JP3580336B2 - Rechargeable battery - Google Patents

Rechargeable battery Download PDF

Info

Publication number
JP3580336B2
JP3580336B2 JP31817496A JP31817496A JP3580336B2 JP 3580336 B2 JP3580336 B2 JP 3580336B2 JP 31817496 A JP31817496 A JP 31817496A JP 31817496 A JP31817496 A JP 31817496A JP 3580336 B2 JP3580336 B2 JP 3580336B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
present
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31817496A
Other languages
Japanese (ja)
Other versions
JPH10162809A (en
Inventor
和明 中原
雄一 相原
洋悦 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP31817496A priority Critical patent/JP3580336B2/en
Publication of JPH10162809A publication Critical patent/JPH10162809A/en
Application granted granted Critical
Publication of JP3580336B2 publication Critical patent/JP3580336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は電解液に非水電解液を用いる二次電池または電解質に高分子ゲル電解質を用いる二次電池に関するもので、さらに詳しく言えば、正極活物質としてLi1−X MO(MはCo,Ni,Fe,V,Mnから選択された少なくとも1種類の元素)を含む二次電池の安全性の向上に関するものである。
【0002】
【従来の技術】
電解液に非水電解液または電解質に高分子ゲル電解質を用いる二次電池には、正極活物質としてLi1−X CoO,Li1−X NiO,Li1−X Mnなどを用いたものがあり、特に、電解液に非水電解液を用い、出力電圧が約4Vの二次電池が高エネルギー密度のリチウムイオン電池として実用化されている。
【0003】
このようなリチウムイオン電池のような二次電池では、正極活物質として用いられるLi1−X CoO,Li1−X NiO,Li1−X Mnなどは酸化作用が強く、負極活物質として用いられる炭素などは還元作用が強く、非水電解液には可燃性の有機溶媒が用いられるため、過充電によってLi1−X のXが大きくなった場合にはその活性が高まって非水電解液との反応性が高まり、短絡等によって過大な電流が流れた場合には発熱を生じることが知られている。
【0004】
そのため、上記した従来のリチウムイオン電池のような二次電池では、充電時に充電電圧の上限を設定し、Li1−X のXが過大にならないようにしたり、二次電池に保護回路を付加して過充電や短絡等によって過大な電流が流れないようにしていた。
【0005】
【発明が解決しようとする課題】
上記した従来の二次電池では、安全性の向上のために付加した保護回路によってその重量効率が低下するという問題や、Li1−X のXが過大にならないようにしているため、本来の放電容量が確保できないという問題があった。
【0006】
【課題を解決するための手段】
上記課題を解決するため、発明は、正極活物質としてLi1-XMO2(MはCo,Ni,Fe,V,Mnから選択された少なくとも1種類の元素)を含む正極中に、ラジカル捕獲剤を含むことを特徴とする二次電池であり、これにより、充電によって正極活物質のLi1-XMO2中のMO2で表される過酸化物の表面に生成するラジカルを捕獲し、これを安定な物質に変化させることができるので、生成したラジカルが電解液と反応して発熱を生じるのを抑制することができる。
【0007】
また、発明は、前記二次電池において、ラジカル捕獲剤は正極活物質の粒子表面に配されていることを特徴とするものであり、これにより、生成したラジカルを確実に捕獲することができる。
【0008】
また、発明は、前記二次電池において、ラジカル捕獲剤は正極中の電解液に含まれていることを特徴とするものであり、これにより、生成したラジカルが電解液と反応して発熱を生じるのを抑制することができる。
【0009】
【発明の実施の形態】
以下、本発明をその実施の形態に基づいて説明する。
【0010】
図1は本発明の実施の形態に係る二次電池の断面図で、円筒形のリチウムイオン電池の例である。
【0011】
図1において、1は正極で、正極活物質、導電剤および結着剤からなる混合粉末を電解液とともに混練したものからなる。2は負極で、負極活物質と結着剤との混合物を電解液とともに混練したものからなる。3はセパレータで、電解液を含有し、前記正極1と負極2との間に介在させて正極1、負極2とともにスパイラル状に巻回されている。このスパイラル状に巻回された極群は負極端子を兼ねた電槽4内に収納され、前記電槽4の開口端部にガスケット6を配して前記正極1と電気的に接続された蓋5によって密閉されている。なお、7は安全弁、8はPTC素子で、電池温度や内圧が異常に上昇するのを防止している。
【0012】
(本発明電池1)
表面にラジカル捕獲材としての三価塩化鉄が重量比で1%配された正極活物質としてのLiNiO粉末と、前記正極活物質に対する重量比が5%の導電剤としてのアセチレンブラックと、前記正極活物質に対する重量比が5%の結着剤としてのポリフッ化ビニリデンとからなる混合粉末を、LiPFをエチレンカーボネイトとジメチルカーボネイトとの混合溶媒に溶解させた電解液で混練し、アルミニウム箔からなる正極集電体の両面に塗着した正極1、負極活物質としての炭素粒子と正極1に用いた結着剤との混合物を、前記電解液で混練し、銅箔からなる負極集電体の両面に塗着した負極2を用い、前記正極1と負極2との間に、微孔を有するポリエチレンフィルムからなるセパレータ3を介在させてスパイラル状に巻回して極群を形成し、電槽4に収納して蓋5によって密閉した本発明電池1を準備した。なお、前記LiNiO粉末に配されたラジカル捕獲材としての三価塩化鉄は、LiNiO粉末を三価塩化鉄のアセトン溶液に浸漬した後、乾燥することによって付着させたものである。
【0013】
上記した本発明電池1では、ラジカル捕獲材としての三価塩化鉄が重量比で1%配されたLiNiO粉末を正極活物質として用いたが、重量比が0.5%以下であるとラジカルを捕獲する効果が低下し、5%以上であるとイオンの移動を阻害するので、重量比で0.5〜5%配するのがよい。また、導電剤としてのアセチレンブラックは重量比で5%配したが重量比で1〜10%であればよく、結着剤としてのポリフッ化ビニリデンは重量比で5%配したが重量比で2〜10%であればよい。また、三価塩化鉄はアセトンに溶解させたがアセトン以外にメチルエチルケトン、テトラヒドロフラン、ジメトキシエタンに溶解させてもよい。
【0014】
(本発明電池2)
前記本発明電池1の正極活物質の表面にラジカル捕獲材としての三価塩化鉄を配する代わりに、ラジカル捕獲材としてのα,α’−ジフェニル−β−ピクリルヒドラジルを、正極1に含まれる電解液の混合溶媒に溶解させ、正極活物質に対する重量比が1%になるようにした以外は本発明電池1と同じである本発明電池2を準備した。
【0015】
(従来電池)
ラジカル捕獲材を、正極活物質の表面に配さないこと以外は前記本発明電池1と同じである従来電池を準備した。
【0016】
(評価試験1)
上記した本発明電池1,2および従来電池を、端子電圧が4.3Vになるまで0.5Cで定電流充電し、その後4.3Vの定電圧充電した後、短絡させたところ、本発明電池1,2はいずれも内圧上昇が生じず、安全弁の作動が認められなかったのに対し、従来電池は内圧上昇によって安全弁が作動したことが認められた。
【0017】
(評価試験2)
次に、上記した本発明電池1,2および従来電池について、端子電圧が4.3Vになるまで0.5Cで定電流充電し、その後4.0Vの定電圧充電したものと、4.3Vの定電圧充電したものとを準備し、それぞれを0.5Cで終止電圧が2.7Vまで定電流放電させて放電容量を比較したところ、本発明電池1,2では4.0Vの定電圧充電したものはいずれも510mAhであり、4.3Vの定電圧充電したものは本発明電池1が560mAh、本発明電池2が550mAhで、いずれも安全弁が作動せずに充放電できたのに対し、従来電池では4.0Vの定電圧充電したものは490mAhであり、4.3Vの定電圧充電したものは560mAhであったが、4.3Vの定電圧充電したものは充電末期に安全弁が作動したことが認められた。
【0018】
(評価試験3)
次に、評価試験2で準備した本発明電池1,2および従来電池を、200℃のホットプレート上で加熱して変化を調査したところ、4.3Vの定電圧充電した従来電池は安全弁が作動したことが認められたが、これ以外の電池には変化は認められなかった。
【0019】
上記した、評価試験1〜3から、従来電池では、放電容量の低下を犠牲にして4.0Vの定電圧充電にした場合には安全性に問題がないと考えられるが、放電容量の低下を犠牲にせずに4.3Vの定電圧充電にした場合には安全性に問題が生じることがわかった。これに対し、本発明電池1,2では、放電容量を大きくするために4.3Vの定電圧充電にしても安全性に問題が生じないことがわかった。
【0020】
上記した実施の形態では、本発明電池1のようにラジカル捕獲剤を正極活物質の粒子表面に配したり、本発明電池2のようにラジカル捕獲剤を正極中の電解液に含ませることが有効であるが、正極活物質の粒子表面に配するとともに正極中の電解液に含ませてもよく、正極活物質の粒子表面に配する場合は正極活物質をあらかじめラジカル捕獲剤の溶液に浸漬するのがよく、電解液に含ませる場合はラジカル捕獲剤を電解液の調製時に溶媒中に溶解させるのがよい。
【0021】
また、ラジカル捕獲剤としては、本発明電池1のような三価塩化鉄や本発明電池2のようなα,α’−ジフェニル−β−ピクリルヒドラジル以外に、テトラエチル−p−フェニレンジアミン、ハイドロキノン、キノン、t−ブチルカテコ−ル、クロルアニル、ジメチルカルバミン酸等が使用できる。
【0022】
また、上記した実施の形態では、電解液に非水電解液を用いた二次電池について説明したが、電解質にポリメチルメタアクリレートやポリアクリロニトリルと電解液とからなる高分子ゲル電解質を用いる二次電池であっても正極活物質の粒子表面にラジカル捕獲剤を配することによって同様の効果が得られる。
【0023】
【発明の効果】
上記した如く、本発明に係る二次電池は放電容量を低下させずに安全性を向上させることができるので、リチウムイオン電池のような二次電池における放電容量の増大と安全性の向上に寄与するところが大である。
【図面の簡単な説明】
【図1】本発明本発明の実施の形態に係る二次電池の断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 電槽
5 蓋
6 ガスケット
7 安全弁
8 PTC素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery using a non-aqueous electrolyte as an electrolyte or a secondary battery using a polymer gel electrolyte as an electrolyte. More specifically, the present invention relates to a Li 1-X MO 2 (M is Co , Ni, Fe, V, and Mn).
[0002]
[Prior art]
A secondary battery using a non-aqueous electrolyte as the electrolyte or a polymer gel electrolyte as the electrolyte includes Li 1-X CoO 2 , Li 1-X NiO 2 , and Li 1-X Mn 2 O 4 as the positive electrode active material. In particular, a secondary battery using a non-aqueous electrolyte as an electrolyte and having an output voltage of about 4 V has been put into practical use as a high energy density lithium ion battery.
[0003]
In a secondary battery such as a lithium ion battery, Li 1-X CoO 2 , Li 1-X NiO 2 , and Li 1-X Mn 2 O 4 used as a positive electrode active material have a strong oxidizing action, and Since carbon or the like used as an active material has a strong reducing action, and a flammable organic solvent is used for the non-aqueous electrolyte, the activity increases when X of Li 1-X increases due to overcharging. It is known that the reactivity with the non-aqueous electrolyte increases, and heat is generated when an excessive current flows due to a short circuit or the like.
[0004]
Therefore, in a secondary battery such as the above-mentioned conventional lithium ion battery, the upper limit of the charging voltage is set at the time of charging so that X of Li 1-X does not become excessive, or a protection circuit is added to the secondary battery. This prevents excessive current from flowing due to overcharging or short circuit.
[0005]
[Problems to be solved by the invention]
In the above-described conventional secondary battery, the weight efficiency is reduced by the protection circuit added for improving the safety, and the X of Li 1-X is prevented from becoming excessive. There was a problem that the capacity could not be secured.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides a method for preparing a positive electrode containing Li 1-X MO 2 (M is at least one element selected from Co, Ni, Fe, V, and Mn) as a positive electrode active material. A secondary battery comprising a capture agent, which captures radicals generated on the surface of a peroxide represented by MO 2 in Li 1-X MO 2 of a positive electrode active material by charging. Since this can be changed to a stable substance, it is possible to suppress the generated radicals from reacting with the electrolytic solution to generate heat.
[0007]
Also, the present invention provides the secondary battery, the radical scavenger is characterized in that it is arranged on the particle surface of the positive electrode active material, thereby, it is possible to reliably capture the generated radical .
[0008]
Also, the present invention provides the secondary battery, the radical scavenger is characterized in that contained in the electrolytic solution in the positive electrode, thereby, the generated radicals with heat by the reaction with the electrolyte solution This can be suppressed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the embodiments.
[0010]
FIG. 1 is a sectional view of a secondary battery according to an embodiment of the present invention, which is an example of a cylindrical lithium ion battery.
[0011]
In FIG. 1, reference numeral 1 denotes a positive electrode, which is obtained by kneading a mixed powder comprising a positive electrode active material, a conductive agent and a binder together with an electrolytic solution. Reference numeral 2 denotes a negative electrode, which is obtained by kneading a mixture of a negative electrode active material and a binder together with an electrolytic solution. Reference numeral 3 denotes a separator which contains an electrolytic solution and is spirally wound together with the positive electrode 1 and the negative electrode 2 while being interposed between the positive electrode 1 and the negative electrode 2. The spirally wound electrode group is housed in a battery case 4 also serving as a negative electrode terminal, and a gasket 6 is arranged at an open end of the battery case 4 to be electrically connected to the positive electrode 1. 5 sealed. Reference numeral 7 denotes a safety valve, and reference numeral 8 denotes a PTC element, which prevents an abnormal rise in battery temperature and internal pressure.
[0012]
(Battery 1 of the present invention)
LiNiO 2 powder as a positive electrode active material having 1% by weight of trivalent iron chloride as a radical scavenger disposed on the surface thereof; acetylene black as a conductive agent having a weight ratio of 5% to the positive electrode active material; A mixed powder composed of polyvinylidene fluoride as a binder having a weight ratio of 5% with respect to the positive electrode active material is kneaded with an electrolytic solution obtained by dissolving LiPF 6 in a mixed solvent of ethylene carbonate and dimethyl carbonate. A negative electrode current collector made of a copper foil is prepared by kneading a mixture of carbon particles as a negative electrode active material and a binder used for the positive electrode 1 on both surfaces of a positive electrode current collector made of A negative electrode group is formed by spirally winding a negative electrode 2 coated on both surfaces of a positive electrode 1 and a negative electrode 2 with a separator 3 made of a polyethylene film having micropores interposed between the positive electrode 1 and the negative electrode 2. Formed, was prepared present battery 1 was sealed by a lid 5 is housed in the container 4. Incidentally, trivalent iron chloride as a radical capturing material arranged in the LiNiO 2 powder was immersed in an acetone solution of trivalent iron chloride LiNiO 2 powder, in which was deposited by drying.
[0013]
In the above-described battery 1 of the present invention, LiNiO 2 powder containing 1% by weight of trivalent iron chloride as a radical scavenger was used as a positive electrode active material, but if the weight ratio was 0.5% or less, radical The effect of trapping is reduced, and if it is 5% or more, the movement of ions is hindered. In addition, acetylene black as a conductive agent was distributed in 5% by weight but may be 1 to 10% in weight ratio, and polyvinylidene fluoride as binder was distributed in 5% in weight ratio but 2% in weight ratio. It is sufficient if it is 10% or less. Although trivalent iron chloride was dissolved in acetone, it may be dissolved in methyl ethyl ketone, tetrahydrofuran, or dimethoxyethane other than acetone.
[0014]
(Invention Battery 2)
Instead of disposing trivalent iron chloride as a radical scavenger on the surface of the positive electrode active material of the battery 1 of the present invention, α, α′-diphenyl-β-picrylhydrazyl as a radical scavenger is added to the positive electrode 1. A battery 2 of the present invention was prepared, which was the same as the battery 1 of the present invention, except that it was dissolved in a mixed solvent of the contained electrolyte so that the weight ratio to the positive electrode active material was 1%.
[0015]
(Conventional battery)
A conventional battery was prepared which was the same as the battery 1 of the present invention except that the radical scavenger was not disposed on the surface of the positive electrode active material.
[0016]
(Evaluation test 1)
The above-described batteries 1 and 2 of the present invention and the conventional battery were charged at a constant current of 0.5 C until the terminal voltage reached 4.3 V, then charged at a constant voltage of 4.3 V, and then short-circuited. In Nos. 1 and 2, the internal pressure did not increase and the safety valve did not operate, whereas in the conventional battery, it was recognized that the safety valve operated due to the internal pressure increase.
[0017]
(Evaluation test 2)
Next, the above-described batteries 1 and 2 of the present invention and the conventional battery were charged at a constant current of 0.5 C until the terminal voltage reached 4.3 V, and then charged at a constant voltage of 4.0 V, and then charged at a constant voltage of 4.0 V. The batteries charged at a constant voltage were prepared, and each was discharged at a constant current of 0.5 C to a final voltage of 2.7 V to compare the discharge capacities. The batteries 1 and 2 of the present invention were charged at a constant voltage of 4.0 V. All batteries were 510 mAh, and those charged at a constant voltage of 4.3 V were 560 mAh for the battery 1 of the present invention, and 550 mAh for the battery 2 of the present invention. For the battery, the one charged at a constant voltage of 4.0 V was 490 mAh, and the one charged at a constant voltage of 4.3 V was 560 mAh, but the one charged at a constant voltage of 4.3 V had the safety valve operated at the end of charging. Recognized It was.
[0018]
(Evaluation test 3)
Next, the batteries 1 and 2 of the present invention and the conventional battery prepared in the evaluation test 2 were heated on a hot plate at 200 ° C. and examined for changes. When the conventional battery charged at a constant voltage of 4.3 V operated the safety valve. However, no change was observed in the other batteries.
[0019]
From the evaluation tests 1 to 3 described above, it is considered that there is no problem in safety when the conventional battery is charged at a constant voltage of 4.0 V at the expense of a decrease in discharge capacity. It has been found that when the battery is charged at a constant voltage of 4.3 V without sacrificing, a problem occurs in safety. On the other hand, in the batteries 1 and 2 of the present invention, it was found that there was no problem in safety even when the battery was charged at a constant voltage of 4.3 V to increase the discharge capacity.
[0020]
In the embodiment described above, the radical scavenger may be disposed on the surface of the particles of the positive electrode active material as in the battery 1 of the present invention, or the radical scavenger may be contained in the electrolyte in the positive electrode as in the battery 2 of the present invention. Although effective, it may be placed on the surface of the particles of the positive electrode active material and may be included in the electrolyte solution in the positive electrode. It is preferable to dissolve the radical scavenger in a solvent when preparing the electrolytic solution when the electrolytic solution is included.
[0021]
Examples of the radical scavenger include tetraethyl-p-phenylenediamine, in addition to trivalent iron chloride such as Battery 1 of the present invention and α, α′-diphenyl-β-picrylhydrazyl such as Battery 2 of the present invention. Hydroquinone, quinone, t-butylcatechol, chloranil, dimethylcarbamic acid and the like can be used.
[0022]
Further, in the above-described embodiment, a secondary battery using a non-aqueous electrolyte as an electrolyte has been described. However, a secondary battery using a polymer gel electrolyte composed of polymethyl methacrylate or polyacrylonitrile and an electrolyte as an electrolyte is described. Even in a battery, the same effect can be obtained by disposing a radical scavenger on the particle surface of the positive electrode active material.
[0023]
【The invention's effect】
As described above, the secondary battery according to the present invention can improve safety without lowering the discharge capacity, and thus contributes to an increase in discharge capacity and an improvement in safety in a secondary battery such as a lithium ion battery. The big thing is.
[Brief description of the drawings]
FIG. 1 is a sectional view of a secondary battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Cover 6 Gasket 7 Safety valve 8 PTC element

Claims (3)

正極活物質としてLi1-XMO2(MはCo,Ni,Fe,V,Mnから選択された少なくとも1種類の元素)を含む正極中に、ラジカル捕獲剤として三価塩化鉄を含む、端子電圧4.3Vで定電圧充電して用いる二次電池。A terminal containing, as a positive electrode active material, a positive electrode containing Li 1-X MO 2 (M is at least one element selected from Co, Ni, Fe, V, and Mn) and trivalent iron chloride as a radical scavenger ; A secondary battery that is used after being charged at a constant voltage of 4.3 V. 前記三価塩化鉄を重量比で0.5〜5%配した正極活物質を用いた請求項1記載の二次電池。 2. The secondary battery according to claim 1, wherein a positive electrode active material in which the trivalent iron chloride is arranged in a weight ratio of 0.5 to 5% is used. 3. 非水電解液または高分子ゲル電解質を用いる請求項1または2記載の二次電池。3. The secondary battery according to claim 1, wherein a non-aqueous electrolyte or a polymer gel electrolyte is used.
JP31817496A 1996-11-28 1996-11-28 Rechargeable battery Expired - Fee Related JP3580336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31817496A JP3580336B2 (en) 1996-11-28 1996-11-28 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31817496A JP3580336B2 (en) 1996-11-28 1996-11-28 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH10162809A JPH10162809A (en) 1998-06-19
JP3580336B2 true JP3580336B2 (en) 2004-10-20

Family

ID=18096300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31817496A Expired - Fee Related JP3580336B2 (en) 1996-11-28 1996-11-28 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP3580336B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687736B2 (en) 2000-02-25 2005-08-24 日本電気株式会社 Secondary battery
JP2010055847A (en) * 2008-08-27 2010-03-11 Idemitsu Kosan Co Ltd Electrode manufacturing slurry and electrode sheet using the same
JP5434062B2 (en) * 2008-12-12 2014-03-05 株式会社豊田中央研究所 Air battery
CN104937748B (en) 2013-02-27 2019-03-08 株式会社大阪曹达 Anode and non-aqueous electrolyte secondary battery
JP2017228412A (en) * 2016-06-22 2017-12-28 関西ペイント株式会社 Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
KR102575648B1 (en) 2018-04-13 2023-09-06 삼성전자주식회사 Additive for Electrolyte, Electrolyte comprising the additive, cathode comprising the electrolyte, and lithium air battery comprising the cathode
CN116130799A (en) * 2021-11-12 2023-05-16 宁德时代新能源科技股份有限公司 Battery, electricity-using device and method for providing trapping agent

Also Published As

Publication number Publication date
JPH10162809A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
EP1065744B1 (en) Lithium secondary battery
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
RU2156523C2 (en) Lithium cell improvement technique
JP2983205B1 (en) Non-aqueous secondary battery
US5534369A (en) Battery having divided electrode portions
JP2939469B1 (en) Electrolyte for non-aqueous battery and secondary battery using this electrolyte
KR101049331B1 (en) Lithium secondary battery
JP2949705B2 (en) Method for recovering discharge capacity of non-aqueous electrolyte secondary battery and circuit therefor
JPH08236155A (en) Lithium secondary battery
US6660433B2 (en) Lithium secondary battery and battery device comprising same
JP3059820B2 (en) Lithium secondary battery
JPH0973918A (en) Nonaqueous electrolyte for battery
JP3580336B2 (en) Rechargeable battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH0422066A (en) Nonaqueous secondary battery
JP2000021452A (en) Nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JP3680306B2 (en) Positive electrode plate for lithium battery and lithium battery
JP2002190300A (en) Lithium secondary cell
JP2003077478A (en) Lithium ion secondary battery
JPH04206365A (en) Nonaqueous solvent secondary battery
JP2002033132A (en) Nonaqueous secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JPH04155775A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees