JP4587632B2 - Fuel cell separator and method for producing the same - Google Patents

Fuel cell separator and method for producing the same Download PDF

Info

Publication number
JP4587632B2
JP4587632B2 JP2002030950A JP2002030950A JP4587632B2 JP 4587632 B2 JP4587632 B2 JP 4587632B2 JP 2002030950 A JP2002030950 A JP 2002030950A JP 2002030950 A JP2002030950 A JP 2002030950A JP 4587632 B2 JP4587632 B2 JP 4587632B2
Authority
JP
Japan
Prior art keywords
fuel cell
flat plate
cell separator
graphite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002030950A
Other languages
Japanese (ja)
Other versions
JP2003234110A (en
Inventor
邦生 山田
吉久 須田
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2002030950A priority Critical patent/JP4587632B2/en
Publication of JP2003234110A publication Critical patent/JP2003234110A/en
Application granted granted Critical
Publication of JP4587632B2 publication Critical patent/JP4587632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Ceramic Products (AREA)
  • Fuel Cell (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池用セパレータ及びその製造方法に関するものであり、更には薄板化しても強度やガス不透過性、導電性が低下することなく、特には溝形状部を容易に製造可能な固体高分子型燃料電池用セパレータとその製造方法に関する。
【0002】
【従来の技術】
固体高分子型燃料電池は、イオン交換膜からなる固体高分子の電解質膜と、その両側に設けた2つの電極とそれぞれの電極に水素などの燃料ガスあるいは酸素などの酸化剤ガスを供給するガス供給溝を設けたセパレータなどからなる単セルを積層したスタック、及びその外側に設けた2つの集電体から構成されている。
電解質部分に高性能の高分子電解質膜を使用している関係で作動温度が80〜100℃と低いにも拘わらず高出力の発電が可能である。
【0003】
固体高分子型燃料電池のセパレータには、燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給するために高度のガス不透過性が要求され、また発電効率を高くするために電池の内部抵抗を小さくする必要があり、そのために導電性が高いことが必要である。更に、電池反応に伴う発熱を効率よく放散させ、電池内温度分布を均一化するために高い熱導電性や長期耐久性の確保のために優れた耐蝕性を備える必要がある。これらのことから、固体高分子型燃料電池のセパレータの材料としては主として炭素材料が使用されている。
【0004】
燃料電池用セパレータの形状は、一般的に平板の両面又は片面に複数の平行する溝を形成してなるもので、燃料電池セル内のガス拡散電極で発電した電気を外部へ伝達すると共に、発電の過程で前期溝中に生成した水を排水し、当該溝を燃料電池セルへ流入する反応ガスの流通路として確保するという役割を担っている。
【0005】
近年の燃料電池の軽量化や薄型化に伴い、上記のような燃料電池用セパレータについても薄板化することが求められるようになったが、従来の易切削加工性を有す一般炭素素材のみからなる燃料電池セパレータでは、単に薄板化すると強度が低下し、ガス浸透性が高くなってしまうという問題があった。
【0006】
そのため、薄型化しても強度およびガス不浸透性を維持させるために、例えば、特開平10−40938号公報には、熱膨張黒鉛粉末または鱗片状の天然黒鉛粉末に、主として粒径が5μm以上で200μm以下で所定の樹脂よりなるバインダを被覆した球状または塊状の炭素粉末を混合し、該混合物を成形することで燃料電池用セパレータを製造する方法が開示されている。
【0007】
また、特開2000−331690号公報には、平均粒子径50μm以下の黒鉛粉末とフェノール樹脂とを混合し粉砕、篩分けして調製した粒度0.1〜5mmの整粒を100〜200℃の温度に加熱された金型に射出成形し、成形体を加熱硬化する燃料電池用セパレータの製造方法が開示されている。
【0008】
しかし、これらの方法で得られたセパレータは炭素材のみからなる燃料電池セパレータに比べて導電性や放熱効果が劣るうえ長期耐久性の確保が困難である。
【0009】
また、セパレータの製造方法として一般的に使用されているモールド成形法によって成形する場合、予めガス供給溝をセパレータに賦形するニアネットシェイブ成形が難しい欠点があり、燃料ガスあるいは酸化剤ガスを供給するための通路となるガス供給溝は、後処理的に機械加工して形成することが必要であり生産性が低く、コスト高となる難点がある。
【0010】
一方、射出成形法は寸法精度に優れるうえ燃料ガスあるいは酸化剤ガスを供給するための通路となるガス供給溝を一体成形可能であるなど、成形段階では生産性の優れた成形方法ではあるが、成形時に成形原料に流動性を保持させるためにバインダーとなる熱硬化性樹脂の配合量を多くする必要が生じ配合の自由度が限定されるうえ、導電性向上のために配合する炭素粉体等のフィラーが板方向と溝方向とで異方向に配向してしまうため、得られた成形体を焼成炭素化すると、焼成収縮率に差異が生じることで反りの発生や寸法がばらつくなどの難点がある。
【0011】
本願出願人は、特願2001−149865号において、導電性、放熱特性、長期耐久性に優れ、生産性の高い成形方法により製造し得る燃料電池用セパレータとして、熱硬化性樹脂の液状組成物に黒鉛粉末を均一に分散複合させて得られた材料により平板部および平板部上の凸部を形成し、それを焼成して得られる燃料電池用セパレータを提案した。
【0012】
【発明が解決しようとする課題】
本発明の目的は、上記の燃料電池用セパレータとして要求された特性がさらに改良された燃料電池用セパレータとその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明の燃料電池用セパレータは、黒鉛と、該黒鉛の存在下での焼成により得られたガラス状炭素を含み、平板部および平板部上に形成されて平板部とともに凹凸のある表面を形成する多孔質の凸部とを有することを特徴とするものである。
【0014】
この燃料電池用セパレータは、繊維状炭素をさらに含むことが望ましい。
【0015】
本発明の燃料電池用セパレータはまた、繊維状炭素と、該繊維状炭素の存在下での焼成により得られたガラス状炭素を含むことを特徴とするものである。
【0016】
本発明の燃料電池用セパレータの製造方法は、樹脂および黒鉛を含む第1の材料で平板を形成し、平板上に、樹脂、黒鉛および消失性微粒子ポリマーを含む第2の材料で凸部を選択的に形成することによって平板上に凹凸のある表面を形成し、該凹凸のある表面を有する平板を炭素化処理するステップを具備することを特徴とするものである。
【0017】
消失性微粒子ポリマーは例えば、平均粒径100μm以下の微粒子ポリマーであり700℃以下で消失して多孔質を形成する。
【0018】
前記第1および第2の材料はともに繊維状炭素材をさらに含むことが好ましい。
【0019】
繊維状炭素材は、カーボンナノチューブ、気相成長炭素繊維、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、黒鉛繊維等より選ばれた少なくとも一種である。気相成長炭素繊維とは、水素をキャリアガスとしたベンゼン、メタン等の炭化水素系ガスを1000℃付近で熱分解し、数百Åの超微粒金属の触媒効果を利用して炭素繊維を成長させて得られるものであり、PAN系炭素繊維などのような有機繊維を炭化処理することにより得られるものとは異なる。このような気相成長炭素繊維は、結晶学的に完全なウィスカーではないが、炭素層面が繊維軸に優先配列した年輪構造を有しており、さらに2500℃以上の温度で熱処理によって、高度に発達した黒鉛構造と形成されたものは、特にグラフィトウィスカーと類似構造を有している(該気相成長炭素繊維は本願発明者の一人である開発者の名前にちなみ“エンドウファイバー”と呼ばれている)。そのため引っ張り強度、弾性率が大きく、良好な熱伝導性、電気伝導性、および自己潤滑性を有する。
【0020】
本発明の燃料電池用セパレータの製造方法はまた、樹脂および繊維状炭素を含む第1の材料で平板を形成し、平板上に、樹脂および繊維状炭素を含む第2の材料で凸部を選択的に形成することによって平板上に凹凸のある表面を形成し、該凹凸のある表面を有する平板を炭素化処理するステップを具備することを特徴とする。
【0021】
本発明の燃料電池セパレータにおいては、凸部に消失性ポリマーを用いて多孔質にすることで、燃料ガス及び酸化剤ガスが凸部のリブの中も拡散して行き、より反応を起こしやすくなる。
【0022】
また、平板及び凸部に繊維状炭素材を用いることで、機械的強度を付与するだけでなく電子の通るパスを作り電気伝導性が向上する。
【0023】
【実施例】
(実施例1)
フラン樹脂(日立化成工業(株)製 ヒタフランVF−303)70部、天然鱗状黒鉛(日本黒鉛工業(株)製 平均粒径5μm)20部および気相成長炭素繊維(平均径0.1μm 長さ5μm)10部を充分に分散、混合して、平板作成用液状材料を得た。
【0024】
上記液状材料80部に消失性微粒子ポリマー(PMMA、10μm)20部を添加し、充分に分散、混合して凸部作成用液状材料を得た。
【0025】
平板部はドクターブレードタイプ塗工機に液状材料を投入しグリーンシートを作成、グリーンシートを切断機で切断後、乾燥機で加熱硬化処理をすることで得た。得られた平板は、厚さ0.5mm、24.5cm角の寸法を有していた。凸部は、凸部形状パターンが形成されたスクリーンメッシュを組み込んだスクリーン印刷機に平板をセットし、凸部作成用液状材料を印刷した後、乾燥炉内で加熱硬化処理を施した後再度、印刷・加熱硬化を行い凸部を得た。片面に凸部作成後、反対面にも印刷・加熱硬化を行うことで両面に凸部を有する成形体を得た。得られた凸部は、0.4mmの厚みを有していた。
【0026】
得られた成形体を、窒素ガス雰囲気中1500℃処理を行うことで、平板部厚み0.35mm、凸部厚み0.3mm、200mm角の寸法を有する燃料電池用セパレータを得た。
(実施例2)
フラン樹脂(日立化成工業(株)製 ヒタフランVF−303)85部、天然鱗状黒鉛(日本黒鉛工業(株)製 平板粒径5μm)10部および気相成長炭素繊維(平均径0.1μm 長さ5μm)5部を充分に分散、混合して、平板作成用液状材料を得た。
【0027】
上記液状材料90部に消失性微粒子ポリマー(PMMA、10μm)10部を添加し、充分に分散、混合して凸部作成用液状材料を得た。
【0028】
これを実施例1と同様な工程で成形を行い、平板部厚み0.35mm、凸部厚み0.3mm、200mm角の寸法を有する燃料電池用セパレータを得た。
【0029】
このようにして得られた燃料電池用セパレータについて外観検査を行ないガス不浸透性を測定した後、電気抵抗、曲げ強さ等の物性を測定した。得られた結果を表1に示す。
【0030】
【表1】

Figure 0004587632
【0031】
【発明の効果】
以上説明したように、本発明の燃料電池用セパレータは、ガラス状炭素と黒鉛粉末及び/または炭素繊維の複合材料からなるため、ガラス状炭素並のガス不浸透性と一般炭素材料並みの電気伝導性、機械加工性を有し、また、凸部に消失性ポリマーを用い多孔質にすることで材料ガス及び酸化剤ガスが凸部のリブの中も拡散して行き、より反応を起こしやすい。さらに樹脂/炭素複合体よりも耐久性、耐腐食性に優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a fuel cell and a method for producing the same. Further, even if the plate is thinned, the strength, gas impermeability, and conductivity are not deteriorated. The present invention relates to a molecular fuel cell separator and a method for producing the same.
[0002]
[Prior art]
A polymer electrolyte fuel cell includes a solid polymer electrolyte membrane made of an ion exchange membrane, two electrodes provided on both sides thereof, and a gas for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen to each electrode. It is composed of a stack in which single cells made of a separator or the like provided with a supply groove are stacked, and two current collectors provided on the outside thereof.
Since a high-performance polymer electrolyte membrane is used in the electrolyte portion, high output power generation is possible despite the low operating temperature of 80 to 100 ° C.
[0003]
The polymer electrolyte fuel cell separator requires a high degree of gas impermeability in order to supply the electrode with the fuel gas and the oxidant gas completely separated, and the battery in order to increase the power generation efficiency. Therefore, it is necessary to reduce the internal resistance of the substrate, and therefore, it is necessary that the conductivity be high. Furthermore, in order to dissipate the heat generated by the battery reaction efficiently and to make the temperature distribution in the battery uniform, it is necessary to have excellent corrosion resistance to ensure high thermal conductivity and long-term durability. For these reasons, a carbon material is mainly used as a material for the separator of the polymer electrolyte fuel cell.
[0004]
The shape of the separator for a fuel cell is generally formed by forming a plurality of parallel grooves on both sides or one side of a flat plate, and transmits electricity generated by the gas diffusion electrode in the fuel cell to the outside and generates power. In this process, the water generated in the previous groove is drained, and the groove is secured as a flow path for the reaction gas flowing into the fuel cell.
[0005]
As fuel cells have become lighter and thinner in recent years, it has become necessary to reduce the thickness of fuel cell separators as described above, but only from conventional carbon materials with easy-to-cut processability. In the fuel cell separator as described above, there is a problem that the strength is lowered and the gas permeability is increased when the plate is simply made thin.
[0006]
Therefore, in order to maintain the strength and gas impermeability even if the thickness is reduced, for example, JP-A-10-40938 discloses a thermally expanded graphite powder or a scale-like natural graphite powder mainly having a particle size of 5 μm or more. There is disclosed a method for producing a fuel cell separator by mixing spherical or lump carbon powder coated with a binder made of a predetermined resin with a thickness of 200 μm or less and molding the mixture.
[0007]
Japanese Patent Laid-Open No. 2000-331690 discloses a sized particle having a particle size of 0.1 to 5 mm prepared by mixing, pulverizing, and sieving graphite powder having an average particle diameter of 50 μm or less and a phenol resin. A method for producing a fuel cell separator is disclosed in which a mold heated to a temperature is injection-molded and the molded body is heat-cured.
[0008]
However, the separator obtained by these methods is inferior in conductivity and heat dissipation effect as compared with a fuel cell separator made of only a carbon material, and it is difficult to ensure long-term durability.
[0009]
In addition, when molding by a molding method generally used as a separator manufacturing method, there is a disadvantage that near net shave molding in which a gas supply groove is formed in the separator in advance is difficult, and fuel gas or oxidant gas is supplied. The gas supply groove serving as a passage for this purpose needs to be formed by machining in a post-process, resulting in low productivity and high cost.
[0010]
On the other hand, the injection molding method is excellent in dimensional accuracy and can be integrally molded with a gas supply groove serving as a passage for supplying fuel gas or oxidant gas. In order to maintain fluidity in the molding raw material at the time of molding, it is necessary to increase the blending amount of the thermosetting resin as a binder, the degree of freedom of blending is limited, and carbon powder blended to improve conductivity Since the filler is oriented in different directions in the plate direction and the groove direction, when the obtained molded body is calcined carbon, there is a difficulty such as occurrence of warp and variation in dimensions due to differences in the firing shrinkage rate. is there.
[0011]
Applicant, in Japanese Application No. 2 001-149865, conductivity, heat dissipation properties, excellent long-term durability, as a separator for a fuel cell can be prepared by highly productive molding methods, a thermosetting resin liquid composition A separator for a fuel cell obtained by forming a flat plate portion and a convex portion on the flat plate portion from a material obtained by uniformly dispersing and composited graphite powder on a flat plate portion and firing it was proposed.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a fuel cell separator in which the characteristics required for the fuel cell separator are further improved and a method for producing the same.
[0013]
[Means for Solving the Problems]
The fuel cell separator of the present invention contains graphite and glassy carbon obtained by firing in the presence of the graphite, and is formed on the flat plate portion and the flat plate portion to form an uneven surface together with the flat plate portion. It has a porous convex part.
[0014]
The fuel cell separator preferably further includes fibrous carbon.
[0015]
The separator for a fuel cell according to the present invention is characterized by containing fibrous carbon and glassy carbon obtained by firing in the presence of the fibrous carbon.
[0016]
In the method for manufacturing a separator for a fuel cell according to the present invention, a flat plate is formed with a first material containing a resin and graphite, and a convex portion is selected on the flat plate with a second material containing a resin, graphite and a disappearing fine particle polymer. Forming a surface with unevenness on the flat plate by forming the surface, and carbonizing the flat plate having the uneven surface.
[0017]
The vanishing fine particle polymer is, for example, a fine particle polymer having an average particle size of 100 μm or less and disappears at 700 ° C. or less to form a porous material.
[0018]
It is preferable that both the first and second materials further include a fibrous carbon material.
[0019]
The fibrous carbon material is at least one selected from carbon nanotubes, vapor-grown carbon fibers, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, graphite fibers, and the like. Vapor-grown carbon fiber is a hydrocarbon gas such as benzene or methane that uses hydrogen as a carrier gas and thermally decomposes at around 1000 ° C to grow carbon fiber using the catalytic effect of hundreds of micronized metals. It is different from that obtained by carbonizing organic fibers such as PAN-based carbon fibers. Such vapor-grown carbon fibers are not crystallographically perfect whiskers, but have an annual ring structure in which the carbon layer surface is preferentially arranged on the fiber axis, and are highly heat treated at a temperature of 2500 ° C. or higher. The formed graphite structure has a structure similar to that of the graphitized whisker in particular (the vapor-grown carbon fiber is called “pea fiber” after the name of the developer, one of the inventors of the present application). ) Therefore, it has high tensile strength and elastic modulus, and has good thermal conductivity, electrical conductivity, and self-lubricity.
[0020]
The method for producing a separator for a fuel cell according to the present invention also forms a flat plate with a first material containing resin and fibrous carbon, and selects a convex portion on the flat plate with a second material containing resin and fibrous carbon. Forming a surface with unevenness on the flat plate by forming the plate, and carbonizing the flat plate having the uneven surface.
[0021]
In the fuel cell separator of the present invention, by making the convex part porous using a disappearing polymer, the fuel gas and the oxidant gas diffuse in the ribs of the convex part, and the reaction is more likely to occur. .
[0022]
Further, by using a fibrous carbon material for the flat plate and the convex portion, not only the mechanical strength is imparted but also a path through which electrons pass is made and the electrical conductivity is improved.
[0023]
【Example】
Example 1
70 parts of furan resin (Hitafuran VF-303 manufactured by Hitachi Chemical Co., Ltd.), 20 parts of natural scaly graphite (average particle diameter of 5 μm manufactured by Nippon Graphite Industries Co., Ltd.) and vapor grown carbon fiber (average diameter 0.1 μm length) 5 parts) was sufficiently dispersed and mixed to obtain a liquid material for preparing flat plates.
[0024]
20 parts of disappearing fine particle polymer (PMMA, 10 μm) was added to 80 parts of the above liquid material, and sufficiently dispersed and mixed to obtain a liquid material for forming a convex part.
[0025]
The flat plate portion was obtained by putting a liquid material into a doctor blade type coating machine to create a green sheet, cutting the green sheet with a cutting machine, and then heat-curing with a dryer. The obtained flat plate had a thickness of 0.5 mm and a dimension of 24.5 cm square. After setting the flat plate on a screen printing machine incorporating a screen mesh on which a convex shape pattern is formed and printing the liquid material for forming the convex portion, the convex portion is subjected to heat curing treatment in a drying furnace, and then again, Printing and heat-curing were performed to obtain convex portions. After forming a convex part on one side, the molded body which has a convex part on both surfaces was obtained by printing and heat-curing also on the opposite surface. The obtained convex part had a thickness of 0.4 mm.
[0026]
The obtained molded body was treated at 1500 ° C. in a nitrogen gas atmosphere to obtain a fuel cell separator having a flat plate thickness of 0.35 mm, a convex thickness of 0.3 mm, and a 200 mm square.
(Example 2)
85 parts of furan resin (Hitafuran VF-303, manufactured by Hitachi Chemical Co., Ltd.), 10 parts of natural scaly graphite (flat particle size: 5 μm, manufactured by Nippon Graphite Industries Co., Ltd.) and vapor grown carbon fiber (average diameter: 0.1 μm length) 5 parts) was sufficiently dispersed and mixed to obtain a liquid material for preparing a flat plate.
[0027]
10 parts of disappearing fine particle polymer (PMMA, 10 μm) were added to 90 parts of the liquid material, and sufficiently dispersed and mixed to obtain a liquid material for forming a convex part.
[0028]
This was molded in the same steps as in Example 1 to obtain a fuel cell separator having a flat plate thickness of 0.35 mm, a convex thickness of 0.3 mm, and a 200 mm square.
[0029]
The appearance of the fuel cell separator thus obtained was inspected and measured for gas impermeability, and then physical properties such as electrical resistance and bending strength were measured. The obtained results are shown in Table 1.
[0030]
[Table 1]
Figure 0004587632
[0031]
【The invention's effect】
As described above, since the fuel cell separator of the present invention is composed of a composite material of glassy carbon and graphite powder and / or carbon fiber, it has a gas impermeability similar to that of glassy carbon and an electrical conductivity similar to that of general carbon materials. In addition, the material gas and the oxidant gas are diffused in the ribs of the convex part by making the convex part porous by using a disappearing polymer, and the reaction is more likely to occur. Furthermore, it is superior in durability and corrosion resistance than the resin / carbon composite.

Claims (6)

平板部および平板部上に形成されて平板部とともに凹凸のある表面を形成する多孔質の凸部とを有し、
該平板部および凸部は、黒鉛と、該黒鉛の存在下での焼成により得られたガラス状炭素を含み、
前記凸部の多孔質は、炭素化処理の過程で消失して多孔質を形成する微粒子ポリマーを使用して形成されたものである、燃料電池用セパレータ。
A porous projection formed on the flat plate portion and the flat plate portion to form an uneven surface together with the flat plate portion,
Flat plate portion and Totsubu is seen containing graphite, glassy carbon obtained by firing in the presence of graphite,
The porous portion of the convex portion is a fuel cell separator formed using a fine particle polymer that disappears in the course of carbonization to form a porous portion .
繊維状炭素をさらに含む請求項1記載の燃料電池用セパレータ。  The fuel cell separator according to claim 1, further comprising fibrous carbon. 樹脂および黒鉛を含む第1の材料で平板を形成し、平板上に、樹脂、黒鉛および、炭素化処理の過程で消失して多孔質を形成する微粒子ポリマーを含む第2の材料で凸部を選択的に形成することによって平板上に凹凸のある表面を形成し、該凹凸のある表面を有する平板を炭素化処理するステップを具備する燃料電池用セパレータの製造方法。  A flat plate is formed of a first material including a resin and graphite, and a convex portion is formed on the flat plate with a second material including a resin, graphite, and a fine particle polymer that disappears in the process of carbonization to form a porous material. A method for producing a separator for a fuel cell, comprising a step of selectively forming an uneven surface on a flat plate and carbonizing the flat plate having the uneven surface. 前記微粒子ポリマーの平均粒径が100μm以下である請求項3記載の燃料電池用セパレータの製造方法。  The method for producing a fuel cell separator according to claim 3, wherein the fine particle polymer has an average particle size of 100 μm or less. 前記第1および第2の材料はともに繊維状炭素材をさらに含む請求項3記載の燃料電池用セパレータの製造方法。  The method for producing a fuel cell separator according to claim 3, wherein both the first and second materials further include a fibrous carbon material. 繊維状炭素材が、カーボンナノチューブ、気相成長炭素繊維、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、黒鉛繊維より選ばれた少なくとも一種である請求項5記載の燃料電池用セパレータの製造方法。Fibrous carbon material, carbon nanotubes, vapor-grown carbon fibers, polyacrylonitrile-based carbon fibers, pitch-based carbon fiber, a manufacturing method of a fuel cell separator according to claim 5, wherein at least one selected Ri by graphite textiles .
JP2002030950A 2002-02-07 2002-02-07 Fuel cell separator and method for producing the same Expired - Fee Related JP4587632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030950A JP4587632B2 (en) 2002-02-07 2002-02-07 Fuel cell separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030950A JP4587632B2 (en) 2002-02-07 2002-02-07 Fuel cell separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003234110A JP2003234110A (en) 2003-08-22
JP4587632B2 true JP4587632B2 (en) 2010-11-24

Family

ID=27774499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030950A Expired - Fee Related JP4587632B2 (en) 2002-02-07 2002-02-07 Fuel cell separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP4587632B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004595A (en) * 2015-06-04 2017-01-05 パナソニックIpマネジメント株式会社 Separator for fuel battery and fuel battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151767A (en) * 1984-08-20 1986-03-14 Kobe Steel Ltd Composite carbon material for fuel cell
JPS62230689A (en) * 1986-03-31 1987-10-09 富士電機株式会社 Heating degradation improvement for glassy carbon material
JPS63270138A (en) * 1987-04-30 1988-11-08 Kobe Steel Ltd Composite carbonic member and its manufacture
JPH01197968A (en) * 1988-01-30 1989-08-09 Hitachi Ltd Phosphoric acid type fuel cell and manufacture thereof
JPH02112161A (en) * 1988-10-21 1990-04-24 Tokai Carbon Co Ltd Manufacture of carbon component for fuel cell
JPH0384865A (en) * 1989-08-28 1991-04-10 Tokai Carbon Co Ltd Separator for fuel cell
JPH04214072A (en) * 1990-12-12 1992-08-05 Osaka Gas Co Ltd Carbonaceous composition, carbon material for fuel cell and its manufacture
JPH0684526A (en) * 1992-09-03 1994-03-25 Mitsubishi Electric Corp Separator with rib for fuel cell and its manufacture
JPH1074602A (en) * 1996-08-29 1998-03-17 Showa Denko Kk Temperature sensitive resistor and its manufacture
JP2000164563A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Plasma processing device
JP2001143719A (en) * 1999-11-11 2001-05-25 Unitika Ltd Separator in fuel cell and method of manufacturing the same
JP2002343374A (en) * 2001-05-18 2002-11-29 Mitsubishi Pencil Co Ltd Separator for fuel cell, and manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270268A (en) * 1985-05-22 1986-11-29 株式会社神戸製鋼所 Composite carbon material and manufacture
JPS63133459A (en) * 1986-11-26 1988-06-06 Kureha Chem Ind Co Ltd Member for fuel cell with tip seal part and its manufacture

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151767A (en) * 1984-08-20 1986-03-14 Kobe Steel Ltd Composite carbon material for fuel cell
JPS62230689A (en) * 1986-03-31 1987-10-09 富士電機株式会社 Heating degradation improvement for glassy carbon material
JPS63270138A (en) * 1987-04-30 1988-11-08 Kobe Steel Ltd Composite carbonic member and its manufacture
JPH01197968A (en) * 1988-01-30 1989-08-09 Hitachi Ltd Phosphoric acid type fuel cell and manufacture thereof
JPH02112161A (en) * 1988-10-21 1990-04-24 Tokai Carbon Co Ltd Manufacture of carbon component for fuel cell
JPH0384865A (en) * 1989-08-28 1991-04-10 Tokai Carbon Co Ltd Separator for fuel cell
JPH04214072A (en) * 1990-12-12 1992-08-05 Osaka Gas Co Ltd Carbonaceous composition, carbon material for fuel cell and its manufacture
JPH0684526A (en) * 1992-09-03 1994-03-25 Mitsubishi Electric Corp Separator with rib for fuel cell and its manufacture
JPH1074602A (en) * 1996-08-29 1998-03-17 Showa Denko Kk Temperature sensitive resistor and its manufacture
JP2000164563A (en) * 1998-11-26 2000-06-16 Hitachi Ltd Plasma processing device
JP2001143719A (en) * 1999-11-11 2001-05-25 Unitika Ltd Separator in fuel cell and method of manufacturing the same
JP2002343374A (en) * 2001-05-18 2002-11-29 Mitsubishi Pencil Co Ltd Separator for fuel cell, and manufacturing method of the same

Also Published As

Publication number Publication date
JP2003234110A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
KR101484762B1 (en) Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell comprising the gas diffusion layer
CN101803074B (en) High thermal conductivity electrode substrate
US12034188B2 (en) Graphitized carbon substrate and gas diffusion layer employing same
CN112290040A (en) Preparation method of composite graphite bipolar plate
CN110061258B (en) Fuel cell polar plate and preparation method thereof and fuel cell
JPS627618A (en) Carbon-graphite constitutional element, manufacture thereof and precursor sheet structure therefor
JP3573444B2 (en) Carbonaceous separator member for polymer electrolyte fuel cell and method of manufacturing the same
CN101083330A (en) Gas diffusion media and fuel cell
JP3616255B2 (en) Separator member for polymer electrolyte fuel cell and method for producing the same
US4938942A (en) Carbon graphite component for an electrochemical cell and method for making the component
JPWO2005043656A1 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP2007042326A (en) Separator for fuel cell and manufacturing method thereof
JP2008186718A (en) Gas diffusion layer for fuel cell, fuel cell, fuel cell mounted device
JP4587632B2 (en) Fuel cell separator and method for producing the same
CA2434086A1 (en) Catalyst composition for cell, gas diffusion layer, and fuel cell comprising the same
JPH11297337A (en) Separator member for solid polymer type fuel cell, and manufacture thereof
Bruno et al. Carbon materials for fuel cells
KR20200040423A (en) Method of desizing carbon fiber and method of manufacturing gas diffusion layer of fuel cell thereby
KR102388815B1 (en) High density gas diffusion layer, preparing method thereof, electrode, membrane-electrode assembly, and fuel cell emplying the same
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
KR101402391B1 (en) Method for producing separator material for solid polymer fuel cell
KR100654242B1 (en) Method for manufacturing the bypolar plate of fuel cell
CN112310427A (en) Preparation system of composite graphite bipolar plate
JP2002343374A (en) Separator for fuel cell, and manufacturing method of the same
JPS6210866A (en) Electrode substrate for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees