JP2009117309A - Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2009117309A
JP2009117309A JP2007292363A JP2007292363A JP2009117309A JP 2009117309 A JP2009117309 A JP 2009117309A JP 2007292363 A JP2007292363 A JP 2007292363A JP 2007292363 A JP2007292363 A JP 2007292363A JP 2009117309 A JP2009117309 A JP 2009117309A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
aqueous electrolyte
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292363A
Other languages
Japanese (ja)
Inventor
Masaaki Kubota
昌明 久保田
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007292363A priority Critical patent/JP2009117309A/en
Publication of JP2009117309A publication Critical patent/JP2009117309A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To obtain: a negative electrode material for a nonaqueous electrolyte secondary battery, which can improve driving force of insertion reaction of alkali metal salt between graphite layers to obtain a negative electrode substance with wider interlayers; a method for manufacturing the same; and a nonaqueous electrolyte secondary battery in which electro-chemical property in the negative electrode substance is improved so as to excel in electrode function. <P>SOLUTION: The method for manufacturing the negative electrode material for the nonaqueous electrode secondary battery includes: making a reducer act on the negative electrode substance comprised of material which can store and discharge lithium in a solution containing alkali metal ion; removing moisture from the negative electrode substance; and drying it. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解液二次電池用負極材料、その製造方法及び非水電解液二次電池に関する。   The present invention relates to a negative electrode material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池は高エネルギー密度を有しているため、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池等と比較して、小型化、軽量化が可能である。そのような理由のため、リチウムイオン二次電池は、これまで主に、携帯電話やノートパソコンなどの携帯機器に使用されてきた。   Since a lithium ion secondary battery has a high energy density, it can be made smaller and lighter than a lead storage battery, a nickel cadmium battery, a nickel metal hydride battery, or the like. For these reasons, lithium ion secondary batteries have been mainly used in mobile devices such as mobile phones and notebook computers.

リチウムイオン二次電池の代表的な構成としては、負極に炭素、正極にコバルト酸リチウムなどのリチウム遷移金属酸化物、電解質に炭酸エチレンや炭酸ジエチルなどの有機溶媒と六フッ化リン酸リチウム(LiPF)といったリチウム塩を使ったものが挙げられる。しかし、前記電池の負極、正極、電解質それぞれの材料は、リチウムイオンを移動し、かつ電荷の授受により充放電可能であればよいので、非常に多くの構成をとりうる電池である。 As a typical configuration of the lithium ion secondary battery, the negative electrode is carbon, the positive electrode is a lithium transition metal oxide such as lithium cobaltate, the electrolyte is an organic solvent such as ethylene carbonate or diethyl carbonate, and lithium hexafluorophosphate (LiPF). 6 ) using lithium salt. However, since the materials of the negative electrode, the positive electrode, and the electrolyte of the battery need only move lithium ions and can be charged and discharged by charge transfer, the battery can have a great number of configurations.

リチウム塩にはLiPFの他、LiBFなどのフッ素系錯塩、LiN(SORf)・LiC(SORf)(但し、Rf=CFまたはC)などの塩が用いられている。また、通常、電解液は高い導電率と安全性を確保するため、炭酸エチレン,炭酸プロピレンなどの環状炭酸エステル系高誘電率・高沸点溶媒に低粘性率溶媒である炭酸ジメチル、炭酸エチルメチル、炭酸ジエチル等の低級鎖状炭酸エステルを用い、一部低級脂肪酸エステルを用いる場合もある。 In addition to LiPF 6 , a fluorine-based complex salt such as LiBF 4 or a salt such as LiN (SO 2 Rf) 2 .LiC (SO 2 Rf) (where Rf = CF 3 or C 2 F 5 ) is used as the lithium salt. ing. In addition, in order to ensure high conductivity and safety, the electrolytic solution is usually a cyclic carbonate ester high dielectric constant / high boiling point solvent such as ethylene carbonate and propylene carbonate, and low viscosity solvent dimethyl carbonate, ethyl methyl carbonate, A lower chain carbonate such as diethyl carbonate may be used, and a lower fatty acid ester may be partially used.

負極材料として黒鉛などの炭素材料を使用した場合、その充放電機構は層間へのリチウムの挿入・脱離反応である。初回の充電の際に、負極の表面で電解液溶媒の分解反応が生じて、表面に固体電解質界面(SEI)膜と呼ばれる被膜が形成され、その後は、SEI被膜を介してリチウムイオンの挿入、脱離反応が起こる。なお、リチウムイオンニ次電池は、このSEI被膜が形成されるため、初回の充電容量に対する放電容量の割合(充放電効率)が低下することが一般的に知られている。   When a carbon material such as graphite is used as the negative electrode material, the charge / discharge mechanism is lithium insertion / extraction reaction between layers. During the first charge, a decomposition reaction of the electrolyte solvent occurs on the surface of the negative electrode, and a film called a solid electrolyte interface (SEI) film is formed on the surface. Thereafter, insertion of lithium ions through the SEI film, An elimination reaction occurs. In addition, since this SEI film is formed in the lithium ion secondary battery, it is generally known that the ratio of the discharge capacity to the initial charge capacity (charge / discharge efficiency) decreases.

そこで、これらの改善策として、リチウムの吸蔵・放出が可能な負極活物質と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含有する非水電解液二次電池用負極材料(特許文献1)が提案されている。
特開2006−310265号公報
Therefore, as these improvement measures, a negative electrode material for a non-aqueous electrolyte secondary battery containing a negative electrode active material capable of occluding and releasing lithium and an alkali metal halide and / or an alkaline earth metal halide. (Patent Document 1) has been proposed.
JP 2006-310265 A

特許文献1に記載されるように、アルカリ金属イオンが、負極表面上に形成される被膜の安定化に寄与するため、充放電特性が向上するとしている。
本発明者等の調査では、X線回折測定において検出されるd002の回折ピークが低角側ヘシフトすることが確認され、このピークシフトは、炭素材料層間ヘアルカリ金属塩が侵入して、層間を広げていることを意味するものである。
As described in Patent Document 1, alkali metal ions contribute to the stabilization of the coating film formed on the negative electrode surface, so that charge / discharge characteristics are improved.
The study of the present inventors, the diffraction peak of d 002 detected in X-ray diffraction measurement is confirmed that the low angle side Heshifuto, the peak shift, penetrates the carbon material layers Hearukari metal salt, an interlayer It means expanding.

しかしながら、リチウムイオン二次電池の利用分野が、自動車や産業分野へ拡大するに従って、電池への要求は高まり、高い安全性を保持し、尚且つ、高エネルギー密度、高出力の電池開発が期待されるようになり、現在の要求を満足するまでに至るものではない。   However, as the application field of lithium ion secondary batteries expands to automobiles and industrial fields, the demand for batteries increases, and it is expected to develop batteries with high energy density and high output while maintaining high safety. It does not lead to meeting current demands.

上述したように、現在負極材料として主に使用されている炭素材料は、層間へのリチウムイオンの挿入,脱離反応によって充放電が行なわれる。この反応に関わるリチウムイオンの量、及び、リチウムイオンの拡散速度が容量と出力に影響を及ぼすため、リチウムイオンが素早く挿入,脱離できることが望ましい。   As described above, the carbon material currently used mainly as a negative electrode material is charged / discharged by the insertion and desorption reaction of lithium ions between layers. Since the amount of lithium ions involved in this reaction and the diffusion rate of lithium ions affect the capacity and output, it is desirable that lithium ions can be inserted and removed quickly.

そこで、発明者等が種々検討の結果、炭素材料の層間へのアルカリ金属の挿入は、還元反応により進行する為、還元剤を使用することによって、挿入反応をより生じ易い状態にすることで、更に、リチウムイオンの挿入,脱離をスムーズに行うことが可能であることを突き止めた。   Therefore, as a result of various studies by the inventors, the insertion of the alkali metal between the layers of the carbon material proceeds by a reduction reaction, so that by using a reducing agent, the insertion reaction is more likely to occur. Furthermore, it was found that lithium ions can be smoothly inserted and removed.

本発明はこうした事情を考慮してなされたもので、グラファイト層間へのアルカリ金属塩の挿入反応の推進力を高め、より層間の広い負極活物質を得ることができる非水電解液二次電池用負極材料及びその製造方法を提供することを目的とする。
また、本発明は負極活物質の電気化学特性が改善され、優れた電極性能を有する非水電解液二次電池を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and is intended for a non-aqueous electrolyte secondary battery capable of increasing the driving force of the alkali metal salt insertion reaction between graphite layers and obtaining a wider negative electrode active material. An object of the present invention is to provide a negative electrode material and a manufacturing method thereof.
Another object of the present invention is to provide a non-aqueous electrolyte secondary battery in which the electrochemical characteristics of the negative electrode active material are improved and the electrode performance is excellent.

本発明に係る非水電解液二次電池用負極材料の製造方法は、リチウムの吸蔵・放出が可能な材料からなる負極活物質に、アルカリ金属イオンを含む水溶液中で還元剤を作用させた後、水分を除去し、乾燥することを特徴とする。
本発明に係る非水電解液二次電池用負極材料は前記方法により製造されることを特徴とする。
本発明の非水電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極と、負極と、非水電解液とを有し、前記負極が前記負極材料を含有することを特徴とする。
In the method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention, a negative electrode active material made of a material capable of occluding and releasing lithium is allowed to act on a reducing agent in an aqueous solution containing alkali metal ions. It is characterized by removing moisture and drying.
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention is manufactured by the above method.
The non-aqueous electrolyte secondary battery of the present invention has a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and a non-aqueous electrolyte, and the negative electrode contains the negative electrode material.

本発明によれば、還元剤を使用することにより、グラファイト層間へのアルカリ金属塩の挿入反応の推進力を高め、より層間の広い負極活物質を得ることができる。
また、前もって層問にアルカリ金属塩を取り込むことにより、層間が拡張されている為、充放電反応の際のリチウムイオンの挿入,脱離が容易に起こり易い。この結果、負極活物質の電気化学特性が改善され、このような負極材料を用いた非水電解液二次電池は優れた電池性能を有する。
According to the present invention, by using a reducing agent, the driving force of the alkali metal salt insertion reaction between the graphite layers can be increased, and a negative electrode active material having a wider interlayer can be obtained.
In addition, since the interlayer is expanded by incorporating an alkali metal salt into the layer in advance, insertion and desorption of lithium ions during charge / discharge reactions easily occur. As a result, the electrochemical characteristics of the negative electrode active material are improved, and the non-aqueous electrolyte secondary battery using such a negative electrode material has excellent battery performance.

以下、本発明のリチウム二次電池用負極材料、その製造方法及びリチウム二次電池について更に詳しく説明する。
(1) 本発明の非水電解液二次電池用負極材料の製造方法は、上述したように、負極活物質に、アルカリ金属イオンを含む水溶液中で還元剤を作用させた後、水分を除去し、乾燥することを特徴とする。
(2) 上記(1)の発明において、負極活物質としては、黒鉛又は炭素材料が挙げられる。
Hereinafter, the negative electrode material for a lithium secondary battery, the manufacturing method thereof, and the lithium secondary battery of the present invention will be described in more detail.
(1) The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery of the present invention, as described above, removes moisture after allowing a reducing agent to act on the negative electrode active material in an aqueous solution containing alkali metal ions. And drying.
(2) In the invention of (1) above, examples of the negative electrode active material include graphite and carbon materials.

(3) 本発明の非水電解液二次電池用負極材料は、上記(1)又は(2)の方法により製造されることを特徴とする。
(4) 本発明の非水電解液二次電池は、リチウムイオンを吸蔵・放出可能な正極と、負極と、非水電解液を有し、前記負極が上記(3)記載の負極材料を含有することを特徴とする。
(3) The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention is characterized by being produced by the method (1) or (2).
(4) The non-aqueous electrolyte secondary battery of the present invention has a positive electrode capable of inserting and extracting lithium ions, a negative electrode, and a non-aqueous electrolyte, and the negative electrode contains the negative electrode material described in (3) above. It is characterized by doing.

図1に、一般的なリチウムイオン二次電池(非水電解液二次電池)の構成を示す。図中の符番1は金属製の円筒容器を示す。この円筒容器1内には、正極(正極板)2と負極(負極板)3がセパレータ4を介して順次積層された積層体が形成されている。この積層体は、円筒容器1内の非水系電解液5内に浸漬されている。所定の負極3には、円筒容器1の裏面と接続する負極リード6が接続されている。所定の正極2の上部には、正極リード7の一端が接続されている。前記円筒容器1の上部の内側縁部には、金属製の封止体8が環状の絶縁部材9を介して配置されている。封止体8には前記正極リード7の他端が接続されている。前記封止体8にはコイル状のバネ10を介して正極端子11が冠着されている。   FIG. 1 shows a configuration of a general lithium ion secondary battery (nonaqueous electrolyte secondary battery). Reference numeral 1 in the figure indicates a metal cylindrical container. In the cylindrical container 1, a laminate in which a positive electrode (positive electrode plate) 2 and a negative electrode (negative electrode plate) 3 are sequentially laminated via a separator 4 is formed. This laminate is immersed in the non-aqueous electrolyte solution 5 in the cylindrical container 1. A negative electrode lead 6 connected to the back surface of the cylindrical container 1 is connected to the predetermined negative electrode 3. One end of a positive electrode lead 7 is connected to an upper portion of a predetermined positive electrode 2. A metal sealing body 8 is disposed on the inner edge of the upper portion of the cylindrical container 1 via an annular insulating member 9. The other end of the positive electrode lead 7 is connected to the sealing body 8. A positive electrode terminal 11 is attached to the sealing body 8 via a coiled spring 10.

本発明に用いる負極活物質としては、天然に産出される黒鉛を加工処理したもの、もしくは、有機原料を人工的に2000℃以下で焼成した非晶質炭素、有機原料を人工的に2000℃以上の高温で焼成しグラファイト構造が発達した平坦な電位特性を有する人造黒鉛系炭素材料等を用いることが可能である。   As the negative electrode active material used in the present invention, naturally produced graphite is processed, amorphous carbon obtained by artificially firing organic raw materials at 2000 ° C. or lower, and organic raw materials are artificially formed at 2000 ° C. or higher. It is possible to use an artificial graphite-based carbon material having a flat potential characteristic that is baked at a high temperature and has a graphite structure developed.

本発明に用いるアルカリ金属イオンの供給物質としては、例えばアルカリ金属(Li,Na,K,Rb,Cs)のハロゲン化物、炭酸塩、シュウ酸塩、硝酸塩、硫酸塩等を用いることが可能である。本発明に用いる還元剤としては、例えばアスコルビン酸、アスコルビン酸ナトリウム、エリソルビン酸、エリソルビン酸ナトリウム、シュウ酸、亜硫酸塩、硫酸ヒドラジン、ヒドラジンを用いることが可能である。   Examples of the alkali metal ion supply material used in the present invention include alkali metal (Li, Na, K, Rb, Cs) halides, carbonates, oxalates, nitrates, sulfates, and the like. . As the reducing agent used in the present invention, for example, ascorbic acid, sodium ascorbate, erythorbic acid, sodium erythorbate, oxalic acid, sulfite, hydrazine sulfate, and hydrazine can be used.

本発明において、アルカリ金属塩を負極材料に含有させる方法としては、例えば、アルカリ金属ハロゲン化物を水に溶解させた水溶液に、グラファイト粉末を分散させ、次いで還元剤を水に溶解させた水溶液と滴下または混合し、その後、濾過などにより水分を除去した後、乾燥する方法が挙げられる。   In the present invention, as a method for incorporating an alkali metal salt into the negative electrode material, for example, a graphite powder is dispersed in an aqueous solution in which an alkali metal halide is dissolved in water, and then dropped with an aqueous solution in which a reducing agent is dissolved in water. Alternatively, a method of mixing and then drying after removing moisture by filtration or the like may be used.

負極の作製に使用する結着剤としては、例えば天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合体ゴム(NBR)、メチルメタクリレート・ブタジエン共重合体ゴム(MBR)、クロロプレンゴム(CR)、アクリルゴム(ABR)、スチレンブタジエン・スチレン共重合体(SBS)、ブチルゴム(IIR)、チオコール、ウレタンゴム、ケイ素ゴム、フッ素ゴムおよびアクリルエステル樹脂エマルジョンなどの水分散エマルジョン樹脂が挙げられる。これらの中から選ばれる結着剤を使用する場合、増粘剤として水溶性の、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースリチウム塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリアクリル酸、ポリエチレングリコール、ポリエチレンオキサイドなどのいずれかまたは複数を組み合わせたものを用いることが可能である。
また、結着剤としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)を用いることが可能である。
Examples of the binder used for producing the negative electrode include natural rubber (NR), styrene / butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), and methyl methacrylate / butadiene copolymer. Combined rubber (MBR), chloroprene rubber (CR), acrylic rubber (ABR), styrene butadiene / styrene copolymer (SBS), butyl rubber (IIR), thiocol, urethane rubber, silicon rubber, fluorine rubber, acrylic ester resin emulsion, etc. Water-dispersed emulsion resin. When a binder selected from these is used, a water-soluble methylcellulose, carboxymethylcellulose, carboxymethylcellulose sodium salt, carboxymethylcellulose lithium salt, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, polyacrylic as a thickener. It is possible to use any one of acid, polyethylene glycol, polyethylene oxide, or a combination thereof.
As the binder, for example, polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) can be used.

電気化学試験に使用する電解液としては、リチウム塩として、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、LiB(C、LiN(SOCF、LiC(SOCF、LiOSCF等の少なくとも一種を、有機溶媒としてプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、ビニレンカーボネート、3メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、テトラヒドロフラン、アルキルテトラヒドロフラン、ジアルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピオン酸アルキルエステル、マーロン酸ジアルキルエステル、酢酸アルキルエステル等の少なくとも1種の溶媒に溶解したものを用いることが可能である。 As an electrolytic solution used for the electrochemical test, LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , LiN (SO 2 CF 3 ) 2 , LiC are used as lithium salts. at least one such (SO 2 CF 3) 3, LiOSCF 3, propylene carbonate as an organic solvent, ethylene carbonate, butylene carbonate, .gamma.-butyrolactone, vinylene carbonate, 3-methyl -γ- butyrolactone, acetyl -γ- butyrolactone, .gamma. Valerolactone, tetrahydrofuran, alkyltetrahydrofuran, dialkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxylane Run, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene glycol dialkyl ether, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate It is possible to use those dissolved in at least one kind of solvent such as propionic acid alkyl ester, meronic acid dialkyl ester, acetic acid alkyl ester and the like.

以下に、本発明の実施例を比較例とともに説明する。なお、本発明は以下の実施例のみに限定されるものではない。
(実施例1)
0.5質量%の塩化ナトリウム(NaCl)水溶液200gにグラファイト粉末10gを分散した後、還元剤として0.5質量%のアスコルビン酸水溶液300gを加えて60分間攪拌する。その後、吸引濾過を行ない、次いで100℃で3時間の真空乾燥を行ない、得られた材料を負極材料とした。
Examples of the present invention will be described below together with comparative examples. In addition, this invention is not limited only to a following example.
Example 1
After dispersing 10 g of graphite powder in 200 g of 0.5 mass% sodium chloride (NaCl) aqueous solution, 300 g of 0.5 mass% ascorbic acid aqueous solution is added as a reducing agent and stirred for 60 minutes. Thereafter, suction filtration was performed, followed by vacuum drying at 100 ° C. for 3 hours, and the obtained material was used as a negative electrode material.

つづいて、この負極材料を、結着剤としてSBR、増粘剤としてCMCを使用(負極活物質:SBR:CMC=98:1:1)してスラリー状にし、厚さ10μmの銅箔集電体に塗布して乾燥した後、プレスして負極とした。   Subsequently, the negative electrode material was made into a slurry using SBR as a binder and CMC as a thickener (negative electrode active material: SBR: CMC = 98: 1: 1), and a copper foil current collector having a thickness of 10 μm. After applying to the body and drying, it was pressed into a negative electrode.

物性試験としてグラファイト粉末のX線回折測定を行ない、アルカリ金属の挿入が生じる(002)面のピークシフトの調査を行なった。   As a physical property test, X-ray diffraction measurement of graphite powder was performed, and the peak shift of the (002) plane where alkali metal insertion occurred was investigated.

電気化学特性評価は、上記負極と、対極・参照極としてリチウム金属を使用し、電解液には、1molのLiPFを溶解したエチレンカーボネート+ジエチルカーボネートの混合溶媒(エチレンカーボネート:ジエチルカーボネート=1:1)を使用したビーカーセルで行なった。試験はLi/Li基準で0.0〜1.5Vの範囲で、充電(Li挿入)・放電(Li脱離)共に0.5Cレートの定電流にて行なった。 In the electrochemical property evaluation, lithium metal was used as the negative electrode and the counter electrode / reference electrode, and the electrolyte solution was a mixed solvent of ethylene carbonate + diethyl carbonate in which 1 mol of LiPF 6 was dissolved (ethylene carbonate: diethyl carbonate = 1: Performed in a beaker cell using 1). The test was carried out at a constant current of 0.5 C rate for both charging (Li insertion) and discharging (Li desorption) in the range of 0.0 to 1.5 V on the basis of Li / Li + .

(比較例1)
0.5質量%の塩化ナトリウム(NaCl)水溶液200gにグラファイト粉末10gを分散した後、還元剤を使用しなかった以外は実施例1と同様に、粉末X線回折を行ない、負極を作製し、電気化学特性評価を行った。
(Comparative Example 1)
After 10 g of graphite powder was dispersed in 200 g of 0.5 mass% sodium chloride (NaCl) aqueous solution, powder X-ray diffraction was performed in the same manner as in Example 1 except that no reducing agent was used, and a negative electrode was produced. Electrochemical property evaluation was performed.

(比較例2)
アルカリ金属、還元剤を使用しなかった以外は実施例1と同様に、粉末X線回折を行ない、負極を作製し、電気化学特性評価を行った。
(Comparative Example 2)
Except not using an alkali metal and a reducing agent, the powder X-ray diffraction was performed like Example 1, the negative electrode was produced, and electrochemical property evaluation was performed.

図2に、各々のグラファイト粉末について実施したX線回折のパターンを示す。実施例1の回折パターンに観られるピークは、比較例1や比較例2のピークよりも低角側に現れる。このピークはグラファイトの(002)面に相当し、低角側にシフトするほど面間隔が広いことを意味している。従って、本発明のグラファイトは、リチウムイオン二次電池の充放電の際に、リチウムイオンの挿入,脱離が行なわれる(002)面の間隔が、比較例1及び比較例2よりも広く、リチウムイオンが出入りし易い。   FIG. 2 shows a pattern of X-ray diffraction performed on each graphite powder. The peak observed in the diffraction pattern of Example 1 appears on the lower angle side than the peaks of Comparative Example 1 and Comparative Example 2. This peak corresponds to the (002) plane of graphite, which means that the plane spacing increases as it shifts to the lower angle side. Therefore, the graphite of the present invention has a wider interval between the (002) planes where lithium ions are inserted and desorbed during charging / discharging of the lithium ion secondary battery than in Comparative Examples 1 and 2, and Ions easily enter and exit.

下記表1に、0.5Cレートで充放電したときの各々の初回充放電効率(充電容量に対する放電容量の割合)を示す。還元剤を使用した実施例1は、還元剤無しの比較例2よりも充放電効率が良好であり、本発明に係る還元剤の作用がより効果的であることが分かる。

Figure 2009117309
Table 1 below shows the initial charge / discharge efficiency (ratio of discharge capacity to charge capacity) when charging / discharging at a rate of 0.5 C. It can be seen that Example 1 using the reducing agent has better charge / discharge efficiency than Comparative Example 2 without the reducing agent, and the action of the reducing agent according to the present invention is more effective.
Figure 2009117309

本発明による負極材料を具備した非水電解液二次電池は、優れた電気化学性能により、携帯電話やノートパソコン等の携帯用電気電子機器の他、電動工具、バックアップ電源、電動自転車、電気自動車、ハイブリッド自動車等、広い分野での利用が挙げられる。   The non-aqueous electrolyte secondary battery equipped with the negative electrode material according to the present invention has excellent electrochemical performance, and in addition to portable electric and electronic devices such as mobile phones and notebook computers, electric tools, backup power supplies, electric bicycles, electric vehicles And use in a wide range of fields such as hybrid vehicles.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

図1は、一般的なリチウムイオン二次電池の概略的な断面図を示す。FIG. 1 is a schematic cross-sectional view of a general lithium ion secondary battery. 図2は、本発明の実施例と比較例1,2のグラファイト粉末に関するX線回折パターン特性図を示す。FIG. 2 is an X-ray diffraction pattern characteristic diagram regarding the graphite powders of Examples of the present invention and Comparative Examples 1 and 2.

Claims (4)

リチウムの吸蔵・放出が可能な材料からなる負極活物質に、アルカリ金属イオンを含む水溶液中で還元剤を作用させた後、水分を除去し、乾燥することを特徴とする非水電解液二次電池用負極材料の製造方法。 Non-aqueous electrolyte secondary characterized in that a negative electrode active material composed of a material capable of occluding and releasing lithium is allowed to act on a reducing agent in an aqueous solution containing alkali metal ions, and then water is removed and dried. A method for producing a negative electrode material for a battery. 負極活物質が、黒鉛又は炭素材料であることを特徴とする請求項1記載の非水電解液二次電池用負極材料の製造方法。 2. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is graphite or a carbon material. 請求項1又は請求項2記載の方法により製造されることを特徴とする非水電解液二次電池用負極材料。 A negative electrode material for a non-aqueous electrolyte secondary battery produced by the method according to claim 1 or 2. リチウムイオンを吸蔵・放出可能な正極と、負極と、非水電解液とを有し、前記負極が請求項3記載の負極材料を含有することを特徴とする非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising: a positive electrode capable of inserting and extracting lithium ions; a negative electrode; and a non-aqueous electrolyte solution, wherein the negative electrode contains the negative electrode material according to claim 3.
JP2007292363A 2007-11-09 2007-11-09 Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery Pending JP2009117309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292363A JP2009117309A (en) 2007-11-09 2007-11-09 Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292363A JP2009117309A (en) 2007-11-09 2007-11-09 Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2009117309A true JP2009117309A (en) 2009-05-28

Family

ID=40784200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292363A Pending JP2009117309A (en) 2007-11-09 2007-11-09 Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2009117309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176433A (en) * 2008-01-21 2009-08-06 Furukawa Battery Co Ltd:The Method of manufacturing negative active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2016121322A1 (en) * 2015-01-27 2017-11-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105978A (en) * 1993-10-12 1995-04-21 Fujitsu Ltd Non-aqueous electrolyte secondary battery and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105978A (en) * 1993-10-12 1995-04-21 Fujitsu Ltd Non-aqueous electrolyte secondary battery and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012050149; S. Komaba et al.: 'Impact of Sodium Salt Coating on a Graphite Negative Electrode for Lithium-Ion Batteries' Electrochemical and Solid-State Letters vol.9 ,issue3, 20060118, A130-A133, ECS *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176433A (en) * 2008-01-21 2009-08-06 Furukawa Battery Co Ltd:The Method of manufacturing negative active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2016121322A1 (en) * 2015-01-27 2017-11-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode plate and non-aqueous electrolyte secondary battery using the negative electrode plate

Similar Documents

Publication Publication Date Title
CN105609748B (en) Anode for lithium ion device including germanium
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
US20180248220A1 (en) Nonaqueous electrolyte secondary batteries
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
CN115053360B (en) Positive electrode for secondary battery and secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP2009004285A (en) Cathode active material, manufacturing method of cathode active material, and nonaqueous electrolyte secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
WO2020202844A1 (en) Lithium secondary battery
JP2003077458A (en) Lithium secondary battery electrode and lithium secondary battery
JP2014130717A (en) Nonaqueous electrolyte storage element
JP2008112595A (en) Lithium secondary battery
JP2013191390A (en) Lithium ion secondary battery
JP2006236887A (en) Nonaqueous electrolyte secondary battery
JP2014022335A (en) Electrolyte for nonaqueous electricity storage device
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP5348897B2 (en) A method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
CN108963192B (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2007335318A (en) Nonaqueous electrolyte secondary battery
JP2009117309A (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP5454265B2 (en) Pseudo capacitance capacitor
JP2010033891A (en) Secondary battery electrode and nonaqueous secondary battery using the same
JP6392566B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319