JPS62180963A - Manufacture of carbonaceous member for fuel cell - Google Patents

Manufacture of carbonaceous member for fuel cell

Info

Publication number
JPS62180963A
JPS62180963A JP61022040A JP2204086A JPS62180963A JP S62180963 A JPS62180963 A JP S62180963A JP 61022040 A JP61022040 A JP 61022040A JP 2204086 A JP2204086 A JP 2204086A JP S62180963 A JPS62180963 A JP S62180963A
Authority
JP
Japan
Prior art keywords
carbonaceous
bodies
molded body
gas
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61022040A
Other languages
Japanese (ja)
Inventor
Toyoichi Shimada
島田 豊一
Yoshio Suzuki
義雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP61022040A priority Critical patent/JPS62180963A/en
Publication of JPS62180963A publication Critical patent/JPS62180963A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To efficiently obtain a complex electrode in which electrodes and a separator are integrated with each other, by disposing porous shaped carbon bodies having through holes, on both the sides of a gas-impermeable carbonaceous shaped body, and by heating them under pressure to harden them, and thereafter baking the bodies to carbonize them. CONSTITUTION:A water-soluble phenolic resin or the like, chopped carbon fibers or the like and water are mixed together to make a slurry. A sheet is made from the slurry and subjected to heat treatment to make a porous shaped carbon body 1 having through holes 2 nearly in the middle of the thickness thereof. A thermosetting resin liquid and graphite or the like are mixed together and subjected to molding or the like to make a shaped body 3 as a gas-impermeable carbonaceous separator. The porous shaped carbon bodies 1 are disposed in the grooves of the top and bottom of the shaped body 3 so that the through holes 2 of the bodies 1 extend perpendicularly across each other. The bodies 1, 3 are heated under pressure so that they are hardened. The bodies 1, 3 are then subjected to baking carbonization. The side surfaces of a complex electrode for a fuel cell are thus easily made gas-impermeable.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、多孔質炭素電極と気体不透過性炭素質セパレ
ーターとを一体的(こ形成するリン酸型燃料電池用炭素
質部材の製造方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method for manufacturing a carbonaceous member for a phosphoric acid fuel cell in which a porous carbon electrode and a gas-impermeable carbonaceous separator are integrally formed. Regarding.

「従来の技術」 燃料電池は、リン酸を保持したマトリックス層の両側に
触媒を担持した多孔質電極板を配置して単位セルを構成
し、各単位セルをセパレーター板を介して直列接続する
ことにより所定のスタック構造を形成している。多孔質
電極板およびセパレーター板の形状は、燃料と酸化剤の
通路である気体流通溝を付けるか否かによってリブ付ま
たは平板に分かれるが、これらの部材には耐熱性、・耐
薬品性、導電性、熱伝導性、易加工性などの特性か必要
とされており、この要求特性を満たすものとして炭素材
が有用されている。
``Prior art'' A fuel cell consists of a unit cell by arranging porous electrode plates carrying a catalyst on both sides of a matrix layer holding phosphoric acid, and each unit cell is connected in series through a separator plate. A predetermined stack structure is formed. The shape of porous electrode plates and separator plates can be divided into ribbed or flat plates, depending on whether or not they have gas flow grooves for passage of fuel and oxidizer, but these materials have heat resistance, chemical resistance, and electrical conductivity. Characteristics such as elasticity, thermal conductivity, and ease of processing are required, and carbon materials are useful as materials that meet these required characteristics.

一般にスタック構造においては、電極板とセパレーター
板間の接触抵抗を可及的に小さくするためにスタック全
体を強固に圧締すること、さらに全体をコンパクト化す
るために電極板およびセパレーター板の厚さを薄(する
ことが必要とされている。しかしながら、炭素材は機械
的強度が充分でないために、ハンドリングや電池組立圧
縮時などに応々にして破損する場合が、ある。
In general, in a stack structure, the entire stack must be firmly clamped to reduce the contact resistance between the electrode plates and separator plates as much as possible, and the thickness of the electrode plates and separator plates must be adjusted to make the entire stack more compact. However, since carbon materials do not have sufficient mechanical strength, they may break during handling or compression during battery assembly.

このような理由から、多孔質炭素電極板と気体不透過性
炭素セパレーター板とを一体的に形成することにより、
機械的強度の増大、接触抵抗の減少、電池組立の容易化
などをはかる試みかなされている。例えば、特開昭60
−20 ll 71 、実開昭60−15759などで
提案されているような、カーボン系の多孔質電極板およ
びセパレーター板あるいはこれら部材の前駆体を接着剤
を介1、て結合ずろ方法がある。しかしながら、接合時
に接佇剤の一部が多孔質電極板の組織構造内に浸透した
り、気体流通溝に流入したりして局部的に多孔性を損ね
たり、溝を閉塞するなどの問題を生じる場合がある。さ
らに気体流通溝により全面接着かできないために強固に
接合し堆い欠点がある。
For these reasons, by integrally forming the porous carbon electrode plate and the gas-impermeable carbon separator plate,
Attempts have been made to increase mechanical strength, reduce contact resistance, and facilitate battery assembly. For example, JP-A-60
There is a method of bonding a carbon-based porous electrode plate and a separator plate, or precursors of these members via an adhesive, as proposed in Japanese Utility Model Application No. 60-15759. However, during bonding, some of the adhesive may penetrate into the tissue structure of the porous electrode plate or flow into the gas flow grooves, locally damaging the porosity or clogging the grooves. may occur. Furthermore, because the gas flow grooves allow only the entire surface to be bonded, there is a drawback that the bond is strongly bonded.

これらの観点から出願人は、気体不透過性炭素薄板の両
側に、厚さのほぼ中央部に貫通孔群を何する多孔質炭素
成形体を炭化性物質を介して一体的に接合する方法を提
案した(特願昭6O−290848)。舷に貫通孔群は
気体流通用の溝として機能ずろ。
From these viewpoints, the applicant has proposed a method of integrally joining, via a carbonizable material, a porous carbon molded body having a group of through holes approximately in the center of the thickness on both sides of a gas-impermeable carbon thin plate. (Japanese Patent Application No. 6O-290848). A group of through holes on the gunwale function as grooves for gas circulation.

「発明が解決しようとする問題点」 しかしながら、多孔質炭素電極側面部からのガスのリー
クを防ILずろために不透過処理をする必要が生じる。
"Problems to be Solved by the Invention" However, in order to prevent gas leakage from the side surface of the porous carbon electrode, it is necessary to perform an impermeability treatment.

通常、電極の側面部(ケに()#指液を含浸したり、テ
フロンなどの1(材を介在さけろ方法が採られるが、作
業性か悪く、能率的でない・堆点がある。
Usually, the side surface of the electrode is impregnated with finger liquid or a material such as Teflon is used, but this method is difficult to work with, is inefficient, and may cause deposits.

本発明は前記方法(特願昭6O−290848)を利用
して多孔質炭素電極の側面部位にガスシールを施した一
体型複合電極の製造方法を提供する乙のである。
The present invention provides a method for manufacturing an integrated composite electrode in which a gas seal is applied to the side surface of a porous carbon electrode using the above method (Japanese Patent Application No. 6O-290848).

「問題点を解決するための手段」 すなわち、本発明は炭素質粉末と熱硬化性樹脂液とを混
練した後薄板状に成形し、この薄板状炭素質成形体の両
面に厚さのほぼ中央部に貫通孔群を有する多孔質炭素成
形体を、炭素前駆体化状態において圧着し、ま1こ貫通
孔群と平行な側面部位に前記薄板状炭素質成形体を′f
&着し、次いて所定形状の金型中で加圧下に加熱硬化し
た後焼成炭化処理することを構成的特徴とする燃料電池
用炭素質部材の製造方法である。
``Means for Solving the Problems'' That is, the present invention involves kneading carbonaceous powder and thermosetting resin liquid and then forming it into a thin plate, and forming a layer on both sides of the thin plate-shaped carbonaceous molded body approximately at the center of the thickness. A porous carbon molded body having a group of through-holes in a part thereof is crimped in a carbon precursor state, and the thin plate-like carbonaceous molded body is attached to a side part parallel to the through-hole group 'f'.
This is a method for manufacturing a carbonaceous member for a fuel cell, which is characterized in that the carbonaceous member is heated and hardened under pressure in a mold having a predetermined shape, and then subjected to firing and carbonization treatment.

予め粒度を調整した黒鉛、コークス、カーボンブラック
などの炭素質粉末とフェノール系、フラン系などの熱硬
化性樹脂液とを混合し、混練機により均一に混練した後
この混練物をモールド成形やロール圧延成形することに
より所定の厚さ、形状を有する薄板状炭素質成形体を得
ることができる。
Carbonaceous powder such as graphite, coke, carbon black, etc. whose particle size has been adjusted in advance is mixed with a thermosetting resin liquid such as phenol type or furan type, and after uniformly kneading with a kneader, the kneaded product is molded or rolled. By rolling, a thin carbonaceous molded body having a predetermined thickness and shape can be obtained.

一方多孔質炭素成形体は、炭素繊維チョップと熱硬化性
樹脂とを複合することにより得ることができる。例えば
、水溶性フェノール樹脂と炭素繊維チョップとを水に分
散せさてスラリー状にし、このスラリーを所定形状の金
型中に注入して加圧成形ずろ方法や抄紙法などを適用し
て製造することができる。この場合、金型中の所定位置
に棒状体を持着し、成形後炭素前駆体化状態すなわち、
加熱架橋硬化処理をした後、棒状体を抜脱することによ
り貫通孔群を形成することができろ。棒状体1の材質と
しては、成形体から容易に抜脱できる金属やテフロン樹
脂などが使用されろ。また、この貫通孔群に50〜60
0℃で分解、揮散するような物質、例えばポリスチレン
、パラフィンなどを充填すると、圧着時および加熱硬化
などのその後の処理において貫通孔群の変形や破損を防
止することができるので好ましい。
On the other hand, a porous carbon molded body can be obtained by combining carbon fiber chops and a thermosetting resin. For example, water-soluble phenol resin and carbon fiber chops are dispersed in water to form a slurry, and this slurry is injected into a mold of a predetermined shape to produce the product by applying a pressure molding method, a paper making method, etc. I can do it. In this case, the rod-shaped body is held at a predetermined position in the mold, and after molding, the carbon precursor state is
After the heat crosslinking and curing treatment, the rod-shaped body can be removed to form a group of through holes. As the material for the rod-shaped body 1, metal, Teflon resin, or the like, which can be easily removed from the molded body, is used. In addition, this through hole group has 50 to 60 holes.
Filling with a substance that decomposes and volatilizes at 0° C., such as polystyrene or paraffin, is preferable because deformation or damage to the through-hole group can be prevented during pressure bonding and subsequent processing such as heat curing.

このようにして得られた多孔質炭素成形体を前記薄板状
炭素質成形体の両面に圧着する。また貫通孔群と平行な
側面部位にも薄板状炭素質成形体を被着する。すなわち
、所定形状の薄板状炭素質成形体の両面を、側面部位に
該成形体を被着した多孔質炭素成形体で挟持し、所定形
状の金型中で加圧下に加熱硬化処理して一体化するもの
である。
The porous carbon molded body thus obtained is pressed onto both sides of the thin plate-like carbonaceous molded body. Further, a thin plate-like carbonaceous molded body is also attached to a side surface portion parallel to the group of through holes. That is, both sides of a thin plate-like carbonaceous molded body of a predetermined shape are sandwiched between porous carbon molded bodies having the molded body adhered to the side surfaces, and heat-hardened under pressure in a mold of a predetermined shape to form an integral piece. It is something that becomes.

次いで、不活性雰囲気中で加熱して焼成炭化することに
より、電極板とセパレーター阪とが一体的に接合したリ
ン酸型燃料電池用炭素質部材を製造することができる。
Next, by heating in an inert atmosphere and firing and carbonizing, it is possible to manufacture a carbonaceous member for a phosphoric acid fuel cell in which the electrode plate and the separator plate are integrally joined.

「作 用」 本発明においては、未硬化段階のi−V板状炭素質成形
体と炭素前駆体化状態にある多孔質炭素酸1形体とを圧
接し、加圧下に加熱硬化処理することにより強固に接合
して一体化されろ。この硬化反応をflI用した接、’
i l−i能および焼成炭化による気体不透過性1臭素
への転換により、電(県側面+’!iI I−γに気体
不60性能を例与しfニ一体型(9合1a庫か製造され
ろ。
"Function" In the present invention, an i-V plate-like carbonaceous molded body in an uncured stage and a porous carbon acid 1 form in a carbon precursor state are brought into pressure contact and heat-cured under pressure. Be strongly connected and integrated. This curing reaction is applied using flI,'
The conversion to gas-impermeable 1-bromine through i l-i performance and calcination carbonization gives gas-impermeable 60 performance to electric (prefecture side +'! Be manufactured.

=実施例」 水溶性フェノール(ろI脂(IE本ラうヒポールト(株
)環プライオーフェノ、J−303)10部と炭素繊維
ヂョップ(平均径5デニール、平均長さ8.■)70部
を水20部中に加えてIik拌し、均一に分散させてス
ラリー状にした。このスラリーを抄造法によ−て成形し
、加熱処理して170zz角、厚さ2 、5 mmまた
厚さのほぼ中央部に直径1.5Rxの貫匝孔、40本を
何する多孔質炭素成形体を製造した。
=Example'' 10 parts of water-soluble phenol (ROI fat (IE Honrau Hippoort Co., Ltd. Ring Plyopheno, J-303) and 70 parts of carbon fiber chop (average diameter 5 denier, average length 8.■) was added to 20 parts of water and stirred to uniformly disperse it to form a slurry.The slurry was formed by a papermaking method and heat treated to form a 170mm square, 2.5 mm thick and 2.5 mm thick. A porous carbon molded body having 40 through-holes with a diameter of 1.5Rx approximately in the center was manufactured.

r、、; :b、r1通孔群の全てに直径約1 、4.
 wmのポリスヂレン製の棒を挿入した。
r, , ; :b, r1 hole group all have a diameter of about 1, 4.
A wm polystyrene rod was inserted.

次ぎに、平均粒径5μm1の人造黒鉛粉末120玉爪部
に液状フェノール樹脂切期縮合物100重1部を加えて
充分に混練した後、ロール圧延処理して厚さ05部7m
の平板に成形した。この平板の両面に、11n記多孔質
炭素成形体を貰゛通孔群が互いに直交j″ろ方向にして
圧iqシ、まr”ニー i’l:通孔1洋と平行な側面
部(ゲ仝面に毛(反を披i9 L jこ。次に、金型中
に装入して、10kg□’fJ2の加圧下に150℃で
5分間熱処理して加熱硬化後金型から取:)たし、18
0°Cて5時間加熱して硬化処理を完了しl二。
Next, 100 parts by weight of liquid phenol resin cut-off condensate was added to the beveled part of 120 artificial graphite powders with an average particle size of 5 μm, and the mixture was thoroughly kneaded, and then rolled to a thickness of 0.5 parts and 7 m.
It was formed into a flat plate. The porous carbon molded body No. 11n is placed on both sides of this flat plate. The other side of the wire was coated with hair.Next, it was charged into a mold and heat treated at 150°C for 5 minutes under a pressure of 10kg□'fJ2, and after being heated and cured, it was removed from the mold: ) Tashi, 18
The curing process was completed by heating at 0°C for 5 hours.

このようにして得た一体接合体を常法に従い不活性雰囲
気中で1300°Cに1時間加熱、焼成炭化処理して図
示構造の一体型調合電極を製造しfコ。
The integrally assembled body thus obtained was heated in an inert atmosphere at 1300° C. for 1 hour and subjected to firing and carbonization treatment to produce an integral compounding electrode having the structure shown in the figure.

図において、Iは多孔質炭素電極、2は貫通孔!L1.
3は気体不透過性炭素質セパレータ一部である。
In the figure, I is a porous carbon electrode, and 2 is a through hole! L1.
3 is a part of a gas-impermeable carbonaceous separator.

なお貫通孔群に挿入したボリスヂレン俸はこれらの熱処
理時に全て分解揮散した。
It should be noted that all of the Boris dilene pellets inserted into the through holes were decomposed and volatilized during these heat treatments.

この一体化複合7[極をlW度200°C1圧力1kg
/cm’の条件下に空気を流通さU゛てそのリーク量を
測定した結果は10−”(cm37cm2−分)であっ
た。また、室温から220℃の温度に急激に昇温・降温
を20回くり返したが電極部とセパレータ一部との剥離
(まなく、スポーリングら認められなかった。
This integrated composite 7 [pole 1W degree 200°C 1 pressure 1kg
The result of measuring the amount of leakage by flowing air under the condition of /cm' was 10-'' (cm37cm2-min).In addition, the temperature was rapidly raised and lowered from room temperature to 220℃. Although the test was repeated 20 times, no peeling (or spalling) between the electrode part and part of the separator was observed.

「発明の効果」 」二足1悦明て明らかなように、本発明方法により電極
部とセパレータ一部とが一体化した複合電極の電極側面
部位の気体不透過処理を容易に行なうことができる。さ
らに一体化接合後に焼成炭化処理ずろので焼成工数の減
少がはかられる効果もある。したがって、・リン酸型燃
料電池の電極部とセパレータ一部とを一体化した複合電
極を極めて効率よく製造することが可能となる。
``Effects of the Invention'' As is clear, the method of the present invention can easily perform gas impermeability treatment on the side surface of the electrode of a composite electrode in which the electrode part and part of the separator are integrated. . Furthermore, since the sintering and carbonization process is performed after the integral bonding, the number of sintering steps can be reduced. Therefore, it is possible to extremely efficiently manufacture a composite electrode in which the electrode part of a phosphoric acid fuel cell and a part of the separator are integrated.

【図面の簡単な説明】 図は、本発明による焼成炭化処理後の電極部とセパレー
タ一部とを一体化した複合電極の模式図である。 1・多孔質炭素電極、  2・・貫通孔群、3 気体不
透過性炭素質セパレータ一部。
BRIEF DESCRIPTION OF THE DRAWINGS The figure is a schematic diagram of a composite electrode in which an electrode part after calcination carbonization treatment and a part of a separator are integrated according to the present invention. 1. Porous carbon electrode, 2. Through-hole group, 3. Part of gas-impermeable carbonaceous separator.

Claims (1)

【特許請求の範囲】[Claims] 1、炭素質粉末と熱硬化性樹脂液とを混練した後薄板状
に成形し、この薄板状炭素質成形体の両面に厚さのほぼ
中央部に貫通孔群を有する多孔質炭素成形体を、炭素前
駆体化状態において圧着し、また貫通孔群と平行な側面
部位に前記薄板状炭素質成形体を被着し、次いで所定形
状の金型中で加圧下に加熱硬化した後焼成炭化処理する
ことを特徴とする燃料電池用炭素質部材の製造方法。
1. After kneading carbonaceous powder and thermosetting resin liquid, molding it into a thin plate shape, and forming a porous carbon molded body having a group of through holes approximately in the center of the thickness on both sides of this thin plate-like carbonaceous molded body. , the thin carbonaceous molded body is crimped in a carbon precursor state, and the thin plate-like carbonaceous molded body is adhered to the side surface portion parallel to the through hole group, and then heated and hardened under pressure in a mold of a predetermined shape, followed by firing carbonization treatment. A method for manufacturing a carbonaceous member for a fuel cell, characterized in that:
JP61022040A 1986-02-05 1986-02-05 Manufacture of carbonaceous member for fuel cell Pending JPS62180963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022040A JPS62180963A (en) 1986-02-05 1986-02-05 Manufacture of carbonaceous member for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022040A JPS62180963A (en) 1986-02-05 1986-02-05 Manufacture of carbonaceous member for fuel cell

Publications (1)

Publication Number Publication Date
JPS62180963A true JPS62180963A (en) 1987-08-08

Family

ID=12071828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022040A Pending JPS62180963A (en) 1986-02-05 1986-02-05 Manufacture of carbonaceous member for fuel cell

Country Status (1)

Country Link
JP (1) JPS62180963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197968A (en) * 1988-01-30 1989-08-09 Hitachi Ltd Phosphoric acid type fuel cell and manufacture thereof
JPH01320763A (en) * 1988-06-23 1989-12-26 Tokai Carbon Co Ltd Manufacture of carbon composite for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197968A (en) * 1988-01-30 1989-08-09 Hitachi Ltd Phosphoric acid type fuel cell and manufacture thereof
JPH01320763A (en) * 1988-06-23 1989-12-26 Tokai Carbon Co Ltd Manufacture of carbon composite for fuel cell

Similar Documents

Publication Publication Date Title
JPS62123662A (en) Electrode substrate for fuel cell
JPS62180963A (en) Manufacture of carbonaceous member for fuel cell
JPS63270138A (en) Composite carbonic member and its manufacture
JPS5926907A (en) Thin graphite plate and its manufacture
JPS62154470A (en) Manufacture of carbon member for fuel cell
JPS62272465A (en) Separator fuel cell
JP3715642B2 (en) Manufacturing method of fuel cell separator
JPS6366783B2 (en)
JPS6020471A (en) Manufacture of members for fuel cell
JP2571108B2 (en) Method for producing carbon member for fuel cell
JPS62188173A (en) Manufacture of complex electrode for fuel cell
JPH0677461B2 (en) Method for producing carbon composite member for fuel cell
JP3342508B2 (en) Method for producing impermeable carbonaceous plate
JPH0450709B2 (en)
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JPH0131445B2 (en)
JPH06218827A (en) Fiber reinforced substrate and manufacture thereof
JPS60150559A (en) Carbon thin plate for fuel battery and method for manufacturing the same
JP2603138B2 (en) Method for manufacturing carbonaceous composite member for fuel cell
JPS62126563A (en) Manufacture of carbon member for fuel cell
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPS62276760A (en) Manufacture of complex electrode for fuel cell
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same
JPS6259508A (en) Production of carbonaceous, thin plate
JPH0220589B2 (en)