hide Koshina
秀 越名
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6318264A priority Critical patent/JP3052761B2/en
Publication of JPH08180865A publication Critical patent/JPH08180865A/en
Application granted granted Critical
Publication of JP3052761B2 publication Critical patent/JP3052761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolytic secondary battery in which the generation of a gas on the surface of a carbon material is prevented to prevent the leakage of an electrolyte due to the rising of the battery internal pressure and the expansion of the battery by using the carbon material whose surface is alkylated for a negative electrode. CONSTITUTION: In a nonaqueous electrolytic secondary battery formed of a negative electrode using a carbon material capable of storing and releasing lithium, a positive electrode and a nonaqueous electrolyte, the surface of the carbon material is alkylated. This alkylating treatment is preferably performed by adding 5-30wt.% of an alkylating agent such as trimethyl methoxysilane to the carbon material such as graphite and then thermally treating it under a prescribed condition. The surface of the carbon material is covered with the inert alkyl group and the gas generation by the decomposing reaction of the electrolyte or a binder at charging is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくにその負極に用いる炭素材料の表面処理に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment of a carbon material used for a non-aqueous electrolyte secondary battery, especially for its negative electrode.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧で高エネルギー密度が
期待され、盛んに研究がなされている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and have been actively studied.

【0003】これまでに、非水電解液二次電池の正極活
物質としてV25、Cr25、MnO2、TiS2などが
知られている。近年、より高エネルギー密度を有する4
ボルト級の非水電解液二次電池の正極活物質としてLi
Mn24、LiCoO2、LiNiO2、LiFeO2
どの研究が活発に行われている。特に、LiMn24
LiNiO2やLiFeO2は低コストであることや、原
料供給が安定している点で注目されている。
So far, V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 and the like have been known as positive electrode active materials for non-aqueous electrolyte secondary batteries. 4 with higher energy density in recent years
Li as a positive electrode active material for a bolt-class non-aqueous electrolyte secondary battery
Researches on Mn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2, etc. have been actively conducted. In particular, LiMn 2 O 4 ,
LiNiO 2 and LiFeO 2 are attracting attention because of their low cost and stable supply of raw materials.

【0004】一方、負極活物質としては安全性やレート
特性などの点から金属リチウムに代わり、リチウムを吸
蔵・放出することができる炭素材料が注目を集めてい
る。特に、黒鉛化度の進んだ黒鉛粉末は、高容量で、放
電電位が金属リチウムに比べて約0.1V貴であり電池
電圧の低下が少ないという特徴を有しており、盛んに研
究がなされている。
On the other hand, as a negative electrode active material, a carbon material capable of inserting and extracting lithium has been attracting attention in place of metallic lithium in terms of safety and rate characteristics. In particular, graphite powder with a high degree of graphitization has the characteristics of high capacity, discharge potential of about 0.1 V, and less decrease in battery voltage compared to metallic lithium, and has been actively studied. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、炭素材
料、とくに黒鉛化度の高い黒鉛粉末は充放電時にリチウ
ムを吸蔵・放出するとともに、粉末粒子表面からガスが
発生する。このガス発生機構については炭素材料の表面
のOH基などの官能基が活性点となり、電解液や負極に
用いられる有機系結着剤などが分解され、このときにガ
スが発生すると考えられる。
However, a carbon material, particularly graphite powder having a high degree of graphitization, absorbs and releases lithium during charging and discharging, and gas is generated from the surface of the powder particles. With regard to this gas generation mechanism, it is considered that a functional group such as an OH group on the surface of the carbon material becomes an active site, the organic binder used in the electrolytic solution or the negative electrode is decomposed, and a gas is generated at this time.

【0006】また、発生ガス種としては主に水素、一酸
化炭素であり、その他アセチレン、メタンなどが微量検
出される。特に水素ガスが全体の90体積%を占める。
The generated gas species are mainly hydrogen and carbon monoxide, and trace amounts of acetylene, methane and the like are also detected. Particularly, hydrogen gas occupies 90% by volume of the whole.

【0007】そして、このガス発生によって電池内圧の
上昇による漏液や電池の変形,膨脹が発生したり、ガス
の圧力によって電極間に空隙が生じるためにおこる内部
抵抗上昇や充放電性能の低下が起こっていた。本発明
は、このような課題を解決するものであり、炭素材料を
負極に用いた非水電解液二次電池において炭素材料の表
面で電解液等の分解によってガスが発生することを防止
して電池内圧の上昇による電解液の漏液や電池の膨脹を
防止するものである。
[0007] The gas generation causes leakage of liquid due to an increase in internal pressure of the battery, deformation and expansion of the battery, and an increase in internal resistance and deterioration of charge / discharge performance caused by a gap between the electrodes due to the pressure of the gas. It was happening. The present invention is to solve such a problem, in a non-aqueous electrolyte secondary battery using a carbon material in the negative electrode, to prevent the generation of gas by decomposition of the electrolyte solution or the like on the surface of the carbon material It is intended to prevent electrolyte leakage and battery expansion due to increase in battery internal pressure.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池は、負極に用いる炭
素材料にアルキル化剤を加え、炭素材料表面をアルキル
化処理するものである。炭素材料へのアルキル化剤の添
加方法としては、例えばアルキル化剤と炭素材料を混合
して熱処理する方法や、炭素材料を金属箔に塗着した後
アルキル化剤に浸漬し乾燥加熱する方法などがある。ア
ルキル化剤を炭素材料に添加させると、このアルキル化
剤が炭素材料表面に存在するOH基等と反応して、前記
炭素材料の表面が化学修飾される。このようなアルキル
化剤による表面処理後、所定の条件下で熱処理を行うと
脱水縮合反応が起こり炭素材料表面がアルキル化され
る。
In order to solve the above problems, in the non-aqueous electrolyte secondary battery of the present invention, an alkylating agent is added to the carbon material used for the negative electrode, and the surface of the carbon material is alkylated. It is a thing. Examples of the method for adding the alkylating agent to the carbon material include, for example, a method in which the alkylating agent and the carbon material are mixed and heat treated, a method in which the carbon material is applied to a metal foil, and then immersed in the alkylating agent and dried and heated. There is. When the alkylating agent is added to the carbon material, the alkylating agent reacts with the OH group or the like existing on the surface of the carbon material to chemically modify the surface of the carbon material. After the surface treatment with such an alkylating agent, a heat treatment is performed under predetermined conditions to cause a dehydration condensation reaction and alkylate the surface of the carbon material.

【0009】[0009]

【作用】本構成では炭素材料をアルキル化剤で処理する
ことにより、炭素材料の表面に存在するOH基等をアル
キル化して炭素材料表面を不活性なアルキル基で覆うこ
とができる。そして、これにより充電時に電解液や結着
剤等の分解反応によるガス発生が抑制され電池内圧の上
昇を防止できる。
In this structure, by treating the carbon material with the alkylating agent, the OH groups and the like existing on the surface of the carbon material can be alkylated to cover the surface of the carbon material with the inactive alkyl group. Then, by this, gas generation due to decomposition reaction of the electrolytic solution, the binder and the like at the time of charging is suppressed, and an increase in battery internal pressure can be prevented.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】電池を以下の手順により作製した。まず、
黒鉛粉末と(表1)に示したようなアルキル化剤とを重
量比で100:10の割合で混合し、120℃で加熱乾
燥した後これを水洗し、100℃で乾燥、粉砕し粉体と
した。そしてこの粉体とアクリル系結着剤とを重量比で
100:5の割合で混合し、これに蒸溜水とエタノール
を加え、湿式で十分混合し、100℃の温風乾燥器で乾
燥させ、負極合剤を得た。この合剤を所定の形状にプレ
ス成型し負極とした。
A battery was manufactured by the following procedure. First,
Graphite powder and an alkylating agent as shown in (Table 1) were mixed at a weight ratio of 100: 10, dried by heating at 120 ° C, washed with water, dried at 100 ° C and pulverized to obtain a powder. And Then, the powder and the acrylic binder are mixed at a weight ratio of 100: 5, distilled water and ethanol are added to the mixture, the mixture is thoroughly wet-mixed, and dried in a warm air dryer at 100 ° C., A negative electrode mixture was obtained. This mixture was press-molded into a predetermined shape to give a negative electrode.

