JPH0817096B2 - Method for manufacturing carbonaceous composite member for fuel cell - Google Patents

Method for manufacturing carbonaceous composite member for fuel cell

Info

Publication number
JPH0817096B2
JPH0817096B2 JP63155161A JP15516188A JPH0817096B2 JP H0817096 B2 JPH0817096 B2 JP H0817096B2 JP 63155161 A JP63155161 A JP 63155161A JP 15516188 A JP15516188 A JP 15516188A JP H0817096 B2 JPH0817096 B2 JP H0817096B2
Authority
JP
Japan
Prior art keywords
electrode plate
precursor
plate precursor
firing
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63155161A
Other languages
Japanese (ja)
Other versions
JPH01320763A (en
Inventor
敏治 上井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP63155161A priority Critical patent/JPH0817096B2/en
Publication of JPH01320763A publication Critical patent/JPH01320763A/en
Publication of JPH0817096B2 publication Critical patent/JPH0817096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素質材料で構成された多孔質電極板なら
びに緻密質セパレータ板を一体的に形成してなるりん酸
型燃料電池用の炭素質複合部材を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to carbon for a phosphoric acid fuel cell in which a porous electrode plate composed of a carbonaceous material and a dense separator plate are integrally formed. To a method for manufacturing a quality composite member.

〔従来の技術〕 りん酸型燃料電池を構成する電極板、セパレータ板な
どの部材には、材質的に耐熱性、耐薬品性、良電気伝導
性、易加工性等の要求特性を満たす炭素質材料が有用さ
れている。
[Prior Art] Materials such as electrode plates and separator plates that make up phosphoric acid fuel cells are made of carbonaceous materials that meet the required properties such as heat resistance, chemical resistance, good electrical conductivity, and easy processability. The material has been useful.

ところが、炭素質材料は本質的に機械的強度が低いた
め、ハンドリングあるいはセルの組立時に破損すること
がある。近時、抵抗およびスタック厚みの低下を図るた
めに電極板は約2mm、セパレータ板は0.8〜1.0mm程度ま
で薄肉化が進んでおり、破損の度合は一層増加する傾向
にある。また、電極板とセパレータ板を積層する従来の
方式では、両方の面間に十分均等な密着接触を得ること
が困難であるため、電池内部抵抗の低減化には限界があ
る。
However, since the carbonaceous material inherently has low mechanical strength, it may be damaged during handling or cell assembly. In recent years, in order to reduce the resistance and the stack thickness, the electrode plate has been thinned to about 2 mm and the separator plate has been thinned to about 0.8 to 1.0 mm, and the degree of breakage tends to further increase. Further, in the conventional method in which the electrode plate and the separator plate are laminated, it is difficult to obtain a sufficiently even close contact between both surfaces, and therefore there is a limit in reducing the internal resistance of the battery.

このような不都合を排除し、機械的強度の向上、電気
的・熱的抵抗の低減およびセル組立の簡素化を図るた
め、電極板とセパレータ板の両部材を予め一体形成して
複合構造とする試みが急速に進められている。
In order to eliminate such inconvenience, improve mechanical strength, reduce electrical / thermal resistance, and simplify cell assembly, both members of the electrode plate and the separator plate are integrally formed in advance to form a composite structure. Attempts are proceeding rapidly.

このような複合部材を製造するための最も簡易で実用
性の高い手段は、特開昭60−20471号公報、実開昭60−1
5759号公報などに開示されているような電極基材とセパ
レータ基材とを接着剤で結合したのち焼成する接合焼成
法である。
The simplest and most practical means for producing such a composite member is disclosed in JP-A-60-20471 and JP-A-60-1.
This is a joining firing method in which an electrode base material and a separator base material are bonded with an adhesive and then fired as disclosed in Japanese Patent No. 5759.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記の接合焼成法には、各炭素済の炭素質電極板と炭
素質セパレータ板を接合して焼成する方法と、焼成前の
前駆体(生成形体)の段階にある電極板とセパレータ板
を接合して焼成する方法とがあるが、前者の方法に比べ
後者の方法は焼成炭化の工程が1回で済むうえ接合強度
が増大する点で有利である。
The above-mentioned joining and firing method is a method of joining and firing the carbonaceous electrode plate and the carbonaceous separator plate, which have been carbonized, and an electrode plate and a separator plate at the stage of precursor (form) before firing. However, the latter method is more advantageous than the former method in that the firing carbonization step is performed only once and the joint strength is increased.

しかしながら、後者の前駆体段階における接合方式を
採る場合には、組合せる電極材とセパレータ板の焼成過
程における収縮差が大きいと焼成中に界面剥離や部材の
反り、割れ等の欠陥現象が起こる。この傾向は、部材が
大型化するほど顕著となるため、実用面の大きなネック
となっている。
However, when the latter joining method in the precursor stage is adopted, if the difference in shrinkage in the firing process of the electrode material and the separator plate to be combined is large, defect phenomena such as interfacial peeling, member warpage, and cracking occur during firing. This tendency becomes more remarkable as the size of the member becomes larger, which is a major impediment to practical use.

本発明者は、焼成過程における部材の収縮挙動につい
て多角的に研究を重ねた結果セパレータ板前駆体の面方
向寸法収縮率を制御して電極板収縮率に近似させ、その
収縮率の差を特定範囲内に収めると、上記した欠陥現象
を効果的に減少できるとともにりん酸型燃料電池用とし
て好適な複合構造が得られることを見出して本発明を完
成したものである。
The present inventor has conducted multifaceted research on the shrinkage behavior of members in the firing process, and as a result, controls the plane direction dimensional shrinkage of the separator plate precursor to approximate it to the electrode plate shrinkage, and specifies the difference in the shrinkage. The present invention has been completed by finding that, when the content is within the range, the above-mentioned defect phenomenon can be effectively reduced and a composite structure suitable for phosphoric acid fuel cells can be obtained.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち、本発明による燃料電池用炭素質複合部材の
製造方法は、炭素質の電極板とセパレータ板を焼成前の
前駆体の段階で接合したのち焼成処理する方法におい
て、炭素質粉末フィラーと熱硬化性樹脂バインダーの配
合割合を調整することによりセパレータ板前駆体の面方
向寸法収縮率を制御し、電極板前駆体の面方向寸法収縮
率との差を±1.0%以内に設定して、接合することを構
成的特徴とする。
That is, the method for producing a carbonaceous composite member for a fuel cell according to the present invention is a method in which a carbonaceous electrode plate and a separator plate are bonded at a precursor stage before firing and then subjected to a firing treatment, in which a carbonaceous powder filler and thermosetting are used. By controlling the compounding ratio of the resin binder to control the dimensional shrinkage of the separator plate precursor in the surface direction, the difference from the dimensional shrinkage ratio of the electrode plate precursor in the surface direction is set within ± 1.0%, and the bonding is performed. This is a constitutional feature.

電極板の前駆体は、炭素繊維あるいはポリアクリルニ
トリル、セルローズなどの有機質繊維を例えばフェノー
ル樹脂のような熱硬化性樹脂と共にモールド法、抄紙法
等の手段を用いて薄板状に成形し、150〜250℃の温度域
で加熱硬化するプロセスによって製造される。
The precursor of the electrode plate, carbon fiber or polyacrylonitrile, organic fibers such as cellulose and the like with a thermosetting resin such as a phenol resin molding method, a thin plate shape using a means such as papermaking method, 150 ~ It is manufactured by a process of heat curing in the temperature range of 250 ° C.

セパレータ板の前駆体は、黒鉛、ガラス状炭素、コー
クスなどの粉末から選ばれた少なくとも1種のフィラー
とフェノール系あるいはフラン系など炭化性の熱硬化性
樹脂からなるバインダーとの混練物を薄板状に成形し、
50〜120℃で10時間以上に亘り加熱硬化するプロセスに
よって製造される。
The precursor of the separator plate is a thin plate-like kneaded product of at least one filler selected from powders of graphite, glassy carbon, coke and the like, and a binder made of a carbonized thermosetting resin such as phenol or furan. Molded into
It is manufactured by a process of heat curing at 50 to 120 ° C. for 10 hours or more.

このようにして製造された電極板前駆体とセパレータ
板前駆体とは、それぞれの面方向寸法収縮率の差を±1.
0%以内に調整した状態で接合する。本発明にいう面方
向寸法収縮率とは、角板状部材を非酸化雰囲気中で1000
℃に焼成した際の平面縦横方向に生じる熱収縮率の平均
値を指し、この値が接合しようとする電極板前駆体とセ
パレータ板前駆体の相互間において±1.0%以内に入る
場合には正常な焼成がおこなわれるが、その差が±1.0
%を越すと焼成過程での界面剥離、反り、割れ等の現象
が多発するようになる。
The electrode plate precursor and the separator plate precursor manufactured in this way have a difference in the in-plane dimensional shrinkage ratio of ± 1.
Join with adjusting within 0%. The plane direction dimensional shrinkage ratio in the present invention means that the rectangular plate member is 1000
The average value of the heat shrinkage ratios that occur in the horizontal and vertical directions when baked at ℃, and when this value is within ± 1.0% between the electrode plate precursor and the separator plate precursor to be joined, it is normal. Firing is done, but the difference is ± 1.0
If it exceeds%, phenomena such as interfacial peeling, warpage, and cracking frequently occur during the firing process.

電極板前駆体の面方向寸法収縮率は、上述した製造プ
ロセスで8〜30%の範囲にある。この収縮率は繊維系の
基材原料と熱硬化性樹脂との配合比を変えることにより
目的の値に制御することが可能であるが、この製造条件
の変更は電極の気孔構造そのものも変動させることにな
るため好ましくない。したがって、面方向寸法収縮率の
調整は専らセパレータ板前駆体の製造過程でおこない、
電極板前駆体では気孔構造の変動を伴わないで数%範囲
内の減少制御ができる熱処理(250〜400℃)に留めてお
くのが良策である。
The planar dimensional shrinkage of the electrode plate precursor is in the range of 8 to 30% in the manufacturing process described above. This shrinkage ratio can be controlled to a desired value by changing the compounding ratio of the fibrous base material and the thermosetting resin, but the change of the manufacturing conditions also changes the pore structure of the electrode itself. It is not preferable because it will happen. Therefore, the adjustment of the surface direction dimensional shrinkage is performed exclusively in the process of manufacturing the separator plate precursor,
For the electrode plate precursor, it is a good idea to keep the heat treatment (250 to 400 ° C), which can control the decrease within the range of several percent without changing the pore structure.

セパレータ板前駆体における面方向寸法収縮率は炭素
質粉末フィラーと熱硬化性樹脂バインダーの配合割合を
変えることにより緻密性を損なうことなく、3〜18%の
範囲に制御することができる。
The dimensional shrinkage in the plane direction of the separator plate precursor can be controlled within the range of 3 to 18% by changing the blending ratio of the carbonaceous powder filler and the thermosetting resin binder without impairing the denseness.

両部材の面方向寸法収縮率は予め製造条件との関係を
検量しておくことにより前駆体段階で把握することがで
き、±1.0%内外差の組合わせ確認も接合工程でおこな
うことができる。
The in-plane dimensional shrinkage ratio of both members can be grasped at the precursor stage by calibrating the relationship with the manufacturing conditions in advance, and the combination of ± 1.0% difference between inside and outside can be confirmed in the joining process.

電極板前駆体とセパレータ板前駆体との接合は、両部
材を直に当接し170〜250℃の温度域で1時間以上のプレ
ス硬化を施すか、接合界面に熱硬化性樹脂あるいはこれ
に黒鉛微粉末を混入した接着剤を介して接着硬化する方
法によっておこなわれる。
To bond the electrode plate precursor and the separator plate precursor, both members are directly contacted with each other and press-hardened in a temperature range of 170 to 250 ° C. for 1 hour or more, or a thermosetting resin or graphite on the bonding interface is used. It is carried out by a method of adhesively hardening via an adhesive agent in which fine powder is mixed.

接合後の部材は、常法に従い非酸化性雰囲気中で1000
℃以上の温度に焼成処理される。
After joining, the members should be welded in a non-oxidizing atmosphere at 1000
Baking is performed at a temperature of ℃ or more.

〔作 用〕[Work]

上記のプロセスにより多孔質電極板とセパレータ板が
一体に形成された燃料電池用炭素質複合部材が得られる
が、本発明においてはセパレータ板前駆体の製造時に炭
素質粉末フィラーと熱硬化性樹脂バインダーの配合割合
を調整することによりその面方向寸法収縮率を制御し
て、電極板前駆体の面方向寸法収縮率との差を±1.0%
以内に設定するので、電極板前駆体の気孔製造の減少、
変動が抑制される。その結果、多孔質電極板の気孔性状
を損ねることなく、焼成過程において熱収縮の差に基づ
く接合界面の剥離、部材の反り、割れ等の発生を効果的
に防止することが可能となる。したがって、常に良品質
の複合部材を製造することができる。
By the above process, a carbonaceous composite member for a fuel cell in which a porous electrode plate and a separator plate are integrally formed is obtained, but in the present invention, a carbonaceous powder filler and a thermosetting resin binder are manufactured during the production of the separator plate precursor. The dimensional shrinkage of the electrode plate precursor is controlled by adjusting the compounding ratio of the electrode plate, and the difference from the dimensional shrinkage of the electrode plate precursor in the plane direction is ± 1.0%.
Since it is set within the range, decrease in the pore production of the electrode plate precursor,
Fluctuation is suppressed. As a result, it is possible to effectively prevent the peeling of the bonding interface, the warp and the crack of the member, etc. due to the difference in heat shrinkage during the firing process without deteriorating the porosity of the porous electrode plate. Therefore, a good quality composite member can always be manufactured.

〔実施例〕〔Example〕

(1)電極板前駆体の製造例 炭素繊維のチョップドストランド70重量部に水溶性フ
ェノール樹脂〔日本ライヒホールド(株)製“プライオ
ーフェンJ303"〕10重量部と水20重量部を加えて撹拌混
合し、均一なスラリー状分散液を調整した。このスラリ
ーを抄紙法によって薄板状に成形したのち、250℃の温
度で加熱硬化して電極板前駆体を製造した。このものの
面方向寸法収縮率は13.2%であり、焼成後の見掛比重は
0.63g/cc、気孔率は66.1%の多孔質構造であった。
(1) Production example of electrode plate precursor To 70 parts by weight of chopped strands of carbon fiber, 10 parts by weight of a water-soluble phenolic resin [“PRIOFEN J303” manufactured by Nippon Reichhold Co., Ltd.] and 20 parts by weight of water were added and mixed by stirring. Then, a uniform slurry dispersion liquid was prepared. This slurry was formed into a thin plate by a papermaking method, and then heat-cured at a temperature of 250 ° C. to produce an electrode plate precursor. The dimensional shrinkage of this product is 13.2%, and the apparent specific gravity after firing is
The porous structure was 0.63 g / cc and the porosity was 66.1%.

また、この電極板前駆体を350℃で3時間熱処理を施
した。このものの面方向寸法収縮率は11.1%に減少した
が、焼成後の気孔特性には相違はなかった。
Further, this electrode plate precursor was heat-treated at 350 ° C. for 3 hours. The dimensional shrinkage of this product was reduced to 11.1%, but there was no difference in the pore characteristics after firing.

(2)セパレータ板前駆体の製造例 平均粒径4μmの黒鉛粉末をフィラーとし、これに粉
末フェノール樹脂〔住友デュレズ(株)製“スミライト
レジンPR1078"〕、液状フェノール樹脂〔住友デュレズ
(株)製“スミライトレジンPR940"〕およびカルボキシ
メチルセルローズを表1に示す重量部の割合で配合し
た。
(2) Example of producing separator plate precursor Graphite powder having an average particle size of 4 μm was used as a filler, and powdered phenol resin [Sumilite Resin PR1078] manufactured by Sumitomo Dures Co., Ltd., liquid phenol resin [Sumitomo Dures Co., Ltd.]. "Sumilite Resin PR940"] and carboxymethyl cellulose were blended in a ratio of parts by weight shown in Table 1.

配合物をスクリュー型混練機で混練したのち、ロール
圧装置を用い厚さ1mmの薄板状に成形した。次いで、成
形体を50℃で24時間、80℃で24時間の条件で加熱硬化を
おこなってセパレータ板前駆体を製造した。
The mixture was kneaded with a screw type kneader and then formed into a thin plate having a thickness of 1 mm using a roll pressure device. Next, the molded body was heat-cured under conditions of 50 ° C. for 24 hours and 80 ° C. for 24 hours to produce a separator plate precursor.

得られた各セパレータ板前駆体の面方向寸法収縮率
は、表2のとおりであった。
Table 2 shows the dimensional shrinkage ratio of each of the obtained separator plate precursors in the surface direction.

(3)複合部材の製造例と評価 上記(1)と(2)で製造した電極板前駆体とセパレ
ータ板前駆体とを190℃で2時間プレスして接合し、引
続き焼成炉に移し窒素ガス雰囲気中で1000℃の温度によ
り焼成処理して炭素質複合部材を製造した。
(3) Production Example and Evaluation of Composite Member The electrode plate precursor and the separator plate precursor produced in the above (1) and (2) were pressed and joined at 190 ° C. for 2 hours, and subsequently transferred to a firing furnace and nitrogen gas was introduced. A carbonaceous composite member was manufactured by firing at a temperature of 1000 ° C. in an atmosphere.

得られた各炭素質複合部材の焼成処理後の状況を表3
および表4に示した。なお、表示の数値は検体数10牧の
うちの発生数である。
Table 3 shows the status of the obtained carbonaceous composite members after the firing treatment.
And shown in Table 4. In addition, the displayed numerical value is the number of outbreaks in 10 pastures.

表3および表4の結果から、電極板前駆体とセパレー
タ板前駆体の面方向寸法収縮率の差が±1.0%以内にあ
る調整されている本発明の場合には部材の界面剥離、反
り、割れ等の現象は生じないが、その差が±1.0%の範
囲を越えるといずれかの欠陥現象が発生することが確認
された。
From the results of Table 3 and Table 4, in the case of the present invention in which the difference in the in-plane dimensional shrinkage ratio between the electrode plate precursor and the separator plate precursor is adjusted within ± 1.0%, interfacial peeling, warpage of the member, Although no phenomenon such as cracking occurred, it was confirmed that any defect phenomenon occurred when the difference exceeded ± 1.0%.

〔発明の効果〕〔The invention's effect〕

以上のように、本発明によれば焼成過程で性状欠陥が
生じない良品質の炭素質複合部材を量産することが可能
となる。したがって、高性能の燃料電池用複合部材とし
て常に安定して供給することができる。
As described above, according to the present invention, it becomes possible to mass-produce a good quality carbonaceous composite member that does not cause a property defect in the firing process. Therefore, it can always be stably supplied as a high performance composite member for a fuel cell.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素質の電極板とセパレータ板を焼成前の
前駆体の段階で接合したのち焼成処理する方法におい
て、炭素質粉末フィラーと熱硬化性樹脂バインターの配
合割合を調整することによりセパレータ板前駆体の面方
向寸法収縮率を制御し、電極板前駆体の面方向寸法収縮
率との差を±1.0%以内に設定して、接合することを特
徴とする燃料電池用炭素質複合部材の製造方法。
1. A method of joining a carbonaceous electrode plate and a separator plate at a precursor stage before firing and then performing a firing treatment, by adjusting a blending ratio of a carbonaceous powder filler and a thermosetting resin binder. A carbonaceous composite member for a fuel cell, which is characterized in that the dimensional shrinkage of the plate precursor in the plane direction is controlled, and the difference from the dimensional shrinkage of the electrode plate precursor in the plane direction is set to within ± 1.0% to perform the joining. Manufacturing method.
JP63155161A 1988-06-23 1988-06-23 Method for manufacturing carbonaceous composite member for fuel cell Expired - Lifetime JPH0817096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63155161A JPH0817096B2 (en) 1988-06-23 1988-06-23 Method for manufacturing carbonaceous composite member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63155161A JPH0817096B2 (en) 1988-06-23 1988-06-23 Method for manufacturing carbonaceous composite member for fuel cell

Publications (2)

Publication Number Publication Date
JPH01320763A JPH01320763A (en) 1989-12-26
JPH0817096B2 true JPH0817096B2 (en) 1996-02-21

Family

ID=15599854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63155161A Expired - Lifetime JPH0817096B2 (en) 1988-06-23 1988-06-23 Method for manufacturing carbonaceous composite member for fuel cell

Country Status (1)

Country Link
JP (1) JPH0817096B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171908A (en) * 1986-01-24 1987-07-28 Kawasaki Steel Corp Production of carbon plate
JPS62180963A (en) * 1986-02-05 1987-08-08 Tokai Carbon Co Ltd Manufacture of carbonaceous member for fuel cell
JPS63270138A (en) * 1987-04-30 1988-11-08 Kobe Steel Ltd Composite carbonic member and its manufacture

Also Published As

Publication number Publication date
JPH01320763A (en) 1989-12-26

Similar Documents

Publication Publication Date Title
JP3652061B2 (en) Electric double layer capacitor
JPH0817096B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JPH03248838A (en) Heat insulation material
JP2571108B2 (en) Method for producing carbon member for fuel cell
JPH0677461B2 (en) Method for producing carbon composite member for fuel cell
JPH09278558A (en) Carbonaceous porous body and its production
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JP3150807B2 (en) Bonding material for solid oxide fuel cell stack and method for producing the same
JPS59195514A (en) Molded impermeable carbon body and its manufacture
JPS62260709A (en) Formed carbon article and production thereof
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JPH06218827A (en) Fiber reinforced substrate and manufacture thereof
JPH0717928B2 (en) Method for producing porous Cu alloy sintered body
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same
JP3243288B2 (en) Carbon jig for sintering
JPH07300362A (en) Production of gas-impermeable carbonaceous material
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact
JP2003020278A (en) Carbonaceous thin plate
JP4587632B2 (en) Fuel cell separator and method for producing the same
JP2000169230A (en) Production of compact carbonaceous plate
JPH06329469A (en) Preformed carbonaceous material and production of electrode substrate
JPH0626128B2 (en) Method for manufacturing composite electrode for fuel cell
JPH0757741A (en) Manufacture of carbonaceous preformed body and electrode substrate
JPS6364963A (en) Carbon material and manufacture
JPH08119741A (en) Carbon-boron carbide sintered compact and carbon-boron carbide-silicon carbide sintered compact