JPH08306353A - Nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JPH08306353A
JPH08306353A JP7111446A JP11144695A JPH08306353A JP H08306353 A JPH08306353 A JP H08306353A JP 7111446 A JP7111446 A JP 7111446A JP 11144695 A JP11144695 A JP 11144695A JP H08306353 A JPH08306353 A JP H08306353A
Authority
JP
Japan
Prior art keywords
alkali metal
negative electrode
battery
metal salt
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111446A
Other languages
Japanese (ja)
Inventor
Sukeyuki Murai
祐之 村井
Takashi Takeuchi
崇 竹内
Masaki Kitagawa
雅規 北川
Hide Koshina
秀 越名
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7111446A priority Critical patent/JPH08306353A/en
Publication of JPH08306353A publication Critical patent/JPH08306353A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To suppress the generation of a gas generated in an initial charging and suppress the deformation of the shape of a battery and the deterioration of discharging properties by coating the surface of an anode with a macromolecular film consisting of a macromolecular material and an alkali metal salt. CONSTITUTION: The surface of an anode 4 made of a carbon material is coated with a macromolecular film consisting of a macromolecular material such as polyethylene oxide, polybutylene oxide, etc., and an alkali metal salt such as LiClO4 , LiBF4 , etc. A method involving dissolving the macromolecular material and the alkali metal salt in a solvent, applying the resulting solution to the surface of an anode, hardening, and drying and a method involving mixing an anode material powder with a macromolecular material and an alkali metal salt while using a prescribed solvent, making the mixture be a paste, applying the paste to an anode collector, hardening and drying the paste can be employed to form the coating. Consequently, the electrolytic liquid and the surface of the carbon material are prevented from being brought into direct contact mutually and gas generation by charging can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高エネルギー密度を有
する非水電解液二次電池の、とくにその負極に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a high energy density, particularly to the negative electrode thereof.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧で高エネルギー密度が
期待され、盛んに研究がなされている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have a high voltage and a high energy density, and have been actively studied.

【0003】これまでに、非水電解液二次電池の正極活
物質としてV26、Cr23、MnO2、TiS2などが
知られている。近年、より高エネルギー密度を有する4
ボルト級の非水電解液二次電池の正極活物質としてLi
Mn24、LiCoO2、LiNiO2、LiFeO2
どが注目されている。特に、LiMn24、LiNiO
2やLiFeO2は低コストであることや、原料供給が安
定しており、大容量の非水電解液二次電池の活物質とし
て活発な研究が行われている。
So far, V 2 O 6 , Cr 2 O 3 , MnO 2 , TiS 2 and the like have been known as positive electrode active materials for non-aqueous electrolyte secondary batteries. 4 with higher energy density in recent years
Li as a positive electrode active material for a bolt-class non-aqueous electrolyte secondary battery
Mn 2 O 4, such as LiCoO 2, LiNiO 2, LiFeO 2 has been attracting attention. In particular, LiMn 2 O 4 and LiNiO
2 and LiFeO 2 are low in cost and the supply of raw materials is stable, and active research is being conducted as an active material for a large capacity non-aqueous electrolyte secondary battery.

【0004】一方、負極活物質としては安全性やレート
特性などの点から金属リチウムに代わり、炭素材料が注
目を集めている。特に、黒鉛化度の進んだ黒鉛粉末は、
高容量で、放電電位が金属リチウムに比べ約0.1V貴
であり、より高エネルギー密度を有する電池を開発する
ことができるため、盛んに研究がなされている。
On the other hand, as a negative electrode active material, a carbon material has been attracting attention in place of metallic lithium in terms of safety and rate characteristics. In particular, graphite powder with advanced graphitization
Since the battery has a high capacity and a discharge potential of about 0.1 V, which is higher than that of metallic lithium, and a battery having a higher energy density can be developed, active research is being conducted.

【0005】[0005]

【発明が解決しようとする課題】上記のような正極活物
質を用い、負極に天然黒鉛や人造黒鉛、気相成長グラフ
ァイト、メソカーボンマイクロビーズなどの黒鉛材料や
炭素繊維、コークスなどの非晶質炭素を用いる非水電解
液二次電池について検討した結果、初充電時のみ負極か
らガスが発生することがわかった。このガス発生につい
ては明確な反応機構は不明であるが、負極に使われてい
る炭素材料の表面官能基(たとえばOH基)などの活性
点での、電解液や負極構成材料(例えば結着剤)の分解
反応により、ガスと反応物を生成するものと予想され
る。特に電解液の種類を変えることにより発生ガス量が
大きく変化すること、電解液成分にエチレンカーボネー
トが存在しない場合2回目の充電でもガスが発生するこ
とがわかってきた。すなわちガス発生は負極の炭素材料
表面と電解液の相互作用によるものと考えられる。
A graphite material such as natural graphite, artificial graphite, vapor-grown graphite, mesocarbon microbeads, etc., or an amorphous material such as carbon fiber, coke, etc., is used for the negative electrode, using the positive electrode active material as described above. As a result of studying a non-aqueous electrolyte secondary battery using carbon, it was found that gas is generated from the negative electrode only during initial charging. Although a clear reaction mechanism for this gas generation is unknown, the electrolytic solution or the negative electrode constituent material (for example, the binder) at the active sites such as the surface functional groups (for example, OH groups) of the carbon material used for the negative electrode. ) Is expected to produce gas and a reactant. In particular, it has been found that the amount of generated gas changes greatly by changing the type of electrolyte solution, and that gas is generated even in the second charge when ethylene carbonate is not present in the electrolyte solution component. That is, it is considered that the gas generation is due to the interaction between the surface of the carbon material of the negative electrode and the electrolytic solution.

【0006】また、発生ガス種としては主に水素、一酸
化炭素であり、その他アセチレン、メタンなどが微量検
出される。特に水素ガスが全体の90vol%を占めて
いた。
The generated gas species are mainly hydrogen and carbon monoxide, and trace amounts of acetylene, methane and the like are also detected. Particularly, hydrogen gas occupied 90 vol% of the whole.

【0007】初充電時のガス発生によって引き起こされ
る問題点として電池の内圧上昇による漏液や電池の変
形、電極間に空隙が生じるためにおこる内部抵抗上昇や
充放電性能の低下があった。従来、ガス発生による上記
問題点を解決するために、電池組立後直ちに開封状態で
電池容量の数十パーセントを充電し、いわゆる予備充電
を行うことにより、初回の発生ガスを電池外に放出させ
る方法で対処してきたが、電池製造設備、工程上、好ま
しい方法ではなかった。
As a problem caused by gas generation at the time of initial charging, there are leakage due to increase in internal pressure of the battery, deformation of the battery, increase in internal resistance caused by gaps between electrodes, and deterioration of charge / discharge performance. Conventionally, in order to solve the above-mentioned problems caused by gas generation, a method of discharging tens of percent of the battery capacity in an opened state immediately after battery assembly and performing so-called preliminary charging to release the first generated gas outside the battery However, it was not a preferable method in terms of battery manufacturing equipment and process.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るために本発明は炭素材料表面と電解液が直接接触する
のをさけることにより、ガス発生を抑制するものであ
る。
In order to solve such a problem, the present invention suppresses gas generation by avoiding direct contact between the surface of the carbon material and the electrolytic solution.

【0009】炭素材料からなる負極表面をポリエチレン
オキサイドやポリブチレンオキサイドなどの高分子材料
とLiClO4、LiBF4、LiPF6、LiAsF5
LiCF3SO3などのアルカリ金属塩とからなる高分子
膜で被覆することを特徴とする。また、負極表面に前記
被覆を形成する方法としては、高分子材料とアルカリ金
属塩を所定の溶媒に溶解し、これを負極表面に塗布して
硬化、乾燥する方法や負極材料粉末と高分子材料および
アルカリ金属塩を所定の溶媒を用いて混合、ペースト化
し、これを負極集電体に塗布し硬化、乾燥して負極とす
る方法がある。また硬化は、加熱あるいは光を照射する
方法によって行うことができる。
On the surface of the negative electrode made of a carbon material, a polymer material such as polyethylene oxide or polybutylene oxide and LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 5 ,
It is characterized by coating with a polymer film composed of an alkali metal salt such as LiCF 3 SO 3 . In addition, as a method of forming the coating on the surface of the negative electrode, a method of dissolving a polymer material and an alkali metal salt in a predetermined solvent, coating this on the surface of the negative electrode and curing and drying, or a negative electrode material powder and the polymer material There is also a method in which an alkali metal salt and an alkali metal salt are mixed and made into a paste, which is applied to a negative electrode current collector, cured, and dried to obtain a negative electrode. Curing can be performed by heating or irradiating with light.

【0010】[0010]

【作用】本発明によれば、負極表面を上記高分子材料と
アルカリ金属塩とからなる高分子膜で被覆することによ
り、ガス発生因子である電解液が負極の炭素材料表面と
直接接触しないため、充電によりガスが発生することが
ない。
According to the present invention, by coating the surface of the negative electrode with the polymer film composed of the above-mentioned polymer material and alkali metal salt, the electrolytic solution which is a gas generating factor does not come into direct contact with the surface of the carbon material of the negative electrode. , No gas is generated by charging.

【0011】[0011]

【実施例】以下本発明の実施例を図面を参照にしながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(実施例1)電池を以下の手順により作製
した。
(Example 1) A battery was manufactured by the following procedure.

【0013】正極は正極活物質であるLiCoO2に導
電剤としてカーボンブラックを重量比で100:3の割
合で混合し、さらに蒸溜水とエタノールを加え湿式混合
した。これに結着剤としてポリ四フッ化エチレンの水性
ディスパージョンを加えさらに混合後、100℃温風乾
燥器で乾燥し、正極合剤を得た。この正極合剤を直径1
7mmに2トン/cm2でプレス成型し、正極とした。
For the positive electrode, LiCoO 2 as the positive electrode active material was mixed with carbon black as a conductive agent at a weight ratio of 100: 3, and distilled water and ethanol were further added and wet mixed. An aqueous dispersion of polytetrafluoroethylene was added to this as a binder, and the mixture was further mixed and dried in a hot air dryer at 100 ° C. to obtain a positive electrode mixture. This positive electrode mixture has a diameter of 1
It was press-molded into 7 mm at 2 ton / cm 2 to obtain a positive electrode.

【0014】負極にはポリエチレンオキサイドの1%水
溶液にLiClO4を1モル/リットル溶解した。さら
にこの溶液に黒鉛粉末を加え、ついでアクリル系結着剤
を加え十分混合した。これを80℃の温風乾燥器で乾燥
させ、負極合剤を得た。この電極合剤を直径17.5m
mに2トン/cm2でプレス成型し負極とした。また、
ポリエチレンオキサイドの水溶液にLiClO4を溶解
したものを、黒鉛粉末を用いた負極表面に塗布した以外
は上記と同様の負極を作製した。 製造した電池の断面
図を図1に示す。正極1の上に直径18.5mmの多孔
性ポリプロピレン製セパレータ3をおき、さらに、その
上に負極4を配置した。非水電解液として、1モル/リ
ットルの六フッ化リン酸リチウムを溶解したエチレンカ
ーボネートとジエチルカーボネートの等比体積混合溶液
を注入し、封口板5で密閉してコイン形電池とする。
For the negative electrode, 1 mol / liter of LiClO 4 was dissolved in a 1% aqueous solution of polyethylene oxide. Further, graphite powder was added to this solution, and then an acrylic binder was added and mixed well. This was dried with a warm air dryer at 80 ° C. to obtain a negative electrode mixture. This electrode mixture has a diameter of 17.5 m
m was press-molded at 2 ton / cm 2 to obtain a negative electrode. Also,
A negative electrode similar to the above was prepared except that a solution of LiClO 4 dissolved in an aqueous solution of polyethylene oxide was applied to the surface of the negative electrode using graphite powder. A cross-sectional view of the manufactured battery is shown in FIG. A porous polypropylene separator 3 having a diameter of 18.5 mm was placed on the positive electrode 1, and a negative electrode 4 was further placed thereon. As a non-aqueous electrolytic solution, a mixed solution of ethylene carbonate and diethyl carbonate in an equal volume ratio, in which 1 mol / liter of lithium hexafluorophosphate was dissolved, was injected and sealed with a sealing plate 5 to form a coin battery.

【0015】上記の各負極を用いた電池をそれぞれ本発
明の電池A、Bとした。これらの電池は充放電電流2m
A、充放電電圧範囲4.1V〜3.0Vで充放電試験を
行い、充電前と1サイクル目充電後の電池の厚み変化と
10サイクル目の電池の平均放電電圧を測定した。
The batteries using the above negative electrodes were designated as batteries A and B of the present invention. These batteries have a charge / discharge current of 2 m
A, the charge / discharge test was performed in a charge / discharge voltage range of 4.1 V to 3.0 V, and the thickness change of the battery before charging and after the first cycle charging and the average discharge voltage of the battery at the 10th cycle were measured.

【0016】(比較例)比較例として、以下に示す方法
で作成した負極を用いた以外は(実施例1)と同様の方
法で電池を作成した。
(Comparative Example) As a comparative example, a battery was prepared in the same manner as in (Example 1) except that the negative electrode prepared by the following method was used.

【0017】まず、黒鉛粉末に水とエタノールを加え、
十分に混合し、さらにアクリル系結着剤を加え混合した
後これを80℃で乾燥して負極合剤を得た。
First, water and ethanol are added to graphite powder,
The mixture was thoroughly mixed, and further an acrylic binder was added and mixed, and then this was dried at 80 ° C. to obtain a negative electrode mixture.

【0018】このようにして作製した電池Cも上記の条
件で試験を行った。初充電前後の電池の厚み変化量を
(表1)に示す。また、図2には本発明電池Aと比較例
電池の10サイクル目の放電曲線を示した。
The battery C thus produced was also tested under the above conditions. The amount of change in battery thickness before and after initial charging is shown in (Table 1). Further, FIG. 2 shows the discharge curves at the 10th cycle of the battery A of the present invention and the battery of the comparative example.

【0019】[0019]

【表1】 [Table 1]

【0020】(表1)に示すように、比較の電池Cは初
回の充電でガスが発生し、電池厚みが約0.58mm膨
張する。これに対して電池AおよびBの厚みの膨脹は
0.07〜0.08mmであった。電池AおよびBの電
池膨張の原因としては充電時に黒鉛がリチウムを吸蔵す
ると黒鉛自身が膨張することとLiCoO2がリチウム
を放出した際、LiCoO2自身が膨張することに起因
していた。また、図2に示すように、電池Aの10サイ
クル目の放電曲線は平均放電電圧が比較の電池Cに比
べ、約0.05V高く、放電容量も20%程度大きい。
比較の電池においては初回の充電時に発生したガスが極
板間に蓄積され、これにより電池の内部抵抗が上昇し、
放電特性が低下したが本発明の電池Aはガスが発生しな
いため放電特性が向上したと考えられる。
As shown in (Table 1), the comparative battery C generates gas at the first charge, and the battery thickness expands by about 0.58 mm. On the other hand, the expansion of the thickness of batteries A and B was 0.07 to 0.08 mm. When the cause of cell expansion of the batteries A and B that the LiCoO 2 graphite itself when graphite occludes lithium during charge expands and releasing lithium, was due to the LiCoO 2 itself is expanded. Further, as shown in FIG. 2, in the discharge curve at the 10th cycle of the battery A, the average discharge voltage is higher by about 0.05 V and the discharge capacity is about 20% higher than that of the comparative battery C.
In the comparative battery, the gas generated during the first charge is accumulated between the electrode plates, which increases the internal resistance of the battery,
Although the discharge characteristics deteriorated, it is considered that the battery A of the present invention has improved discharge characteristics because no gas is generated.

【0021】(実施例2)次に、使用したポリエチレン
オキサイド(PEO)の分子量について検討を行った。
検討したPEOの分子量は1000、10000、10
0000、1000000、4000000、7000
000のものであり、電池の試作は(実施例1)と同様
の方法でおこない、試験方法も同様とした。それらの電
池の初充電後の厚み変化と電池の平均放電電圧を図3に
示す。分子量が1000000以下の場合初期の電池の
膨れは大きく、分子量が大きくなるにつれ電池の平均放
電電圧が低下する。したがって、最適な高分子の分子量
は100000から100000000の間にあるとい
うことがわかった。
(Example 2) Next, the molecular weight of the polyethylene oxide (PEO) used was examined.
The molecular weights of PEO investigated are 1,000, 10,000, and 10
0000, 1,000,000, 4,000,000, 7,000
The battery was manufactured in the same manner as in (Example 1), and the test method was also the same. FIG. 3 shows the change in thickness of the batteries after initial charging and the average discharge voltage of the batteries. When the molecular weight is 1,000,000 or less, the initial swelling of the battery is large, and the average discharge voltage of the battery decreases as the molecular weight increases. Therefore, it was found that the optimum polymer has a molecular weight of 100,000 to 100,000,000.

【0022】(実施例3)次に使用する高分子の種類と
アルカリ金属塩の種類について検討した。電池は高分子
の種類、アルカリ金属塩の種類を変える以外は(実施例
1)と全く同様の方法により作成した。高分子の硬化は
電極合剤を80℃で加熱することにより行った。また、
電池の試験も(実施例1)と同様に行った。
Example 3 Next, the type of polymer and the type of alkali metal salt used were examined. A battery was prepared by the same method as in (Example 1) except that the type of polymer and the type of alkali metal salt were changed. The polymer was cured by heating the electrode mixture at 80 ° C. Also,
The battery test was performed in the same manner as in (Example 1).

【0023】検討を行った高分子とアルカリ金属塩の組
み合わせは(表2)に示す。初回の充電後の電池の厚み
変化も(表2)に示す。
The combinations of polymers and alkali metal salts examined are shown in (Table 2). The change in battery thickness after the first charge is also shown in (Table 2).

【0024】[0024]

【表2】 [Table 2]

【0025】この結果(表2)に示す全ての電池電池初
回の充電後の厚みの増大と放電容量の低下が認められな
かった。
All the batteries shown in the results (Table 2) showed no increase in thickness and no decrease in discharge capacity after initial charging.

【0026】本実施例では、非水電解液としてエチレン
カーボネートとジエチルカーボネートの等積混合溶媒に
1モル/リットルの六フッ化リン酸リチウムを溶解した
系を用いた場合について説明したが、溶媒としてはこの
他に、プロピレンカーボネート、エチレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネートなどのカーボネート類、ガンマ
ーブチロラクトン、酢酸メチルなどのエステル類を単独
あるいはこれらから選ばれる1つ以上を混合して用い、
溶質として過塩素酸リチウム、ホウフッ化リチウム、六
フッ化リン酸リチウムを用いた場合でも、同様の結果を
得た。
In this embodiment, the case where a system in which 1 mol / liter of lithium hexafluorophosphate is dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate is used as the non-aqueous electrolytic solution has been described. In addition to this, carbonates such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, esters such as gamma-butyrolactone and methyl acetate are used alone or in combination of one or more selected from these,
Similar results were obtained when lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate was used as the solute.

【0027】また、実施例ではコイン形電池で説明した
が、円筒形電池や角形電池でも同様に放電特性の改善や
電池の変形を防止できることを確認している。
Further, although the coin type battery is described in the embodiment, it has been confirmed that the discharge characteristic can be improved and the deformation of the battery can be prevented also in the cylindrical battery and the prismatic battery.

【0028】[0028]

【発明の効果】以上のように、炭素材料を用いた負極を
高分子材料とアルカリ金属塩とからなる高分子膜によっ
て被覆したことで、初回の充電で炭素材料から発生する
ガスを抑制でき、電池の形状変化や放電特性の低下を抑
えることができる。
As described above, by coating the negative electrode using the carbon material with the polymer film composed of the polymer material and the alkali metal salt, it is possible to suppress the gas generated from the carbon material in the first charge, It is possible to suppress changes in the shape of the battery and deterioration of discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の非水電解液二次電池の縦断面図FIG. 1 is a vertical sectional view of a non-aqueous electrolyte secondary battery of the present invention.

【図2】本発明と比較の電池の10サイクル目の放電曲
線を示した図
FIG. 2 is a diagram showing a discharge curve at 10th cycle of a battery of the present invention and a battery for comparison.

【図3】ポリエチレンオキサイドの分子量と電池厚みの
関係を示した図
FIG. 3 is a diagram showing the relationship between the molecular weight of polyethylene oxide and the battery thickness.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 封口板 6 ガスケット 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hide Koshina 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Akikatsu Morita, 1006 Kadoma, Kadoma City Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】正極と非水電解液と炭素材料を主構成材料
とする負極とを備え、前記炭素材料表面を高分子材料と
アルカリ金属塩とからなる高分子膜によって被覆したも
のを用いる非水電解液二次電池。
1. A positive electrode, a non-aqueous electrolytic solution, and a negative electrode containing a carbon material as a main constituent material, wherein the surface of the carbon material is coated with a polymer film composed of a polymer material and an alkali metal salt is used. Water electrolyte secondary battery.
【請求項2】高分子材料はポリエチレンオキサイド、ポ
リブチレンオキサイド、ポリフォスアゼンから選ばれる
少なくとも1つである請求項1記載の非水電解液二次電
池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the polymer material is at least one selected from polyethylene oxide, polybutylene oxide, and polyphosazene.
【請求項3】アルカリ金属塩はLiClO4、LiB
4、LiPF6、LiAsF5、LiCF3SO3から選
ばれる少なくとも1つである請求項1記載の非水電解液
二次電池。
3. The alkali metal salt is LiClO 4 , LiB
The non-aqueous electrolyte secondary battery according to claim 1, which is at least one selected from F 4 , LiPF 6 , LiAsF 5 , and LiCF 3 SO 3 .
【請求項4】正極と非水電解液と炭素材料を主構成材料
とする負極とを備えた非水電解液二次電池の製造法であ
って、高分子材料とアルカリ金属塩を溶媒に溶解し、こ
れを前記負極表面に塗布した後、高分子を硬化させるこ
とによって負極表面を前記高分子材料で被覆する非水電
解液二次電池の製造方法。
4. A method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a non-aqueous electrolyte and a negative electrode containing a carbon material as a main constituent material, wherein a polymer material and an alkali metal salt are dissolved in a solvent. Then, after applying this to the surface of the negative electrode, the polymer is cured to coat the surface of the negative electrode with the polymeric material.
【請求項5】正極と非水電解液と炭素材料を主構成材料
とする負極とを備えた非水電解液二次電池の製造法であ
って、炭素材料と高分子材料とアルカリ金属塩とを混合
し高分子を硬化させることにより負極を形成する非水電
解液二次電池の製造法。
5. A method for producing a non-aqueous electrolyte secondary battery comprising a positive electrode, a non-aqueous electrolyte and a negative electrode containing a carbon material as a main constituent material, which comprises a carbon material, a polymer material and an alkali metal salt. A method for manufacturing a non-aqueous electrolyte secondary battery, in which a negative electrode is formed by mixing a polymer and curing the polymer.
JP7111446A 1995-05-10 1995-05-10 Nonaqueous electrolyte secondary battery and its manufacture Pending JPH08306353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111446A JPH08306353A (en) 1995-05-10 1995-05-10 Nonaqueous electrolyte secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111446A JPH08306353A (en) 1995-05-10 1995-05-10 Nonaqueous electrolyte secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH08306353A true JPH08306353A (en) 1996-11-22

Family

ID=14561415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111446A Pending JPH08306353A (en) 1995-05-10 1995-05-10 Nonaqueous electrolyte secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH08306353A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JP2007220376A (en) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd Electrode protection membrane
US7288339B2 (en) 2002-05-18 2007-10-30 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
JP2009176433A (en) * 2008-01-21 2009-08-06 Furukawa Battery Co Ltd:The Method of manufacturing negative active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9843039B2 (en) 2013-11-07 2017-12-12 Tdk Corporation Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284131A (en) * 1997-02-04 1998-10-23 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
US7288339B2 (en) 2002-05-18 2007-10-30 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
US7883554B2 (en) 2002-05-18 2011-02-08 Samsung Sdi Co., Ltd. Lithium secondary battery with suppressed decomposition of electrolytic solution and preparation method thereof
JP2007220376A (en) * 2006-02-14 2007-08-30 Nippon Soda Co Ltd Electrode protection membrane
JP2009176433A (en) * 2008-01-21 2009-08-06 Furukawa Battery Co Ltd:The Method of manufacturing negative active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9843039B2 (en) 2013-11-07 2017-12-12 Tdk Corporation Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
KR100782868B1 (en) Charging method for charging nonaqueous electrolyte secondary battery
US9012088B2 (en) Anode composition comprising acrylonitrile-acrylic acid copolymer as binder, method for preparing the anode composition and lithium secondary battery using the anode composition
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
KR20190054920A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN111480251A (en) Negative electrode for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
JP4014816B2 (en) Lithium polymer secondary battery
KR101416064B1 (en) Anode active material, lithium secondary battery having the anode active material and manufacturing method thereof
KR20190030345A (en) Pre-lithiation method of negative electrode for secondary battery
EP3863085A1 (en) Method for manufacturing anode for secondary battery
CN112563563A (en) Composite solid electrolyte, solid battery and preparation method thereof
CN110676511A (en) Lithium ion battery electrolyte and lithium ion secondary battery
CN114552125A (en) Nondestructive lithium supplement composite diaphragm and preparation method and application thereof
JP4751502B2 (en) Polymer battery
JP2001057234A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5105807B2 (en) Lithium polymer battery
KR20190090723A (en) Method of manufacturing negative electrode for lithium secondary battery
EP3866225A1 (en) Anode and lithium secondary battery comprising same
JPH1145738A (en) Lithium secondary battery and its manufacture
KR20030047655A (en) Method of preparing lithium secondary battery and lithium secondary battery prepared by same
CN113272996A (en) Method of manufacturing negative electrode for secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JPH08306353A (en) Nonaqueous electrolyte secondary battery and its manufacture
US20220352489A1 (en) Method of manufacturing negative electrode
JP3617197B2 (en) Flame retardant gel electrolyte and battery using the same
KR20140070381A (en) Composition For Cathode Material Comprising Acrylonitrile-Acrylic Acid Copolymer, Method For Manufacturing The Same and Lithium Secondary Battery Comprising The Same