【0012】[0012]

【表1】 [Table 1]

【0013】正極は正極活物質であるLiCoO2に導
電剤としてカーボンブラックを重量比で100:3の割
合で混合し、さらに蒸溜水とエタノールを加え湿式混合
した。これに結着剤としてポリ四フッ化エチレンの水性
ディスパージョンを加えさらに混合後、100℃温風乾
燥器で乾燥し、正極合剤を得た。この正極合剤を所定の
形状にプレス成型し、正極とした。
For the positive electrode, LiCoO 2 as the positive electrode active material was mixed with carbon black as a conductive agent at a weight ratio of 100: 3, and distilled water and ethanol were further added and wet mixed. An aqueous dispersion of polytetrafluoroethylene was added to this as a binder, and the mixture was further mixed and dried in a hot air dryer at 100 ° C. to obtain a positive electrode mixture. This positive electrode mixture was press-molded into a predetermined shape to obtain a positive electrode.

【0014】これらの正,負極を用いて作製した電池の
断面図を図1に示す。正極1と負極4との間には多孔性
ポリプロピレン製セパレータ3を配した。また、非水電
解液として、エチレンカーボネートとジエチルカーボネ
ートの等比体積混合溶媒に1モル/リットルの六フッ化
リン酸リチウムを溶解した溶液を注入し、封口板5で密
閉してコイン形電池とした。そして、(表1)に示すよ
うに各アルキル化剤に対応して電池A〜Eとした。
FIG. 1 shows a sectional view of a battery manufactured by using these positive and negative electrodes. A porous polypropylene separator 3 was arranged between the positive electrode 1 and the negative electrode 4. In addition, as a non-aqueous electrolyte, a solution prepared by dissolving 1 mol / liter of lithium hexafluorophosphate in a solvent mixture of ethylene carbonate and diethyl carbonate in an equal volume ratio is injected, and sealed with a sealing plate 5 to form a coin-type battery. did. Then, as shown in (Table 1), batteries A to E were made corresponding to each alkylating agent.

【0015】また、比較例として黒鉛粉末にアルキル化
剤を添加せず、黒鉛粉末とアクリル系結着剤とを重量比
で100:5の割合で混合した負極を用いた以外は上記
と同様の電池を作製しこれを電池Fとした。
Further, as a comparative example, the same as above except that the alkylating agent was not added to the graphite powder and a negative electrode in which the graphite powder and the acrylic binder were mixed at a weight ratio of 100: 5 was used. A battery was produced and designated as Battery F.

【0016】次いで、これらの電池A〜Fを用いて充放
電サイクル寿命試験を行った。充放電条件は電流2mA
で電圧4.1Vまで充電し、電流2mAで電圧3.0V
まで放電して行った。
Next, a charge / discharge cycle life test was conducted using these batteries A to F. Charge / discharge condition is current 2mA
Charged to a voltage of 4.1V with a current of 2mA and a voltage of 3.0V
It went to discharge.

【0017】充放電前後における電池の厚み変化を測定
し、この結果を(表1)に示す。また、図2に各電池の
10サイクル目の放電曲線を示す。
The change in battery thickness before and after charge and discharge was measured, and the results are shown in (Table 1). Further, FIG. 2 shows a discharge curve of the 10th cycle of each battery.

【0018】(表1)に示したように、アルキル化処理
を行っていない黒鉛を用いた電池Fは充電時にガスが発
生し、電池の厚みが約0.56mm膨脹した。これに対
して電池A〜Eでは厚みの膨脹が0.07〜0.11m
mの範囲であり、黒鉛表面上での電解液の分解等による
ガス発生を抑制することができた。
As shown in (Table 1), in the battery F using graphite which was not subjected to the alkylation treatment, gas was generated during charging, and the battery thickness expanded by about 0.56 mm. On the other hand, in batteries A to E, the expansion of the thickness is 0.07 to 0.11 m.
It was in the range of m, and it was possible to suppress gas generation due to decomposition of the electrolytic solution on the graphite surface.

【0019】また、図2に示すように電池A〜Eの10
サイクル目の放電曲線は平均放電電圧が比較の電池Fに
比べ、約0.05V高く、放電容量も20%程度大きか
った。これは、比較の電池ではガスが極板間に蓄積さ
れ、これにより電池の内部抵抗が上昇し、放電特性が低
下するのに対し、電池A〜Eはガスが発生しないため放
電特性が向上したと考えられる。
In addition, as shown in FIG.
In the discharge curve at the cycle, the average discharge voltage was about 0.05 V higher than that of the comparative battery F, and the discharge capacity was about 20% larger. This is because in the comparative battery, gas is accumulated between the electrode plates, which increases the internal resistance of the battery and deteriorates the discharge characteristics, whereas in the batteries A to E, the discharge characteristics are improved because no gas is generated. it is conceivable that.

【0020】次に、アルキル化剤の添加量について検討
を行った。アルキル化剤としてはトリメチルメトキシシ
ランを用い、添加量としては黒鉛材料100部に対して
1〜60部の範囲として、電池を作製し上記と同様の充
放電試験を行った。
Next, the amount of the alkylating agent added was examined. Trimethylmethoxysilane was used as the alkylating agent, and the amount of addition was in the range of 1 to 60 parts with respect to 100 parts of the graphite material, and a battery was prepared and the same charge and discharge test as above was performed.

【0021】図3にトリメチルメトキシシラン添加量と
電池の厚み変化および10サイクル目の電池の内部抵抗
の関係を示した。黒鉛材料へのアルキル化剤の添加量が
5%以上の場合、初充電後の電池の膨脹が約0.08m
mあり、ほとんど膨脹しないことがわかった。また電池
の平均放電電圧は添加量が0%のとき約3.53Vと低
く、添加量の増加とともに上昇し、5%で3.6Vに達
する。しかし30%をこえると再び平均放電電圧が徐々
に低下する。したがって、アルキル化剤の添加量として
は5%より30%の範囲が好ましい。
FIG. 3 shows the relationship between the amount of trimethylmethoxysilane added, the change in battery thickness and the internal resistance of the battery at the 10th cycle. When the amount of alkylating agent added to the graphite material is 5% or more, the expansion of the battery after initial charging is about 0.08 m.
It was found that there was almost no expansion. Further, the average discharge voltage of the battery was as low as about 3.53V when the amount of addition was 0%, increased with the increase of the amount of addition, and reached 3.6V at 5%. However, when it exceeds 30%, the average discharge voltage gradually decreases again. Therefore, the addition amount of the alkylating agent is preferably in the range of 5% to 30%.

【0022】なお、本実施例では、非水電解液としてエ
チレンカーボネートとジエチルカーボネートの等積混合
溶媒に1モル/lの六フッ化リン酸リチウムを溶解した
系を用いた場合について説明したが、溶媒としてはこの
他に、プロピレンカーボネート、エチレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネートなどのカーボネート類、ガンマ
ーブチロラクトン、酢酸メチルなどのエステル類を単独
あるいはこれらから選ばれる1つ以上を混合して用い、
溶質として過塩素酸リチウム、ホウフッ化リチウム、六
フッ化リン酸リチウムを用いた場合でも、同様の結果を
得た。
In this embodiment, the case where a system in which 1 mol / l lithium hexafluorophosphate is dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate is used as the non-aqueous electrolyte has been described. As the solvent, other than these, carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, esters such as gamma-butyrolactone and methyl acetate may be used alone or by mixing one or more selected from them. Used,
Similar results were obtained when lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate was used as the solute.

【0023】また、本実施例ではコイン形電池で説明し
たが、円筒形電池や角形電池でも同様に放電特性の改善
や電池の変形を防止できた。
In this embodiment, the coin type battery has been explained, but the cylindrical battery and the prismatic battery can also improve the discharge characteristics and prevent the deformation of the battery.

【0024】また、炭素材料としては天然黒鉛、石油系
ピッチや石炭系ピッチを原料とするコークスおよび黒
鉛、また高分子樹脂を原料とする炭素材や黒鉛などであ
っても良い。
The carbon material may be natural graphite, coke or graphite made from petroleum pitch or coal pitch, or carbon material or graphite made from polymer resin.

【0025】さらに、アルキル化剤としてはアミノプロ
ピルトリエトキシシラン、N−メチルアミノプロピルト
リメトキシシラン等の他のシラン系やチタネート系のア
ルキル化剤であっても良い。
Further, the alkylating agent may be other silane-based or titanate-based alkylating agents such as aminopropyltriethoxysilane and N-methylaminopropyltrimethoxysilane.

