JP3052761B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3052761B2
JP3052761B2 JP6318264A JP31826494A JP3052761B2 JP 3052761 B2 JP3052761 B2 JP 3052761B2 JP 6318264 A JP6318264 A JP 6318264A JP 31826494 A JP31826494 A JP 31826494A JP 3052761 B2 JP3052761 B2 JP 3052761B2
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
carbon material
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6318264A
Other languages
Japanese (ja)
Other versions
JPH08180865A (en
Inventor
祐之 村井
洋子 中川
秀 越名
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP6318264A priority Critical patent/JP3052761B2/en
Publication of JPH08180865A publication Critical patent/JPH08180865A/en
Application granted granted Critical
Publication of JP3052761B2 publication Critical patent/JP3052761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池
の、とくにその負極に用いる炭素材料の表面処理に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment of a non-aqueous electrolyte secondary battery, particularly a carbon material used for its negative electrode.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は高電圧で高エネルギー密度が
期待され、盛んに研究がなされている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and has been actively studied.

【0003】これまでに、非水電解液二次電池の正極活
物質としてV25、Cr25、MnO2、TiS2などが
知られている。近年、より高エネルギー密度を有する4
ボルト級の非水電解液二次電池の正極活物質としてLi
Mn24、LiCoO2、LiNiO2、LiFeO2
どの研究が活発に行われている。特に、LiMn24
LiNiO2やLiFeO2は低コストであることや、原
料供給が安定している点で注目されている。
Heretofore, V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 and the like have been known as positive electrode active materials for non-aqueous electrolyte secondary batteries. Recently, higher energy density 4
Li as a positive electrode active material for volt class non-aqueous electrolyte secondary batteries
Research on Mn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 and the like is being actively conducted. In particular, LiMn 2 O 4 ,
LiNiO 2 and LiFeO 2 are attracting attention because of their low cost and stable supply of raw materials.

【0004】一方、負極活物質としては安全性やレート
特性などの点から金属リチウムに代わり、リチウムを吸
蔵・放出することができる炭素材料が注目を集めてい
る。特に、黒鉛化度の進んだ黒鉛粉末は、高容量で、放
電電位が金属リチウムに比べて約0.1V貴であり電池
電圧の低下が少ないという特徴を有しており、盛んに研
究がなされている。
On the other hand, as a negative electrode active material, a carbon material capable of inserting and extracting lithium has been attracting attention instead of metallic lithium in view of safety and rate characteristics. In particular, graphite powder having a high degree of graphitization has the characteristics of high capacity, a discharge potential of about 0.1 V noble compared to lithium metal, and a small decrease in battery voltage, and has been actively studied. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、炭素材
料、とくに黒鉛化度の高い黒鉛粉末は充放電時にリチウ
ムを吸蔵・放出するとともに、粉末粒子表面からガスが
発生する。このガス発生機構については炭素材料の表面
のOH基などの官能基が活性点となり、電解液や負極に
用いられる有機系結着剤などが分解され、このときにガ
スが発生すると考えられる。
However, carbon materials, particularly graphite powder having a high degree of graphitization, absorb and release lithium during charge and discharge, and generate gas from the surface of the powder particles. Regarding this gas generation mechanism, it is considered that a functional group such as an OH group on the surface of the carbon material becomes an active point, and an electrolytic solution, an organic binder used for the negative electrode, and the like are decomposed, and gas is generated at this time.

【0006】また、発生ガス種としては主に水素、一酸
化炭素であり、その他アセチレン、メタンなどが微量検
出される。特に水素ガスが全体の90体積%を占める。
The generated gas species are mainly hydrogen and carbon monoxide, and a small amount of acetylene, methane or the like is detected. In particular, hydrogen gas accounts for 90% by volume of the whole.

【0007】そして、このガス発生によって電池内圧の
上昇による漏液や電池の変形,膨脹が発生したり、ガス
の圧力によって電極間に空隙が生じるためにおこる内部
抵抗上昇や充放電性能の低下が起こっていた。本発明
は、このような課題を解決するものであり、炭素材料を
負極に用いた非水電解液二次電池において炭素材料の表
面で電解液等の分解によってガスが発生することを防止
して電池内圧の上昇による電解液の漏液や電池の膨脹を
防止するものである。
[0007] The gas generation causes liquid leakage due to an increase in the internal pressure of the battery, deformation and expansion of the battery, and a rise in internal resistance and a decrease in charge / discharge performance due to the formation of a gap between the electrodes due to the gas pressure. Was happening. The present invention has been made to solve such a problem, and in a nonaqueous electrolyte secondary battery using a carbon material for a negative electrode, preventing generation of gas due to decomposition of an electrolyte or the like on the surface of the carbon material. It prevents leakage of electrolyte and expansion of the battery due to an increase in battery internal pressure.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液二次電池は、負極に用いる炭
素材料にアルキル化剤を加え、炭素材料表面をアルキル
化処理するものである。炭素材料へのアルキル化剤の添
加方法としては、例えばアルキル化剤と炭素材料を混合
して熱処理する方法や、炭素材料を金属箔に塗着した後
アルキル化剤に浸漬し乾燥加熱する方法などがある。ア
ルキル化剤を炭素材料に添加させると、このアルキル化
剤が炭素材料表面に存在するOH基等と反応して、前記
炭素材料の表面が化学修飾される。このようなアルキル
化剤による表面処理後、所定の条件下で熱処理を行うと
脱水縮合反応が起こり炭素材料表面がアルキル化され
る。
In order to solve the above-mentioned problems, a non-aqueous electrolyte secondary battery according to the present invention comprises an alkylating agent added to a carbon material used for a negative electrode, and the surface of the carbon material is alkylated. Things. Examples of the method of adding the alkylating agent to the carbon material include a method of mixing and heat-treating the alkylating agent and the carbon material, a method of applying the carbon material to a metal foil, immersing the carbon material in the alkylating agent, and drying and heating. There is. When the alkylating agent is added to the carbon material, the alkylating agent reacts with an OH group or the like existing on the surface of the carbon material, and the surface of the carbon material is chemically modified. After the surface treatment with such an alkylating agent, when heat treatment is performed under predetermined conditions, a dehydration condensation reaction occurs and the carbon material surface is alkylated.

【0009】[0009]

【作用】本構成では炭素材料をアルキル化剤で処理する
ことにより、炭素材料の表面に存在するOH基等をアル
キル化して炭素材料表面を不活性なアルキル基で覆うこ
とができる。そして、これにより充電時に電解液や結着
剤等の分解反応によるガス発生が抑制され電池内圧の上
昇を防止できる。
In this configuration, by treating the carbon material with an alkylating agent, the OH group or the like existing on the surface of the carbon material is alkylated, and the carbon material surface can be covered with an inert alkyl group. As a result, gas generation due to a decomposition reaction of the electrolyte solution, the binder, and the like during charging is suppressed, and an increase in battery internal pressure can be prevented.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】電池を以下の手順により作製した。まず、
黒鉛粉末と(表1)に示したようなアルキル化剤とを重
量比で100:10の割合で混合し、120℃で加熱乾
燥した後これを水洗し、100℃で乾燥、粉砕し粉体と
した。そしてこの粉体とアクリル系結着剤とを重量比で
100:5の割合で混合し、これに蒸溜水とエタノール
を加え、湿式で十分混合し、100℃の温風乾燥器で乾
燥させ、負極合剤を得た。この合剤を所定の形状にプレ
ス成型し負極とした。
A battery was manufactured according to the following procedure. First,
A graphite powder and an alkylating agent as shown in Table 1 were mixed at a weight ratio of 100: 10, heated and dried at 120 ° C., washed with water, dried and pulverized at 100 ° C. And Then, the powder and the acrylic binder are mixed at a weight ratio of 100: 5, distilled water and ethanol are added thereto, mixed well by a wet method, and dried with a hot air dryer at 100 ° C. A negative electrode mixture was obtained. This mixture was press-molded into a predetermined shape to obtain a negative electrode.

【0012】[0012]

【表1】 [Table 1]

【0013】正極は正極活物質であるLiCoO2に導
電剤としてカーボンブラックを重量比で100:3の割
合で混合し、さらに蒸溜水とエタノールを加え湿式混合
した。これに結着剤としてポリ四フッ化エチレンの水性
ディスパージョンを加えさらに混合後、100℃温風乾
燥器で乾燥し、正極合剤を得た。この正極合剤を所定の
形状にプレス成型し、正極とした。
The positive electrode was prepared by mixing carbon black as a conductive agent with LiCoO 2 as a positive electrode active material at a weight ratio of 100: 3, further adding distilled water and ethanol, and wet-mixing. To this was added an aqueous dispersion of polytetrafluoroethylene as a binder, further mixed, and dried with a hot air drier at 100 ° C. to obtain a positive electrode mixture. This positive electrode mixture was press-molded into a predetermined shape to obtain a positive electrode.

【0014】これらの正,負極を用いて作製した電池の
断面図を図1に示す。正極1と負極4との間には多孔性
ポリプロピレン製セパレータ3を配した。また、非水電
解液として、エチレンカーボネートとジエチルカーボネ
ートの等比体積混合溶媒に1モル/リットルの六フッ化
リン酸リチウムを溶解した溶液を注入し、封口板5で密
閉してコイン形電池とした。そして、(表1)に示すよ
うに各アルキル化剤に対応して電池A〜Eとした。
FIG. 1 is a cross-sectional view of a battery manufactured using these positive and negative electrodes. A porous polypropylene separator 3 was disposed between the positive electrode 1 and the negative electrode 4. Further, as a non-aqueous electrolyte, a solution in which 1 mol / l of lithium hexafluorophosphate is dissolved in an isobaric mixed solvent of ethylene carbonate and diethyl carbonate is injected, and sealed with a sealing plate 5 to form a coin-shaped battery. did. Then, as shown in (Table 1), batteries A to E were made corresponding to each alkylating agent.

【0015】また、比較例として黒鉛粉末にアルキル化
剤を添加せず、黒鉛粉末とアクリル系結着剤とを重量比
で100:5の割合で混合した負極を用いた以外は上記
と同様の電池を作製しこれを電池Fとした。
As a comparative example, the same procedure as described above was carried out except that an alkylating agent was not added to the graphite powder, and a graphite powder and an acrylic binder were mixed at a weight ratio of 100: 5. A battery was produced and this was designated as Battery F.

【0016】次いで、これらの電池A〜Fを用いて充放
電サイクル寿命試験を行った。充放電条件は電流2mA
で電圧4.1Vまで充電し、電流2mAで電圧3.0V
まで放電して行った。
Next, a charge / discharge cycle life test was performed using these batteries A to F. Charge / discharge conditions are 2 mA current
To a voltage of 4.1 V, and a voltage of 3.0 V at a current of 2 mA.
The discharge was carried out.

【0017】充放電前後における電池の厚み変化を測定
し、この結果を(表1)に示す。また、図2に各電池の
10サイクル目の放電曲線を示す。
The change in thickness of the battery before and after charging and discharging was measured, and the results are shown in Table 1. FIG. 2 shows a discharge curve at the tenth cycle of each battery.

【0018】(表1)に示したように、アルキル化処理
を行っていない黒鉛を用いた電池Fは充電時にガスが発
生し、電池の厚みが約0.56mm膨脹した。これに対
して電池A〜Eでは厚みの膨脹が0.07〜0.11m
mの範囲であり、黒鉛表面上での電解液の分解等による
ガス発生を抑制することができた。
As shown in Table 1, in battery F using graphite which had not been subjected to an alkylation treatment, gas was generated during charging, and the thickness of the battery expanded by about 0.56 mm. On the other hand, in the batteries A to E, the expansion of the thickness was 0.07 to 0.11 m.
m, and gas generation due to decomposition of the electrolytic solution on the graphite surface could be suppressed.

【0019】また、図2に示すように電池A〜Eの10
サイクル目の放電曲線は平均放電電圧が比較の電池Fに
比べ、約0.05V高く、放電容量も20%程度大きか
った。これは、比較の電池ではガスが極板間に蓄積さ
れ、これにより電池の内部抵抗が上昇し、放電特性が低
下するのに対し、電池A〜Eはガスが発生しないため放
電特性が向上したと考えられる。
Further, as shown in FIG.
In the discharge curve at the cycle, the average discharge voltage was about 0.05 V higher than that of the comparative battery F, and the discharge capacity was about 20% larger. This is because in the comparative battery, gas was accumulated between the electrode plates, thereby increasing the internal resistance of the battery and decreasing the discharge characteristics, whereas the batteries A to E did not generate gas, so the discharge characteristics were improved. it is conceivable that.

【0020】次に、アルキル化剤の添加量について検討
を行った。アルキル化剤としてはトリメチルメトキシシ
ランを用い、添加量としては黒鉛材料100部に対して
1〜60部の範囲として、電池を作製し上記と同様の充
放電試験を行った。
Next, the amount of the alkylating agent added was examined. A battery was prepared using trimethylmethoxysilane as an alkylating agent and the amount added was in the range of 1 to 60 parts with respect to 100 parts of the graphite material, and the same charge / discharge test was performed as described above.

【0021】図3にトリメチルメトキシシラン添加量と
電池の厚み変化および10サイクル目の電池の内部抵抗
の関係を示した。黒鉛材料へのアルキル化剤の添加量が
5%以上の場合、初充電後の電池の膨脹が約0.08m
mあり、ほとんど膨脹しないことがわかった。また電池
の平均放電電圧は添加量が0%のとき約3.53Vと低
く、添加量の増加とともに上昇し、5%で3.6Vに達
する。しかし30%をこえると再び平均放電電圧が徐々
に低下する。したがって、アルキル化剤の添加量として
は5%より30%の範囲が好ましい。
FIG. 3 shows the relationship between the amount of trimethylmethoxysilane added, the change in battery thickness, and the internal resistance of the battery at the tenth cycle. When the amount of the alkylating agent added to the graphite material is 5% or more, the expansion of the battery after the first charge is about 0.08 m.
m, and it was found that it hardly expanded. The average discharge voltage of the battery is as low as about 3.53 V when the addition amount is 0%, increases as the addition amount increases, and reaches 3.6 V at 5%. However, if it exceeds 30%, the average discharge voltage gradually decreases again. Therefore, the addition amount of the alkylating agent is preferably in the range of 5% to 30%.

【0022】なお、本実施例では、非水電解液としてエ
チレンカーボネートとジエチルカーボネートの等積混合
溶媒に1モル/lの六フッ化リン酸リチウムを溶解した
系を用いた場合について説明したが、溶媒としてはこの
他に、プロピレンカーボネート、エチレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、エ
チルメチルカーボネートなどのカーボネート類、ガンマ
ーブチロラクトン、酢酸メチルなどのエステル類を単独
あるいはこれらから選ばれる1つ以上を混合して用い、
溶質として過塩素酸リチウム、ホウフッ化リチウム、六
フッ化リン酸リチウムを用いた場合でも、同様の結果を
得た。
In this embodiment, a case where a system in which 1 mol / l of lithium hexafluorophosphate is dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate is used as the non-aqueous electrolyte is described. In addition to the solvent, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, carbonates such as ethyl methyl carbonate, gamma-butyrolactone, esters such as methyl acetate alone or a mixture of one or more selected from these. Use
Similar results were obtained when using lithium perchlorate, lithium borofluoride, and lithium hexafluorophosphate as solutes.

【0023】また、本実施例ではコイン形電池で説明し
たが、円筒形電池や角形電池でも同様に放電特性の改善
や電池の変形を防止できた。
In this embodiment, a coin-shaped battery has been described. However, a cylindrical battery or a square battery could be similarly improved in discharge characteristics and prevented from being deformed.

【0024】また、炭素材料としては天然黒鉛、石油系
ピッチや石炭系ピッチを原料とするコークスおよび黒
鉛、また高分子樹脂を原料とする炭素材や黒鉛などであ
っても良い。
The carbon material may be natural graphite, coke and graphite using petroleum pitch or coal pitch as a raw material, or carbon material or graphite using a polymer resin as a raw material.

【0025】さらに、アルキル化剤としてはアミノプロ
ピルトリエトキシシラン、N−メチルアミノプロピルト
リメトキシシラン等の他のシラン系やチタネート系のア
ルキル化剤であっても良い。
Further, as the alkylating agent, other silane-based or titanate-based alkylating agents such as aminopropyltriethoxysilane and N-methylaminopropyltrimethoxysilane may be used.

【0026】[0026]

【発明の効果】以上のように、本発明の非水電解液二次
電池では負極に用いる炭素材料にアルキル化剤を加え炭
素材料表面をアルキル化処理しているので、炭素材料表
面に存在する活性OH基等をアルキル化して表面を不活
性なアルキル基で覆うことができる。このため、電解液
等が炭素材料表面の活性点で分解されてガスが発生する
ことを抑制することができ、電池の内圧上昇や内部抵抗
上昇を防止することができる。
As described above, in the non-aqueous electrolyte secondary battery of the present invention, since the surface of the carbon material is alkylated by adding an alkylating agent to the carbon material used for the negative electrode, the non-aqueous electrolyte is present on the surface of the carbon material. An active OH group or the like can be alkylated to cover the surface with an inert alkyl group. For this reason, generation of gas due to decomposition of the electrolytic solution or the like at the active point on the surface of the carbon material can be suppressed, and an increase in the internal pressure and an increase in the internal resistance of the battery can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例で用いるコイン形非水電解液二次電池
の断面図
FIG. 1 is a cross-sectional view of a coin-type non-aqueous electrolyte secondary battery used in the present embodiment.

【図2】電池の10サイクル目の放電曲線を示す図FIG. 2 is a diagram showing a discharge curve at the tenth cycle of the battery.

【図3】アルキル化剤の添加量と、電池厚みおよび平均
放電電圧との関係を示す図
FIG. 3 is a graph showing the relationship between the amount of an alkylating agent added, the battery thickness, and the average discharge voltage.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 封口板 6 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Sealing plate 6 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−114421(JP,A) 特開 平6−168721(JP,A) 特開 平3−167766(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akikatsu Morita 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-5-114421 (JP, A) JP-A-6-106 168721 (JP, A) JP-A-3-167766 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムを吸蔵、放出することができる
炭素材料を用いた負極と正極と非水電解液とからなり、
炭素材料表面をシラン系またはチタネート系の有機化合
物でアルキル化処理した非水電解液二次電池。
1. A negative electrode using a carbon material capable of inserting and extracting lithium, a positive electrode, and a non-aqueous electrolyte,
Silane or titanate organic compound
Non-aqueous electrolyte secondary battery that has been alkylated with a substance .
【請求項2】 炭素材料に対してアルキル化剤を5〜3
0重量%添加する請求項1記載の非水電解液二次電池。
2. An alkylating agent is used in an amount of 5 to 3 with respect to the carbon material.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein 0% by weight is added.
【請求項3】 シラン系またはチタネート系の有機化合3. An organic compound based on silane or titanate.
物が、トリメチルメトキシシラン、アミノプロピルトリThe product is trimethylmethoxysilane, aminopropyltri
メトキシシラン、アミノエチルトリメトキシシラン、イMethoxysilane, aminoethyltrimethoxysilane, a
ソプロピルトリアクリルチタネート、イソプロピルトリSopropyl triacryl titanate, isopropyl tri
メタクリルチタネートの群から選ばれた1つ以上であるOne or more selected from the group of methacryl titanates
請求項1記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 1.
JP6318264A 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3052761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318264A JP3052761B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318264A JP3052761B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08180865A JPH08180865A (en) 1996-07-12
JP3052761B2 true JP3052761B2 (en) 2000-06-19

Family

ID=18097265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318264A Expired - Fee Related JP3052761B2 (en) 1994-12-21 1994-12-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3052761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079051A (en) * 2020-08-18 2022-02-22 财团法人工业技术研究院 Negative electrode active material, negative electrode, and battery

Also Published As

Publication number Publication date
JPH08180865A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
Xiao et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries
JP3769871B2 (en) Method for producing positive electrode active material
RU2156523C2 (en) Lithium cell improvement technique
WO2013187211A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery; method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
JP2001052747A (en) Lithium secondary battery
EP0838098A1 (en) Nonaqueous electrolyte secondary battery
EP2282367A1 (en) Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
JPH10112318A (en) Nonaqueous electrolyte secondary battery
CN114023965A (en) Solid state lithium battery
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JPH09320568A (en) Nonaqueous electrolyte secondary battery
JP3983554B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2001210318A (en) Manufacturing method of negative electrode for nonaqueous electrolytic solution secondary battery
JP3052761B2 (en) Non-aqueous electrolyte secondary battery
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
WO2002073731A1 (en) Battery
JP3580336B2 (en) Rechargeable battery
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6315258B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
JPH08306353A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3310695B2 (en) Carbon electrode and lithium secondary battery using the same
JP3276741B2 (en) Non-aqueous electrolyte secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees