JP2009176433A - Method of manufacturing negative active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents

Method of manufacturing negative active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009176433A
JP2009176433A JP2008010767A JP2008010767A JP2009176433A JP 2009176433 A JP2009176433 A JP 2009176433A JP 2008010767 A JP2008010767 A JP 2008010767A JP 2008010767 A JP2008010767 A JP 2008010767A JP 2009176433 A JP2009176433 A JP 2009176433A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
secondary battery
electrode active
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008010767A
Other languages
Japanese (ja)
Other versions
JP5348897B2 (en
Inventor
Masaaki Kubota
昌明 久保田
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2008010767A priority Critical patent/JP5348897B2/en
Publication of JP2009176433A publication Critical patent/JP2009176433A/en
Application granted granted Critical
Publication of JP5348897B2 publication Critical patent/JP5348897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery using a negative active material making containing of an additive in an electrolyte unnecessary, preventing decomposition of an electrolyte solvent and insertion of an electrolyte solvent molecule into between negative active material layers in the initial charge, minimizing loss in charge discharge (insertion and releasing of lithium) reaction, and having high charge discharge efficiency. <P>SOLUTION: The method of manufacturing the negative active material for the nonaqueous electrolyte secondary battery is that the negative active material made of a material capable of absorbing and releasing lithium is mixed with an aqueous solution containing an alkali metal ion, a reducing agent, and a reducing polymerization material, and a passive layer is formed on the surface of the negative active material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、負極活物質表面に不動態化層を形成することで充放電高率を改善した非水電解液二次電池用負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a non-aqueous electrolyte secondary battery in which a high charge / discharge rate is improved by forming a passivation layer on the surface of a negative electrode active material.

非水電解液二次電池は、高エネルギー密度を有しているため、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池等と比較して、小型化、軽量化が可能である。そのような理由のため、非水電解液二次電池は、これまで主に、携帯電話やノートパソコンなどの携帯機器に使用されてきた。 Since the nonaqueous electrolyte secondary battery has a high energy density, it can be reduced in size and weight as compared with a lead storage battery, a nickel cadmium battery, a nickel hydrogen battery, and the like. For these reasons, non-aqueous electrolyte secondary batteries have been mainly used in portable devices such as mobile phones and notebook computers.

非水電解液二次電池の代表的な構成としては、負極活物質に炭素材料、正極活物質にコバルト酸リチウムなどのリチウム遷移金属酸化物、電解液に炭酸エチレンや炭酸ジエチルなどの有機溶媒と六フッ化リン酸リチウム(LiPF)といったリチウム塩を使った物が挙げられる。前記電池の負極、正極、電解液それぞれの材料は、リチウムイオンを移動し、かつ電荷の授受により充放電可能であれば良く、非常に多くの構成を取り得る電池である。 A typical configuration of a non-aqueous electrolyte secondary battery includes a carbon material as a negative electrode active material, a lithium transition metal oxide such as lithium cobalt oxide as a positive electrode active material, and an organic solvent such as ethylene carbonate and diethyl carbonate as an electrolytic solution. include those with a Li salt such as lithium hexafluorophosphate (LiPF 6). The material of each of the negative electrode, the positive electrode, and the electrolyte of the battery is a battery that can take a very large number of configurations as long as it can move lithium ions and can be charged and discharged by charge transfer.

リチウム塩にはLiPFの他、LiBFなどのフッ素系錯塩、LiN(SORf)・LiC(SORf)(但しRf=CF,C)などの塩も用いられる。また、通常、電解液は高い導電率と安全性を確保するため、炭酸エチレン、炭酸プロピレンなどの環状炭酸エステル系高誘電率・高沸点溶媒に低粘性率溶媒である炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の低級鎖状炭酸エステルを用い、一部低級脂肪酸エステルを用いる場合もある。 In addition to LiPF 6 , a fluorine-based complex salt such as LiBF 4 or a salt such as LiN (SO 2 Rf) 2 .LiC (SO 2 Rf) 3 (where Rf = CF 3 , C 2 F 5 ) is also used as the lithium salt. . Also, in order to ensure high electrical conductivity and safety, the electrolytic solution is usually a cyclic carbonate ester high dielectric constant / high boiling point solvent such as ethylene carbonate, propylene carbonate, and low viscosity solvent dimethyl carbonate, ethyl methyl carbonate, A lower chain carbonate such as diethyl carbonate may be used, and a lower fatty acid ester may be partially used.

負極活物質として黒鉛や炭素材料を使用した場合、その充放電機構は層間へのリチウムの挿入・脱離反応である。初回の充電の際には、負極の表面で電解液の分解反応が生じて、表面に固体電解質界面(Solid Electrolyte Interface以下「SEI」と略す)被膜と呼ばれる電子伝導性のない不動態被膜を形成し、SEI被膜が形成された負極活物質は、SEI被膜を介してリチウムイオンの挿入・脱離反応が起こる。 When graphite or carbon material is used as the negative electrode active material, the charging / discharging mechanism is lithium insertion / extraction reaction between layers. During the first charge, an electrolyte decomposition reaction occurs on the surface of the negative electrode, and a passive film having no electron conductivity called a solid electrolyte interface (hereinafter referred to as “SEI”) film is formed on the surface. The negative electrode active material on which the SEI film is formed undergoes lithium ion insertion / desorption reaction through the SEI film.

なお、非水電解液二次電池は、このSEI被膜が形成される際に、リチウムの挿入と同時に、負極活物質(黒鉛や炭素材料)の層間に電解液溶媒分子(例えば、エチレンカーボネート)の挿入が生じて、負極活物質の崩壊を生じることがあるため、初回の充放電効率が低下、即ち、電池性能の低下することが一般的に知られている。 In addition, when the SEI film is formed, the non-aqueous electrolyte secondary battery has electrolyte solvent molecules (for example, ethylene carbonate) interposed between layers of the negative electrode active material (graphite or carbon material) simultaneously with the insertion of lithium. It is generally known that since the insertion may cause the negative electrode active material to collapse, the initial charge / discharge efficiency is reduced, that is, the battery performance is reduced.

そこで、非水電解液二次電池の電池性能を向上させる方法として、カソードと、結晶度>0.8の炭素材料を含有するアノードと、高誘電定数を有する第1の溶媒及び低粘度を有する第2の溶媒を含む少なくとも2種の非プロトン性有機溶媒の混合物とリチウム塩からなる電解液とを含むリチウム蓄電池において、前記電解液が、少なくとも1個の不飽和結合を含み且つ不動態化層を形成するためにリチウムよりも1V高い電位で前記アノードにおいて還元可能な、前記溶媒の少なくとも1種と同一種の可溶性化合物を更に含有するリチウム蓄電池(特許文献1)が提案されている。   Therefore, as a method for improving the battery performance of the nonaqueous electrolyte secondary battery, the cathode, the anode containing a carbon material having a crystallinity> 0.8, the first solvent having a high dielectric constant, and the low viscosity are used. A lithium storage battery comprising a mixture of at least two aprotic organic solvents containing a second solvent and an electrolyte comprising a lithium salt, wherein the electrolyte contains at least one unsaturated bond and is a passivating layer In order to form a lithium storage battery (Patent Document 1) further containing a soluble compound of the same type as at least one of the solvents, which can be reduced at the anode at a potential higher by 1 V than lithium.

特開平8−45545号公報JP-A-8-45545

特許文献1に記載される方法は、高誘電定数を有する第1の溶媒及び低粘度を有する第2の溶媒を含む少なくとも2種の非プロトン性有機溶媒の混合物とリチウム塩からなる電解液とを含むものであり、電池の初充電時に、電解液に加える可溶性化合物は溶媒和したリチウムイオンの挿入電位よりも高い電位で還元する役割を有する。可溶性化合物は、還元によりリチウム挿入前に負極活物質(炭素材料)上にSEI被膜を形成する方法であり、該SEI被膜を形成することで、リチウムイオンの周囲の溶媒分子の挿入を阻止する物理的バリヤーを構成し、リチウムイオン単独で炭素に侵入し、電池性能を向上することが可能としている。 In the method described in Patent Document 1, a mixture of at least two aprotic organic solvents including a first solvent having a high dielectric constant and a second solvent having a low viscosity and an electrolyte solution composed of a lithium salt are obtained. The soluble compound added to the electrolyte at the initial charge of the battery has a role of reducing at a potential higher than the insertion potential of solvated lithium ions. The soluble compound is a method of forming an SEI film on the negative electrode active material (carbon material) before insertion of lithium by reduction, and the physical property of preventing the insertion of solvent molecules around lithium ions by forming the SEI film. It is possible to improve the battery performance by constructing a barrier and invading carbon with lithium ions alone.

しかしながら、特許文献1に記載される方法では、溶媒分子(例えば、エチレンカーボネート)挿入より先に、添加剤としてビニレンカーボネート(本発明では、還元重合成材料と称する)の分解が生じて、負極活物質表面にSEI被膜を形成し、溶媒分子の挿入を阻害すると共に、添加剤の分解に消費される容量が、不可逆容量の要因となるため、十分な充放電効率を得ることが困難である。 However, in the method described in Patent Document 1, vinylene carbonate (referred to as a reduced polysynthetic material in the present invention) is decomposed as an additive prior to insertion of solvent molecules (for example, ethylene carbonate), and the negative electrode active A SEI film is formed on the surface of the material to inhibit the insertion of solvent molecules, and the capacity consumed for the decomposition of the additive causes irreversible capacity, making it difficult to obtain sufficient charge / discharge efficiency.

近年、非水電解質二次電池の利用分野が、自動車や産業分野に拡大にするに従って、電池への要求は高まり、高い安全性を保持し、且つ、高エネルギー密度、高出力の電池開発が期待されるようになり、現在の要求を満足するまでに至るものではない。   In recent years, as the application field of non-aqueous electrolyte secondary batteries has expanded to automobiles and industrial fields, the demand for batteries has increased, and high-energy density, high-power batteries are expected to be developed while maintaining high safety. It does not lead to meeting current demands.

そこで、発明者等は種々検討の結果、負極活物質とアルカリ金属イオンと還元剤と還元重合性材料を含む水溶液とを混合し作用させ負極活物質の表面にSEI被膜を形成することで、初回の充電よりも前の段階でSEI被膜を形成することが可能であることを知見し、非水電解液二次電池の初回充放電効率などの電池性能を向上させることが可能であることを突き止めた。   Therefore, as a result of various studies, the inventors mixed the negative electrode active material, the alkali metal ion, the reducing agent, and the aqueous solution containing the reductive polymerizable material to form an SEI film on the surface of the negative electrode active material. Knowing that it is possible to form an SEI film at a stage prior to the charging of the battery, and that it is possible to improve the battery performance such as the initial charge and discharge efficiency of the non-aqueous electrolyte secondary battery It was.

本発明に係る非水電解液二次電池用負極活物質の製造方法は、リチウムの吸蔵・放出が可能な材料からなる負極活物質を、アルカリ金属イオンと還元剤と還元重合性材料を含む水溶液とを混合し、負極活物質の表面に不動態化層を形成することを特徴とする。 The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention includes a negative electrode active material made of a material capable of occluding and releasing lithium, an aqueous solution containing an alkali metal ion, a reducing agent, and a reductive polymerizable material. And a passivation layer is formed on the surface of the negative electrode active material.

本発明に係る非水電解液二次電池用負極活物質の製造方法は、前記負極活物質が、黒鉛、又は、炭素材料であることを特徴とする。 The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the negative electrode active material is graphite or a carbon material.

本発明に係る非水電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極と、負極と、非水電解液とを有し、前記が上記製法で得た負極活物質を有することを特徴とする。 The non-aqueous electrolyte secondary battery according to the present invention has a positive electrode capable of occluding and releasing lithium ions, a negative electrode, and a non-aqueous electrolyte, and the negative electrode active material obtained by the above-described manufacturing method. Features.

本発明によれば、電解液中に添加剤を含有する必要がなく、初回充電において、電解液溶媒の分解、及び、電解液溶媒分子の負極活物質層間への挿入を抑制することができる。その結果、充放電(リチウム挿入・脱離)反応による損失は微小なであり、高い充放電効率を持った負極活物質を用いた非水電解液二次電池を得ることが可能である。   According to the present invention, it is not necessary to contain an additive in the electrolytic solution, and decomposition of the electrolytic solution solvent and insertion of electrolytic solution solvent molecules between the negative electrode active material layers can be suppressed in the first charge. As a result, the loss due to the charge / discharge (lithium insertion / desorption) reaction is minute, and it is possible to obtain a non-aqueous electrolyte secondary battery using a negative electrode active material having high charge / discharge efficiency.

本発明に用いる負極活物質としては、天然に産出される黒鉛を加工処理したもの、もしくは、有機原料を人工的に2000℃以下で焼成した非晶質炭素、有機原料を人工的に2000℃以上の高温で焼成しグラファイト構造が発達した平坦な電位特性を有する人造黒鉛系炭素材料等が用いることが可能である。 As the negative electrode active material used in the present invention, naturally produced graphite is processed, amorphous carbon obtained by artificially firing organic raw materials at 2000 ° C. or lower, and organic raw materials are artificially formed at 2000 ° C. or higher. It is possible to use an artificial graphite-based carbon material having a flat potential characteristic that is baked at a high temperature and has a developed graphite structure.

本発明に用いるアルカリ金属イオンの供給物質としては、アルカリ金属(Li,Na,K,Rb,Cs)のハロゲン化物、炭酸塩、シュウ酸塩、硝酸塩、硫酸塩等を用いることが可能である。
なお、負極活物質中にアルカリ金属ハロゲン化物を含有させることにより、黒鉛や炭素材量の層間を広げることが可能であり、リチウムイオンの出し入れに余分な抵抗が生じず、出力の向上にも繋がることが可能である。
Alkali metal (Li, Na, K, Rb, Cs) halides, carbonates, oxalates, nitrates, sulfates, and the like can be used as the alkali metal ion supply material used in the present invention.
In addition, by including an alkali metal halide in the negative electrode active material, it is possible to expand the interlayer of graphite or carbon material amount, and no extra resistance is generated in and out of lithium ions, leading to an improvement in output. It is possible.

本発明に用いる還元剤としては、アスコルビン酸、アスコルビン酸ナトリウム、エリソルビン酸、エリソルビン酸ナトリウム、シュウ酸、亜硫酸塩、硫酸ヒドラジン、ヒドラジン等が用いられる。 As the reducing agent used in the present invention, ascorbic acid, sodium ascorbate, erythorbic acid, sodium erythorbate, oxalic acid, sulfite, hydrazine sulfate, hydrazine and the like are used.

本発明に用いる還元重合性材料としては、ビニレンカーボネート(VC)、及び、これの誘導体、アクリル酸エステル等が用いられる。
ここで、本発明で言う還元重合性材料とは、還元作用により炭素材料等の表面上に不動態化層を形成することが可能な材料であれば良い。
As the reductive polymerizable material used in the present invention, vinylene carbonate (VC), derivatives thereof, acrylic acid esters, and the like are used.
Here, the reduction polymerizable material referred to in the present invention may be any material that can form a passivation layer on the surface of a carbon material or the like by a reducing action.

本発明において、負極活物質の表面にSEI被膜と称される不動態被膜を形成させる方法としては、例えば、アルカリ金属イオンに炭素粉末を分散させた後、還元して活物質の表面に不動態化層を形成できる還元重合性材料を溶解させた水溶液と還元剤を加えて混合・攪拌する。その後、濾過などにより水分を除去し、乾燥する方法が挙げられる。 In the present invention, as a method of forming a passive film called SEI film on the surface of the negative electrode active material, for example, carbon powder is dispersed in alkali metal ions, and then reduced to passivate on the surface of the active material. An aqueous solution in which a reducing polymerizable material capable of forming a chemical layer is dissolved and a reducing agent are added and mixed and stirred. Then, the method of removing water | moisture content by filtration etc. and drying is mentioned.

負極の作製に使用する結着剤としては、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合体ゴム(NBR)、メチルメタクリレート・ブタジエン共重合体ゴム(MBR)、クロロプレンゴム(CR)、アクリルゴム(ABR)、スチレンブタジエン・スチレン共重合体(SBS)、ブチルゴム(IIR)、チオコール、ウレタンゴム、ケイ素ゴム、フッ素ゴムおよびアクリルエステル樹脂エマルジョンなどの水分散エマルジョン樹脂が挙げられる。
これらの中から選ばれる結着剤を使用する場合、増粘剤として水溶性の、メチルセルロース、カルボキシメチルセルロース(CMC)、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースリチウム塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリエチレングリコール、ポリエチレンオキサイドなどのいずれかまたは複数を組み合わせたものを用いることが可能である。
また、結着剤として、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等を用いることが可能である。
The binder used for the production of the negative electrode includes natural rubber (NR), styrene / butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), and methyl methacrylate / butadiene copolymer. Rubber (MBR), chloroprene rubber (CR), acrylic rubber (ABR), styrene butadiene / styrene copolymer (SBS), butyl rubber (IIR), thiocol, urethane rubber, silicon rubber, fluoro rubber, acrylic ester resin emulsion, etc. A water-dispersed emulsion resin may be mentioned.
When using a binder selected from these, water-soluble methylcellulose, carboxymethylcellulose (CMC), carboxymethylcellulose sodium salt, carboxymethylcellulose lithium salt, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate as a thickener , Polyacrylic acid, polyethylene glycol, polyethylene oxide, or a combination thereof may be used.
As the binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or the like can be used.

本発明に用いる電解液としては、リチウム塩として、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、LiB[C]、LiN(SO2CF3)、LiC(SO2CF3)、LiOSOCF等の少なくとも一種を、有機溶媒としてプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、3メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピオン酸アルキルエステル、マーロン酸ジアルキルエステル、酢酸アルキルエステル等の少なくとも1種の溶媒に溶解したものを用いることが可能である。 As an electrolytic solution used in the present invention, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, LiB [C 6 H 5 ] 4 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , At least one of LiOSO 2 CF 3 and the like as an organic solvent, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 3 methyl-γ-butyrolactone, acetyl-γ-butyrolactone, γ-valerolactone, tetrahydrofuran, alkyl Tetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, 1, 2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene glycol dialkyl ether, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, alkyl propionate It is possible to use those dissolved in at least one kind of solvent such as ester, dialkyl malonate, alkyl acetate and the like.

以下に、本発明の一実施例を説明する。なお、本発明は以下の実施例のみに限定されるものではない。 An embodiment of the present invention will be described below. In addition, this invention is not limited only to a following example.

まず、アルカリ金属イオンとして0.5質量%の塩化ナトリウム(NaCl)水溶液20gに負極活物質として黒鉛粉末10gを分散させた後、還元重合性材料として0.5質量%のビニレンカーボネート(VC)水溶液150gと、還元剤として0.5質量%のアスコルビン酸水溶液300gを加えて30分間撹拌し、作用させる。その後、吸引濾過を行ない、100℃で3時間の真空乾燥を行い、試料Aを得た。   First, 10 g of graphite powder as a negative electrode active material was dispersed in 20 g of a 0.5 mass% sodium chloride (NaCl) aqueous solution as alkali metal ions, and then a 0.5 mass% vinylene carbonate (VC) aqueous solution as a reductive polymerizable material. 150 g and 300 g of a 0.5% by mass ascorbic acid aqueous solution as a reducing agent are added and stirred for 30 minutes to act. Thereafter, suction filtration was performed, and vacuum drying was performed at 100 ° C. for 3 hours to obtain Sample A.

次いで、前記方法によって得られた試料Aに、結着剤としてスチレン・ブタジエンゴム(SBR)と増粘剤としてカルボキシメチルセルロースナトリウム(CMC)(負極活物質:SBR:CMC=98:1:1)を混合・攪拌してスラリー状にした負極活物質合剤を、厚さ10μmの銅箔集電体に塗布して乾燥した後、ローラープレスにより圧延処理して、負極活物質合剤の均一化を行い負極を得た。   Next, styrene-butadiene rubber (SBR) as a binder and carboxymethylcellulose sodium (CMC) (negative electrode active material: SBR: CMC = 98: 1: 1) as a binder to Sample A obtained by the above method. The negative electrode active material mixture made into a slurry by mixing and stirring is applied to a copper foil current collector having a thickness of 10 μm, dried, and then rolled by a roller press to homogenize the negative electrode active material mixture. The negative electrode was obtained.

そして、前記負極と、対極・参照極としてリチウム金属を使用し、電解液には、1molのLiPFを溶解したエチレンカーボネート+ジエチルカーボネートの混合溶媒(エチレンカーボネート:ジエチルカーボネート=1:1)を使用し、ビーカーセルを作製した(本発明1)。 The negative electrode and lithium metal are used as a counter electrode and a reference electrode, and a mixed solvent of ethylene carbonate + diethyl carbonate (ethylene carbonate: diethyl carbonate = 1: 1) in which 1 mol of LiPF 6 is dissolved is used as the electrolyte. Then, a beaker cell was produced (Invention 1).

また、実施例1と同様に試料Aを作製後、負極活物質合剤を作製し負極を作製した後、電解液に1molのLiPFを溶解したエチレンカーボネート+ジエチルカーボネートの混合溶媒(エチレンカーボネート:ジエチルカーボネート=1:1)に、更に1質量%のビニレンカーボネートを添加しビーカーセルを作製した(本発明2)。 In addition, after preparing Sample A in the same manner as in Example 1, a negative electrode active material mixture was prepared to prepare a negative electrode, and then a mixed solvent of ethylene carbonate + diethyl carbonate in which 1 mol of LiPF 6 was dissolved in an electrolytic solution (ethylene carbonate: 1% by weight of vinylene carbonate was further added to diethyl carbonate = 1: 1) to prepare a beaker cell (Invention 2).

(比較例1)
アルカリ金属イオン、還元重合性材料、還元剤を用いず、負極活物質として黒鉛粉末10gを使用した以外は実施例1と同様に負極活物質合剤を作製し負極を作製し、その後、実施例1と同様にビーカーセルを作製した(比較例1)。
(従来例)
アルカリ金属イオン、還元重合性材料、還元剤を用いず、負極活物質として黒鉛粉末10gを使用した以外は実施例1と同様に負極活物質合剤を作製し負極を作製し、その後、電解液に1molのLiPFを溶解したエチレンカーボネート+ジエチルカーボネートの混合溶媒(エチレンカーボネート:ジエチルカーボネート=1:1)に、更に1質量%のビニレンカーボネートを添加しビーカーセルを作製した(従来例1)。
(Comparative Example 1)
A negative electrode active material mixture was prepared in the same manner as in Example 1 except that 10 g of graphite powder was used as the negative electrode active material without using an alkali metal ion, a reductive polymerizable material, and a reducing agent, and then a negative electrode was prepared. A beaker cell was prepared in the same manner as in Example 1 (Comparative Example 1).
(Conventional example)
A negative electrode active material mixture was prepared in the same manner as in Example 1 except that 10 g of graphite powder was used as the negative electrode active material without using an alkali metal ion, a reductive polymerizable material, and a reducing agent. 1% by weight of vinylene carbonate was further added to a mixed solvent of ethylene carbonate + diethyl carbonate (ethylene carbonate: diethyl carbonate = 1: 1) in which 1 mol of LiPF 6 was dissolved in a beaker cell (conventional example 1).

種々作製した負極の特性を評価するため、初回充放電効率および30サイクル目の容量維持率の試験を行った。
試験条件として、Li/Li基準で0.0〜1.5Vの範囲で、充電(Li挿入)・放電(Li脱離)共に0.5Cレートの定電流にて行なった。
なお、初回充放電効率は初回充電容量に対する初回放電容量の割合、容量維持率は、初回放電容量を100%としたときの30サイクル目の放電容量の割合である。
表1に、0.5Cレートで充放電したときの各々の初回充放電効率、及び、30サイクル目の容量維持率を示す。
In order to evaluate the characteristics of various negative electrodes produced, tests on the initial charge / discharge efficiency and the capacity retention rate at the 30th cycle were performed.
As test conditions, charging (Li insertion) and discharging (Li desorption) were performed at a constant current of 0.5 C rate within a range of 0.0 to 1.5 V on the basis of Li / Li + .
The initial charge / discharge efficiency is the ratio of the initial discharge capacity to the initial charge capacity, and the capacity maintenance ratio is the ratio of the discharge capacity at the 30th cycle when the initial discharge capacity is 100%.
Table 1 shows the initial charge and discharge efficiency and the capacity retention rate at the 30th cycle when charging and discharging at the 0.5 C rate.

表1に示すように、負極活物質をアルカリ金属イオンと還元剤と還元重合性材料を含む水溶液に混合して処理した負極活物質を用いた本発明1、2は、初回充放電効率および容量維持率に優れるものであった。これは、充放電試験前の負極活物質自身に添加したVCが、電解液溶媒分子によるグラファイト構造の崩壊を抑制すると共に、初回充電の際の電解液の分解や、電解液に添加したVCの分解を抑制するためであると考えられる。
しかし、これらの処理をしない負極活物質を用いた比較例1は、初回充放電効率および容量維持率共に劣る結果であった。また、電解液中に還元重合性材料を添加した従来例1は、添加剤の分解に消費される容量が不可逆容量の要因となる分、初回充放電効率が低下したものと考えられる。
なお、この負極をコバルト酸リチウムなどのリチウム遷移金属酸化物を活物質とする正極と組み合わせ、非水電解液二次電池を構成した場合でも同様に、初回充放電効率および容量維持率に優れるものが得られる。
As shown in Table 1, the present invention 1 and 2 using the negative electrode active material in which the negative electrode active material was mixed with an aqueous solution containing an alkali metal ion, a reducing agent, and a reduction polymerizable material, and the initial charge and discharge efficiency and capacity were The maintenance rate was excellent. This is because the VC added to the negative electrode active material itself before the charge / discharge test suppresses the collapse of the graphite structure due to the electrolyte solvent molecules, the decomposition of the electrolyte during the first charge, and the VC added to the electrolyte This is considered to suppress decomposition.
However, Comparative Example 1 using the negative electrode active material not subjected to these treatments was inferior in both initial charge / discharge efficiency and capacity retention rate. In addition, in Conventional Example 1 in which a reduction polymerizable material is added to the electrolytic solution, it is considered that the initial charge / discharge efficiency is reduced because the capacity consumed for the decomposition of the additive causes the irreversible capacity.
Even when this negative electrode is combined with a positive electrode using a lithium transition metal oxide such as lithium cobalt oxide as an active material to form a non-aqueous electrolyte secondary battery, the initial charge / discharge efficiency and capacity retention rate are also excellent. Is obtained.

Claims (3)

リチウムの吸蔵・放出が可能な材料からなる負極活物質と、アルカリ金属イオンと還元剤と還元重合性材料を含む水溶液とを混合し、負極活物質の表面に不動態化層を形成することを特徴とする非水電解液二次電池用負極活物質の製造方法。   Mixing a negative electrode active material made of a material capable of occluding and releasing lithium with an aqueous solution containing an alkali metal ion, a reducing agent, and a reductive polymerizable material to form a passivation layer on the surface of the negative electrode active material; A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery. 前記負極活物質が、黒鉛、又は、炭素材料であることを特徴とする請求項1記載の非水電解液二次電池用負極活物質の製造方法。   The method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is graphite or a carbon material. リチウムイオンを吸蔵・放出可能な正極と、負極と、非水電解液とを有し、前記負極が請求項2に記載の方法で得た負極活物質を有することを特徴とする非水電解液二次電池。   A nonaqueous electrolytic solution comprising a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and a nonaqueous electrolytic solution, wherein the negative electrode has a negative electrode active material obtained by the method according to claim 2. Secondary battery.
JP2008010767A 2008-01-21 2008-01-21 A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery. Active JP5348897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010767A JP5348897B2 (en) 2008-01-21 2008-01-21 A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010767A JP5348897B2 (en) 2008-01-21 2008-01-21 A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.

Publications (2)

Publication Number Publication Date
JP2009176433A true JP2009176433A (en) 2009-08-06
JP5348897B2 JP5348897B2 (en) 2013-11-20

Family

ID=41031336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010767A Active JP5348897B2 (en) 2008-01-21 2008-01-21 A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.

Country Status (1)

Country Link
JP (1) JP5348897B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
KR20210016185A (en) * 2019-08-01 2021-02-15 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
KR20210050498A (en) * 2019-08-01 2021-05-07 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
CN117976819A (en) * 2024-03-29 2024-05-03 宁德时代新能源科技股份有限公司 Negative electrode plate, preparation method of negative electrode plate, battery and electric equipment

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422072A (en) * 1990-05-17 1992-01-27 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JPH05275077A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
JPH07105978A (en) * 1993-10-12 1995-04-21 Fujitsu Ltd Non-aqueous electrolyte secondary battery and its manufacture
JPH08306353A (en) * 1995-05-10 1996-11-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JPH1140163A (en) * 1997-07-23 1999-02-12 Yuasa Corp Non-aqueous secondary battery
JPH11265710A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
JP2001110407A (en) * 1999-10-05 2001-04-20 Mitsubishi Chemicals Corp Negative electrode material for lithium ion battery and the lithium ion secondary battery
JP2006024417A (en) * 2004-07-07 2006-01-26 Sony Corp Manufacturing method of battery
JP2008016192A (en) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
JP2009117309A (en) * 2007-11-09 2009-05-28 Furukawa Battery Co Ltd:The Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422072A (en) * 1990-05-17 1992-01-27 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JPH05275077A (en) * 1992-03-24 1993-10-22 Agency Of Ind Science & Technol Negative electrode for lithium secondary battery
JPH07105978A (en) * 1993-10-12 1995-04-21 Fujitsu Ltd Non-aqueous electrolyte secondary battery and its manufacture
JPH08306353A (en) * 1995-05-10 1996-11-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacture
JPH1140163A (en) * 1997-07-23 1999-02-12 Yuasa Corp Non-aqueous secondary battery
JPH11265710A (en) * 1998-03-18 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery and its manufacture
JP2001110407A (en) * 1999-10-05 2001-04-20 Mitsubishi Chemicals Corp Negative electrode material for lithium ion battery and the lithium ion secondary battery
JP2006024417A (en) * 2004-07-07 2006-01-26 Sony Corp Manufacturing method of battery
JP2008016192A (en) * 2006-06-30 2008-01-24 Mitsui Mining & Smelting Co Ltd Anode for nonaqueous electrolyte secondary battery
JP2009117309A (en) * 2007-11-09 2009-05-28 Furukawa Battery Co Ltd:The Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249058A (en) * 2010-05-25 2011-12-08 Toyota Central R&D Labs Inc Anode for lithium ion secondary battery, lithium ion secondary battery and method of manufacturing anode for lithium ion secondary battery
KR20210016185A (en) * 2019-08-01 2021-02-15 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
KR20210050498A (en) * 2019-08-01 2021-05-07 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
KR102252452B1 (en) 2019-08-01 2021-05-17 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
KR102386281B1 (en) 2019-08-01 2022-04-15 한국전자기술연구원 Anode Additive for improving initial charge efficiency, method of manufacturing the anode Additive, anode and lithium ion battery comprising the same
CN117976819A (en) * 2024-03-29 2024-05-03 宁德时代新能源科技股份有限公司 Negative electrode plate, preparation method of negative electrode plate, battery and electric equipment

Also Published As

Publication number Publication date
JP5348897B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
JP4527605B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
JP5219401B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP2009004285A (en) Cathode active material, manufacturing method of cathode active material, and nonaqueous electrolyte secondary battery
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
KR102224023B1 (en) Binder for rechargable battery, binder resin composition for rechargable battery, electrode for rechargable battery, and rechargable battery
CN102694207B (en) Electrolyte for lithium ion batteries and lithium ion battery containing same
JP5530851B2 (en) Method for producing electrode of lithium ion secondary battery and method for producing lithium ion secondary battery
JP5890860B2 (en) Lithium ion secondary battery and its electrolyte
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5348897B2 (en) A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
JP7262999B2 (en) Manufacturing method of positive electrode active material, manufacturing method of non-aqueous electrolyte secondary battery, positive electrode active material, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP2011066004A (en) Electrolyte for secondary battery and secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2006032143A (en) Non-aqueous electrolyte secondary battery
JP4901089B2 (en) Nonaqueous electrolyte secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
JP5181607B2 (en) Method for producing electrode plate for negative electrode of non-aqueous electrolyte secondary battery
JP2008041437A (en) Nonaqueous electrolyte secondary battery
JP2005285462A (en) Nonaqueous electrolyte secondary battery
JP2011181204A (en) Manufacturing method of lithium ion secondary battery and lithium ion secondary battery
JP2005243518A (en) Lithium secondary battery
JP2009117309A (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5348897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150