【0026】[0026]

【発明の効果】以上のように、本発明の非水電解液二次
電池では負極に用いる炭素材料にアルキル化剤を加え炭
素材料表面をアルキル化処理しているので、炭素材料表
面に存在する活性OH基等をアルキル化して表面を不活
性なアルキル基で覆うことができる。このため、電解液
等が炭素材料表面の活性点で分解されてガスが発生する
ことを抑制することができ、電池の内圧上昇や内部抵抗
上昇を防止することができる。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, an alkylating agent is added to the carbon material used for the negative electrode to alkylate the surface of the carbon material, so that it exists on the surface of the carbon material. An active OH group or the like can be alkylated to cover the surface with an inactive alkyl group. Therefore, it is possible to prevent the electrolytic solution and the like from being decomposed at the active sites on the surface of the carbon material to generate gas, and it is possible to prevent the internal pressure and internal resistance of the battery from increasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例で用いるコイン形非水電解液二次電池
の断面図
FIG. 1 is a sectional view of a coin-shaped non-aqueous electrolyte secondary battery used in this example.

【図2】電池の10サイクル目の放電曲線を示す図FIG. 2 is a diagram showing a discharge curve at the 10th cycle of a battery.

【図3】アルキル化剤の添加量と、電池厚みおよび平均
放電電圧との関係を示す図
FIG. 3 is a graph showing the relationship between the amount of alkylating agent added, the battery thickness, and the average discharge voltage.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 封口板 6 ガスケット 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket

フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Akikatsu Morita 1006, Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵,放出することができる炭
素材料を用いた負極と正極と非水電解液とからなり、炭
素材料表面をアルキル化処理した非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a negative electrode using a carbon material capable of inserting and extracting lithium, a positive electrode, and a non-aqueous electrolyte, and having a carbon material surface alkylated.
【請求項2】炭素材料に対してアルキル化剤を5〜30
重量%添加する請求項1記載の非水電解液二次電池。
2. An alkylating agent is added to the carbon material in an amount of 5 to 30.
The non-aqueous electrolyte secondary battery according to claim 1, which is added by weight%.
JP6318264A 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3052761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318264A JP3052761B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318264A JP3052761B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08180865A true JPH08180865A (en) 1996-07-12
JP3052761B2 JP3052761B2 (en) 2000-06-19

Family

ID=18097265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318264A Expired - Fee Related JP3052761B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3052761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034555A (en) * 2020-08-18 2022-03-03 財團法人工業技術研究院 Negative electrode active material, negative electrode, and battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034555A (en) * 2020-08-18 2022-03-03 財團法人工業技術研究院 Negative electrode active material, negative electrode, and battery

Also Published As

Publication number Publication date
JP3052761B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
EP2690699B1 (en) Positive electrode active material having improved safety and lifespan characteristics, and lithium secondary battery comprising same
WO2013187211A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery; method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
US20040072080A1 (en) Nonaqueous electrolyte secondary cell
CN114023965B (en) Solid lithium battery
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
CN1296305A (en) Non-aqueous electrolyte accumulator
JP3774315B2 (en) Nonaqueous electrolyte secondary battery
EP0832505A4 (en) Process for improving lithium ion cell
JP2010009942A (en) Lithium secondary battery
US20110262812A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
JP2008027782A (en) Lithium secondary battery
CN101252189A (en) Method for improving lithium ion battery thermal stabilization through doping
JP2004014351A (en) Nonaqueous electrolyte secondary battery
JP2006252917A (en) Lithium-ion secondary battery
JPH09320568A (en) Nonaqueous electrolyte secondary battery
JP2000251932A (en) Nonaqueous electrolyte battery
JP2007122975A (en) Nonaqueous electrolyte secondary battery
JP2000106189A (en) Nonaqueous electrolyte secondary battery and manufacture of negative electrode for the nonaqueous electrolyte secondary battery
WO2022237106A1 (en) Cobalt-free positive electrode material slurry, preparation method therefor and application technical field thereof
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP3052761B2 (en) Non-aqueous electrolyte secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
JPH08306353A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees